JPH11292557A - Method for making optical fiber porous preform transparent - Google Patents

Method for making optical fiber porous preform transparent

Info

Publication number
JPH11292557A
JPH11292557A JP9978598A JP9978598A JPH11292557A JP H11292557 A JPH11292557 A JP H11292557A JP 9978598 A JP9978598 A JP 9978598A JP 9978598 A JP9978598 A JP 9978598A JP H11292557 A JPH11292557 A JP H11292557A
Authority
JP
Japan
Prior art keywords
optical fiber
preform
furnace
transparent
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9978598A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Masahiko Matsui
雅彦 松井
Kanta Yagi
幹太 八木
Fumio Yoshimura
文雄 吉村
Hideyuki Wakiyasu
英之 脇保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9978598A priority Critical patent/JPH11292557A/en
Publication of JPH11292557A publication Critical patent/JPH11292557A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a longer service life of the vacuum furnace by reducing glass film deposition on a furnace core tube and an evacuation pipe of a vacuum furnace for use in a process of making an optical fiber porous preform transparent. SOLUTION: In the case that an optical fiber porous perform 5 is inserted into the core tube 1 of a vacuum furnace provided with a furnace core tube 1 and heated to make the preform 5 transparent, the optical fiber porous preform 5 is placed in an atmosphere such that an inert gas whose pressure is adjusted to 50 to 150 Pa is allowed to flow, in a >=1200 deg.C temp. region inside the furnace core tube 1, to make the preform 5 transparent. Also, placing the optical fiber porous preform 5 in an atomosphere such that an inert gas whose pressure is adjusted to 50 to 150 Pa is allowed to flow, over a >=800 deg.C temp. region inside the furnace core tube 1, or placing the preform 5 in an atmosphere such that an inert gas whose pressure is adjusted to 50 to 150 Pa is allowed to flow, throughout the whole temp. region inside the furnace core tube 1 over a period from the time at which the preform 5 is inserted into the core tube 1, to the time at which preform 5 is made transparent, is more effective for attaining a longer service life of the vacuum furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ多孔質
母材を加熱して透明化する方法において、それに使用す
る炉心管を備えた真空炉を長期間にわたって安定して使
用出来るようにし、かつ長期間にわたって出来上がった
透明化母材の品質を良好なものに維持することが可能な
光ファイバ多孔質母材の透明化方法に関する。
The present invention relates to a method of heating a porous optical fiber preform to make it transparent by enabling a vacuum furnace equipped with a furnace tube to be used stably for a long period of time, and The present invention relates to a method for transparentizing an optical fiber porous preform capable of maintaining a good quality of a completed transparent preform over a long period of time.

【0002】[0002]

【従来の技術】気相軸付法(VAD法)又は外付法(O
VD法)によって合成された光ファイバ多孔質母材は、
電気炉にて高温加熱処理をすることにより透明ガラス化
され、透明化母材となる。従来、透明化は、ヘリウム等
の不活性ガスの雰囲気において常圧にて行われて来た
が、光ファイバ多孔質母材の孔内に閉じ込められたガス
あるいは透明化に際して溶け込んだガスが、透明化母材
中に残留して気泡となるという問題がある。そこで、こ
のような残留ガスあるいは気泡を少なくするため、真空
雰囲気あるいは減圧雰囲気の中で光ファイバ多孔質母材
を透明化することが行われる。特開平5−163038
号公報に記載された方法もその一方法である。
2. Description of the Related Art A gas phase method (VAD method) or an external method (O
The optical fiber porous preform synthesized by the VD method)
By virtue of high-temperature heat treatment in an electric furnace, the glass is made transparent and becomes a transparent base material. Conventionally, transparency has been performed at normal pressure in an atmosphere of an inert gas such as helium.However, the gas confined in the pores of the optical fiber porous preform or the gas dissolved during the transparency becomes transparent. There is a problem that it remains in the forming base material and becomes bubbles. Therefore, in order to reduce such residual gas or bubbles, the optical fiber porous preform is made transparent in a vacuum atmosphere or a reduced pressure atmosphere. JP-A-5-163038
The method described in Japanese Patent Application Laid-Open Publication No. Hei 9 (1995) -19511 is one such method.

