JPH11292618A - High temperature ceramic material of aluminum titanate - Google Patents

High temperature ceramic material of aluminum titanate

Info

Publication number
JPH11292618A
JPH11292618A JP13253698A JP13253698A JPH11292618A JP H11292618 A JPH11292618 A JP H11292618A JP 13253698 A JP13253698 A JP 13253698A JP 13253698 A JP13253698 A JP 13253698A JP H11292618 A JPH11292618 A JP H11292618A
Authority
JP
Japan
Prior art keywords
thermal expansion
mgo
aluminum titanate
ceramic
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13253698A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tabata
博幸 田畑
Hiroshi Nishimura
洋 西村
Tetsuo Kawajiri
哲郎 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU CERAMICS KOGYO KK
Original Assignee
KYUSHU CERAMICS KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU CERAMICS KOGYO KK filed Critical KYUSHU CERAMICS KOGYO KK
Priority to JP13253698A priority Critical patent/JPH11292618A/en
Publication of JPH11292618A publication Critical patent/JPH11292618A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic material that has improved thermal properties, resistance to thermal shock and mechanical properties by specifying the contents of MgO, Al2 O3 , TiO2 and SiO2 in the ceramic composition. SOLUTION: This aluminum titanate ceramic comprises <=1% of MgO, 60-65% of Al2 O3 , 20-32% of TiO2 , and 5-15% of SiO2 . This ceramic has a thermal expansion coefficient of 0-2.0*10<-6> / deg.C in the temperature range of from 20-1,330 deg.C. This high strength, thermal expansion-resistant material is produced by mixing alumina, titania and magnesia as raw materials, crushing, granulating and sintering them, further admixing alumina and kaolin thereto to form a composite sintered product. In this formulation composition, ultra-fine powders of MgO and SiO2 with particle sizes about 100 Å are formulated to increase its stability and mechanical strength and retain its low thermal expansion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は耐熱性が高く、耐熱
衝撃性に優れ且つ高温で強度低下しないチタン酸アルミ
ニウム系セラミックスを用いた構造材料に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural material using an aluminum titanate-based ceramic having high heat resistance, excellent thermal shock resistance, and which does not decrease in strength at high temperatures.

【0003】[0003]

【従来の技術および問題点】技術の発展に伴い、これま
でにない高度な要求が生じている。つまり、耐触性に優
れたセラミックスについてさらに耐熱性、耐熱衝撃性及
び機械的強度が要求されるが、セラミックスの耐熱衝撃
特性は材料の熱膨張率、ヤング率、ポアソン比、強度等
の特性に影響されるとともに製品の大きさや形状、さら
に加熱冷却状況にも左右される。しかし、これらのうち
で材料の熱膨張係数との相関が最も高く、耐熱性が高
く、低膨張材料の開発が強く望まれている。一方、チタ
ン酸アルミニウムセラミックスは著しい低熱膨張性を示
すが、これがチタン酸アルミニウム結晶の大きな熱膨張
の異方性に起因する粒界亀裂による見かけ上の性質であ
ることは既に明かされている。この粒界亀裂のため機械
的強度は小さく、また、結晶は1250℃以下の低温度
域で不安定で、加熱すると分解するという問題点もあ
る。しかし、融点は1800℃以上で、見かけ上ではあ
るが低膨張性を示し、他に得難いセラミックスであるた
め、これらの性質を改善することを目的として材料の開
発が強く望まれていた。
2. Description of the Related Art Along with the development of technology, unprecedentedly high requirements have been generated. In other words, ceramics with excellent touch resistance are required to have further heat resistance, thermal shock resistance and mechanical strength, but the thermal shock characteristics of ceramics depend on the properties of the material such as thermal expansion coefficient, Young's modulus, Poisson's ratio, and strength. It depends on the size and shape of the product, as well as the heating and cooling conditions. However, among these, the development of a low expansion material that has the highest correlation with the thermal expansion coefficient of the material and has high heat resistance is strongly desired. On the other hand, aluminum titanate ceramics have a remarkably low thermal expansion property, but it has already been revealed that this is an apparent property due to grain boundary cracks caused by the large thermal expansion anisotropy of aluminum titanate crystals. Due to the grain boundary cracks, the mechanical strength is low, and the crystal is unstable in a low temperature range of 1250 ° C. or less, and has a problem that it is decomposed when heated. However, since it has a melting point of 1800 ° C. or more, exhibits an apparently low expansive property, and is a ceramic which is difficult to obtain, it has been strongly desired to develop a material for the purpose of improving these properties.