【0003】この方法は、図1に示す炉心管を備えた真
空炉によって行われる。図1において、1は高純度黒鉛
等で出来た炉心管、2は加熱ヒータ、3は断熱材、4は
炉体、5は光ファイバ多孔質母材、6は種棒、7は母材
吊下げロッド、8は前室、9は扉、10は上蓋、11は
ゲート弁、12は炉体ガス導入口、13は炉心管ガス導
入口、14は炉体ガス排出口、15は炉心管ガス排出
口、16は真空排気ポンプ、17は常圧排気口、18は
前室ガス排気口である。
[0003] This method is performed by a vacuum furnace having a furnace tube shown in FIG. In FIG. 1, 1 is a furnace core tube made of high-purity graphite or the like, 2 is a heater, 3 is a heat insulating material, 4 is a furnace body, 5 is an optical fiber porous preform, 6 is a seed rod, and 7 is a base material suspension. Lower rod, 8 a front chamber, 9 a door, 10 a top lid, 11 a gate valve, 12 a furnace body gas inlet, 13 a furnace tube gas inlet, 14 a furnace body gas outlet, 15 a furnace tube gas An exhaust port, 16 is a vacuum exhaust pump, 17 is a normal pressure exhaust port, and 18 is a front chamber gas exhaust port.

【0004】特開平5−163038号公報に記載され
た方法は、光ファイバ多孔質母材を透明化するに際し
て、減圧又は真空下でプログラムされた温度上昇パター
ンを2つの時間区間に分割して、第1区間では不活性ガ
スを含むガスを真空炉中に流す減圧雰囲気下とし、第2
区間では第1区間よりも少い流量の不活性ガスを含むガ
スを真空炉中に流す0.5〜2Pa程度の減圧雰囲気下
とするか又はガスを全く流さない真空雰囲気下とするこ
とにより、光ファイバ多孔質母材に吸着した酸素、水分
などによる炉体内のカーボン部品の酸化、消耗を抑える
ことによって炉体の長寿命化を図るものである。
In the method described in Japanese Patent Application Laid-Open No. 5-163038, when a porous optical fiber preform is made transparent, a temperature rising pattern programmed under reduced pressure or vacuum is divided into two time intervals. In the first section, a gas containing an inert gas is introduced into a vacuum furnace under a reduced pressure atmosphere.
In the section, a gas containing an inert gas with a smaller flow rate than the first section is supplied to a vacuum furnace under a reduced pressure atmosphere of about 0.5 to 2 Pa or under a vacuum atmosphere in which no gas flows, The object of the present invention is to prolong the life of the furnace body by suppressing oxidation and consumption of carbon parts in the furnace body due to oxygen, moisture and the like adsorbed on the optical fiber porous preform.

【0005】なお、この方法では、光ファイバ多孔質母
材5は種棒6の部分を母材吊下げロッド7で支持して前
室8内へ挿入し、そこで減圧下においてからゲート弁1
1を開いて800℃に加熱された炉心管1内に挿入して
加熱ヒータ2によって昇温加熱する。そして1300℃
になったところでガス流量を減らして減圧を強化するか
真空下にして更に1600℃まで加熱を行う。この間、
炉心管1内及び炉体4内のガスは、それぞれのガス導入
口13、12から供給し、ガス排出口15、14に接続
した排気ポンプ16によって炉心管1内及び炉体4内を
減圧下又は真空下にする。
In this method, the porous optical fiber preform 5 is inserted into the front chamber 8 while supporting the seed rod 6 with the preform hanging rod 7, and then the gate valve 1 is depressurized there.
1 is opened, inserted into a furnace tube 1 heated to 800 ° C., and heated and heated by a heater 2. And 1300 ° C
Then, the gas flow rate is reduced to increase the reduced pressure, or the pressure is reduced, and heating is further performed to 1600 ° C. During this time,
Gases in the furnace tube 1 and the furnace body 4 are supplied from respective gas inlets 13 and 12, and the inside of the furnace tube 1 and the inside of the furnace body 4 are depressurized by an exhaust pump 16 connected to gas outlets 15 and 14. Or, under vacuum.

【0006】[0006]

【発明が解決しようとする課題】この従来技術による透
明化方法では、炉心管の接続されるガス排気口の排気管
や炉内にガラス成分がわずかずつ付着する。これは初期
には問題にならないものの、長期間にわたって真空炉を
使用しているうちに、以下のような問題が発生してく
る。排気管の内部に堆積するガラス成分は徐々に増加
し、そのまま作業を続けると最終的には排気管を閉塞す
る。そのため、排気が十分でなくなり、光ファイバ多孔
質母材から放出される水分、酸素等によって、真空炉を
構成するステンレス材料に錆を発生させたり、カーボン
材料を消耗させたりする。
In the method of making transparent according to the prior art, the glass component adheres little by little to the exhaust pipe of the gas exhaust port connected to the furnace tube and the furnace. Although this is not a problem in the early stage, the following problems occur during the long-term use of the vacuum furnace. The glass component deposited inside the exhaust pipe gradually increases, and if the operation is continued as it is, the exhaust pipe will eventually be closed. Therefore, exhaust is not sufficient, and rust is generated in the stainless steel material constituting the vacuum furnace or carbon material is consumed by moisture, oxygen, and the like released from the optical fiber porous preform.