【0004】このような要望に応えるため、種々の添加
剤を加えて機械的強度を増加させ、且つ低膨張性を示す
材料の研究が報告されている。また、添加剤を加えず、
合成原料の鉱物種や粒径を変えた試料を作製し、焼結性
の微構造と機械的熱的性質が検討されてきた。しかしな
がら、これらの方法ではいずれも十分な機械的強度を有
する焼結体が得られず、また熱膨張収縮の格差も大きか
った。
[0004] In order to meet such demands, studies have been made on materials which increase the mechanical strength by adding various additives and exhibit low expansion properties. Also, without adding additives,
Samples with different mineral species and particle sizes of synthetic raw materials have been prepared, and the microstructure and mechanical and thermal properties of sintering properties have been studied. However, in any of these methods, a sintered body having sufficient mechanical strength was not obtained, and the difference in thermal expansion and contraction was large.

【0005】[0005]

【発明が解決しようとする課題】本発明はTiO、A
、MgOを出発原料として、その後Al
とSiOを混合することにより熱的性質、耐熱衝撃特
性及び機械的強度を向上させ、高温材料として提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to TiO 2 , A
Starting from l 2 O 3 and MgO, then Al 2 O 3
It is an object of the present invention to improve thermal properties, thermal shock resistance, and mechanical strength by mixing with SiO 2 and to provide a high-temperature material.

【0006】[0006]

【課題を解決するための手段】チタン酸アルミニウムを
構成相とした高強度耐熱膨張材料を得ることを目的とし
てアルミナ、チタニア、マグネシアを出発原料として、
混合、粉砕、造粒、焼結を行いその後アルミナ、ニュー
ジーランドカオリンを添加混合することにより複合焼成
体を作成した。
In order to obtain a high-strength heat-resistant expansion material having aluminum titanate as a constituent phase, alumina, titania and magnesia are used as starting materials.
After mixing, grinding, granulating and sintering, alumina and New Zealand kaolin were added and mixed to prepare a composite fired body.

【0007】化学組成としてはMgO 1%以下、Al
60〜65%、TiO20〜32%、SiO
5〜15%であることを必須の構成とするものであ
る。上記配合において、100Å程度の超微粉MgO及
びSiOを添加することにより熱安定性が高く機械的
強度が増加し、且つ低熱膨張性が維持出来た。
The chemical composition is MgO 1% or less, Al
2 O 3 60-65%, TiO 2 20-32%, SiO
The essential configuration is to be 25 to 15%. In the above-mentioned composition, by adding ultrafine powder MgO and SiO 2 of about 100 °, the thermal stability was increased, the mechanical strength was increased, and the low thermal expansion was maintained.

【0008】[0008]

【実施例1】表−1に実施例1の配合と特性を表す。 表中のは参考例のチタン酸アルミニウムを表し、〜
は本発明の配合例であり、原料として使用したものは
精製ルチル、高純度ローソーダアルミナ、高純度微粉末
マグネシア100Å、ニュージーランドカオリンであ
る。物性及び曲げ強度試験には3mm*4mm*40m
m、TMAにはφ4*15lの寸法で試験片を作製し
た。高温耐クリープ試験は10mm*50mm*1mm
の試験片を電気炉に入れ、片側を保持した状態で60
分間所定温度で加熱して評価した。実施例から明らかな
ように、1600℃焼成において配合No.を中心と
して〜の範囲内に強度と耐熱衝撃特性両者の優位性
が存在する。No.よりTiOが増加しSiO
減少すると強度低下、また、No.よりTiOが減
少しSiO、Alが増加すれば熱膨張係数が大
きくなり熱衝撃特性が小さくなる。
Example 1 Table 1 shows the composition and characteristics of Example 1. In the table represents the aluminum titanate of the reference example, ~
Is a formulation example of the present invention, and the raw materials used are purified rutile, high-purity low soda alumina, high-purity fine powder magnesia 100 kg, and New Zealand kaolin. 3mm * 4mm * 40m for physical property and bending strength test
For m and TMA, test pieces having a size of φ4 * 15 l were prepared. High temperature creep resistance test is 10mm * 50mm * 1mm
t was placed in an electric furnace, and one side was held for 60 hours.
The sample was heated at a predetermined temperature for minutes and evaluated. As is clear from the examples, the composition No. The superiority of both the strength and the thermal shock resistance exists within the range of ~. No. When TiO 2 increases and SiO 2 decreases, the strength decreases. If TiO 2 decreases and SiO 2 and Al 2 O 3 increase, the thermal expansion coefficient increases and the thermal shock characteristics decrease.

【0010】[0010]

【実施例2】表1の配合を用いて、パイプ形状(φ7
0〜φ50)*130lと薄板形状(100mm*50
mm*1mm)の試験片を作製し高温ガスを用いて加
熱・冷却のサイクル試験を行った。本実験には耐火断熱
構造の接続管を用い、その接続管の入り口に都市ガス使
用の溶射用バーナーを取りつけ、反対側のガス出口に試
験片をはめ込む。パイプ形状の場合都市ガス流量の増減
のみ、薄板の場合は燃焼を停止させた後、冷却空気で送
風を行い、急冷・急加熱を繰り返した。また、パイプ取
り出し温度は750℃とした。パイプ形状品においては
850〜1400℃間での10サイクル、昇温1000
℃/minにおいてクラック等外観に異常なし。温度カ
ーブを図1に示す。サイクル時の昇降温は550℃/m
in、切り換え動作1min、高温側ガス量10.1N
/hr、流速1.4m/sec、低温側ガス量9.
5Nm/hr、流速1.3m/secであった。最高昇
温速度は400〜1100℃間で1176℃/min、
ガス流量11.2Nm/hr、流速1.6m/sec
であった。また、試験後パイプより切り出した試験片に
て曲げ強度を測定した結果、61MPaと強度低下はみ
られなかった。波板形状品においては1400℃までは
昇温1000℃/min、100〜1400℃での10
サイクルに耐えた。温度カーブを図2に示す。最高昇温
速度は1300℃/min、平均で765℃/min、
切り換え動作1.7minであった。燃焼時はガス流量
12.0Nm/hr、流速0.9m/secであり冷
却時はガス流量16.8Nm/hr、流速1.2m/
secであった。
Example 2 Using the composition shown in Table 1, pipe shapes (φ7
0 ~ φ50) * 130l and thin plate shape (100mm * 50
mm * 1 mm t ) was prepared and subjected to a heating / cooling cycle test using a high-temperature gas. In this experiment, a connection pipe with a fire-resistant and heat-insulating structure was used. A thermal spray burner using city gas was attached to the entrance of the connection pipe, and a test piece was fitted into the gas outlet on the opposite side. In the case of the pipe shape, only the increase or decrease of the city gas flow rate, and in the case of the thin plate, after stopping the combustion, the cooling air was blown, and rapid cooling and rapid heating were repeated. The temperature at which the pipe was taken out was 750 ° C. For pipe-shaped products, 10 cycles between 850 and 1400 ° C, temperature rise 1000
No abnormal appearance such as cracks at ° C / min. The temperature curve is shown in FIG. The temperature rise and fall during the cycle is 550 ° C / m
in, switching operation 1 min, high-temperature side gas amount 10.1 N
m 3 / hr, flow rate 1.4 m / sec, low-temperature side gas amount 9.
The flow rate was 5 Nm / hr and the flow rate was 1.3 m / sec. The maximum heating rate is 1176 ° C / min between 400 and 1100 ° C,
Gas flow rate 11.2 Nm 3 / hr, flow rate 1.6 m / sec
Met. Further, as a result of measuring the bending strength of a test piece cut out from the pipe after the test, no reduction in strength was found at 61 MPa. In the case of corrugated sheet-shaped products, the temperature is raised to 1000C / min up to 1400C, and 10
Endured cycles. The temperature curve is shown in FIG. The maximum heating rate is 1300 ° C / min, 765 ° C / min on average,
The switching operation was 1.7 min. At the time of combustion, the gas flow rate is 12.0 Nm 3 / hr and the flow rate is 0.9 m / sec. At the time of cooling, the gas flow rate is 16.8 Nm 3 / hr and the flow rate is 1.2 m / sec.
sec.

【0011】[0011]

【実施例3】表1の配合を用いて図3に示す切換弁を
作製した。この切換弁は、2系統の流路のいずれか一方
を連通させ他方を閉じることによって流体の流れ方向を
切り替えるものであって、2系統の流路に接続される円
筒形の回転体1とこの回転体1を収容し1系統の流路が
連結されているハウジング2とから構成されている。そ
して回転体1を駆動用モーターに接続させ、ハウジング
2の片側より燃焼ガスを通しながら30秒に1回、90
度を1秒で正逆回転させた。本実施例により配合No.
を用いて作製した切換弁は1400℃の燃焼ガスの通
過に対して正常に作動し、且つ材料の耐熱性、耐熱衝撃
特性、機械的強度も確認出来た。温度カーブと燃焼ガス
流量を図4に示す。
Example 3 A switching valve shown in FIG. 3 was produced using the composition shown in Table 1. This switching valve switches the flow direction of the fluid by communicating one of the two flow paths and closing the other, and includes a cylindrical rotating body 1 connected to the two flow paths and And a housing 2 that accommodates the rotating body 1 and is connected to one system of flow passages. Then, the rotating body 1 is connected to a driving motor, and while the combustion gas is passed from one side of the housing 2, 90 times once every 30 seconds.
The degree was rotated forward and backward in one second. According to this example, the composition No.
The switching valve manufactured using the method described above normally operated with respect to the passage of the combustion gas at 1400 ° C., and the heat resistance, thermal shock resistance, and mechanical strength of the material were also confirmed. FIG. 4 shows the temperature curve and the combustion gas flow rate.

【0012】[0012]

【発明の効果】本発明のチタン酸アルミニウム系セラミ
ックス高温材料は上記に詳しく説明したように高い耐熱
衝撃特性をもち、且つ高い機械的強度を兼ね備えた優秀
なセラミックス材料であり、今後高温部材として広く用
いられる可能性がある。
As described in detail above, the aluminum titanate-based ceramic high-temperature material of the present invention is an excellent ceramic material having high thermal shock resistance and high mechanical strength, and will be widely used as a high-temperature member in the future. May be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パイプ形状品を用いた試験の温度カーブを示す
グラフ。
FIG. 1 is a graph showing a temperature curve of a test using a pipe-shaped product.

【図2】薄板形状品を用いた試験の温度カーブを示すグ
ラフ。
FIG. 2 is a graph showing a temperature curve of a test using a thin plate-shaped product.

【図3】本発明のチタン酸アルミニウム系セラミックス
材料を用いて作製した高温燃焼ガス用切換弁の形状。
FIG. 3 shows the shape of a high-temperature combustion gas switching valve manufactured using the aluminum titanate-based ceramic material of the present invention.

【図4】切換弁を用いた試験の温度カーブと燃焼ガス流
量を示すグラフ。
FIG. 4 is a graph showing a temperature curve and a combustion gas flow rate of a test using a switching valve.

【符号の説明】[Explanation of symbols]

1 回転体 2 ハウジング 1 rotating body 2 housing

Claims (2)

【0001】 【特許請求の範囲】[Claims] 【請求項1】化学組成がMgO 1%以下、Al
60〜65%、TiO20〜32%、SiO5〜
15%で構成されることを特徴とするチタン酸アルミニ
ウム系セラミックス。
(1) a chemical composition of MgO 1% or less, Al 2 O 3
60~65%, TiO 2 20~32%, SiO 2 5~
An aluminum titanate-based ceramic characterized by comprising 15%.
【請求項2】20〜1330℃間の熱膨張係数が0〜
2.0*10−6/℃である特許請求範囲第1項記載の
チタン酸アルミニウム系セラミックス。 【0002】
2. The thermal expansion coefficient between 20 ° C. and 1330 ° C.
2. The aluminum titanate-based ceramic according to claim 1, which has a temperature of 2.0 * 10 -6 / ° C. [0002]
JP13253698A 1998-04-07 1998-04-07 High temperature ceramic material of aluminum titanate Pending JPH11292618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13253698A JPH11292618A (en) 1998-04-07 1998-04-07 High temperature ceramic material of aluminum titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13253698A JPH11292618A (en) 1998-04-07 1998-04-07 High temperature ceramic material of aluminum titanate

Publications (1)

Publication Number Publication Date
JPH11292618A true JPH11292618A (en) 1999-10-26

Family

ID=15083579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13253698A Pending JPH11292618A (en) 1998-04-07 1998-04-07 High temperature ceramic material of aluminum titanate

Country Status (1)

Country Link
JP (1) JPH11292618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521613A (en) * 2004-11-30 2008-06-26 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Brazing system with suitable thermal expansion coefficient
US8287673B2 (en) 2004-11-30 2012-10-16 The Regents Of The University Of California Joining of dissimilar materials
CN112279640A (en) * 2020-06-03 2021-01-29 武汉理工大学 Aluminum titanate ceramic for casting and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521613A (en) * 2004-11-30 2008-06-26 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Brazing system with suitable thermal expansion coefficient
US8287673B2 (en) 2004-11-30 2012-10-16 The Regents Of The University Of California Joining of dissimilar materials
CN112279640A (en) * 2020-06-03 2021-01-29 武汉理工大学 Aluminum titanate ceramic for casting and preparation method thereof

Similar Documents

Publication Publication Date Title
Dong et al. Recycling of fly ash for preparing porous mullite membrane supports with titania addition
Rodrigo et al. High purity mullite ceramics by reaction sintering
TWI268916B (en) Method for producing aluminum magnesium titanate sintered product
JP5230935B2 (en) Aluminum magnesium titanate crystal structure and manufacturing method thereof
Viswabaskaran et al. Mullite from clay–reactive alumina for insulating substrate application
Gordon et al. Comparison of naturally and synthetically-derived potassium-based geopolymers
Kumar et al. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide
Palmero et al. Creep behaviour of alumina/YAG composites prepared by different sintering routes
TW201708132A (en) Ceramic composite beads and methods for making the same
Kobayashi et al. Effect of microstructure on the thermal expansion coefficient of sintered cordierite prepared from sol mixtures
Violini et al. Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5-3Al2O3. 2SiO2-ZrTiO4 composite materials. Processing, initial zircon proportion effect, and properties
Bučevac et al. Effect of YAG content on creep resistance and mechanical properties of Al2O3-YAG composite
Awaad et al. In situ formation of zirconia–alumina–spinel–mullite ceramic composites
Baek et al. AlN with high strength and high thermal conductivity based on an MCAS-Y2O3-YSZ multi-additive system
Kim et al. Thermal shock resistance and thermal expansion behaviour with composition and microstructure of Al2TiO5 ceramics
JPH11292618A (en) High temperature ceramic material of aluminum titanate
Wahsh et al. Recycling bagasse and rice hulls ash as a pore‐forming agent in the fabrication of cordierite–spinel porous ceramics
Kumar et al. Thermo-mechanical properties of mullite—zirconia composites derived from reaction sintering of zircon and sillimanite beach sand: Effect of CaO
Kim et al. Low thermal expansion behavior and thermal durability of ZrTiO4–Al2TiO5–Fe2O3 ceramics between 750 and 1400° C
Rani et al. Sol–gel mullite as the self-bonding material for refractory applications
JPH07109175A (en) Composite ceramic material used in industrial application under high temperature and severe thermal shock condition and production thereof
JP2916664B2 (en) Oriented alumina sintered body
JPH038757A (en) Aluminum titanate-mullite-based ceramic body
Sun et al. Fabrication and characterization of cordierite/zircon composites by reaction sintering: formation mechanism of zircon
JP4319866B2 (en) Method for producing inorganic fibrous refractory insulation