【0007】また、炉心管の内壁にガラス膜が形成さ
れ、それらのガラス膜が剥離して光ファイバ多孔質母材
の表面を傷つけるという問題が発生する。排気管の清
掃、炉心管のガラス膜の除去清掃を頻繁に行うことも考
えられるが、その場合は設備の稼働率が低下する。本発
明は、このような従来技術による問題点を解消した光フ
ァイバ多孔質母材の透明化方法を提供するものである。
Further, a glass film is formed on the inner wall of the furnace tube, and the glass film peels off, causing a problem that the surface of the porous optical fiber preform is damaged. It is conceivable to frequently clean the exhaust pipe and remove and clean the glass film of the furnace core tube. However, in that case, the operation rate of the equipment decreases. The present invention provides a method for making an optical fiber porous preform transparent, in which the problems of the prior art are eliminated.

【0008】[0008]

【課題を解決するための手段】本発明の光ファイバ多孔
質母材の透明化方法では、炉心管を有する真空炉の該炉
心管内に光ファイバ多孔質母材を挿入して加熱し透明化
するに際し、炉心管内の温度領域1200℃以上におい
ては、圧力を50〜150Paとした不活性ガスを流し
た雰囲気下に光ファイバ多孔質母材を置いて透明化す
る。
According to the method for making a porous optical fiber preform transparent according to the present invention, a porous optical fiber preform is inserted into a furnace tube of a vacuum furnace having a furnace tube to heat and make it transparent. At this time, in a temperature range of 1200 ° C. or more in the furnace tube, the optical fiber porous preform is placed in an atmosphere of an inert gas at a pressure of 50 to 150 Pa to make it transparent.

【0009】また、800℃以上の温度領域にわたっ
て、圧力を50〜150Paとした不活性ガスを流した
雰囲気下に光ファイバ多孔質母材を置くこと、あるいは
光ファイバ多孔質母材を炉心管に挿入後透明化に至るま
での炉心管内での全温度領域にわたって、圧力を50〜
150Paとした不活性ガスを流した雰囲気下に光ファ
イバ多孔質母材を置くことは、真空炉の長寿命化に更な
る効果がある。
Further, the optical fiber porous preform is placed in an atmosphere in which an inert gas having a pressure of 50 to 150 Pa is flowed over a temperature range of 800 ° C. or more, or the optical fiber porous preform is placed in a furnace tube. A pressure of 50 to 50 is applied over the entire temperature range in the core tube from insertion to clarification.
Placing the optical fiber porous preform in an atmosphere of an inert gas at 150 Pa has a further effect on extending the life of the vacuum furnace.

【0010】[0010]

【発明の実施の形態】本発明の光ファイバ多孔質母材の
透明化方法の実施に当たっては、真空炉としては従来技
術で使用していた図1に示す真空炉を使用することが出
来る。しかし、この図1の真空炉に限るものではなく、
真空炉の形態、材料が異なっていても、加熱条件、圧力
条件等を満たすことが出来るものなら、使用することが
可能である。また、本発明では、真空炉の炉心管内に光
ファイバ多孔質母材を挿入した時の雰囲気ガスの圧力を
特定しているが、そのような知見が得られた経緯につい
て以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In carrying out the method for making a porous optical fiber preform transparent according to the present invention, the vacuum furnace shown in FIG. 1 used in the prior art can be used as a vacuum furnace. However, it is not limited to the vacuum furnace shown in FIG.
Even if the form and material of the vacuum furnace are different, they can be used as long as they can satisfy heating conditions, pressure conditions, and the like. Further, in the present invention, the pressure of the atmosphere gas when the porous optical fiber preform is inserted into the furnace core tube of the vacuum furnace is specified. The process of obtaining such knowledge will be described below.

【0011】真空炉においては、炉心管に接続されたガ
ス排気口につながる排気管から真空排気ポンプで排気し
ている。この場合、ガスの排気効率は炉心管から排気管
への気体の流れの強さに依存する。一般的に、真空下又
は減圧下においては、気体分子の数が少ないため、気体
分子同志の衝突回数が少なく、それゆえに気体分子の平
均自由工程は長い。圧力は低くなればなるほど、気体分
子の平均自由工程は長くなる。図2は、ヘリウムにおけ
る圧力と分子平均自由工程との関係を1200℃及び1
550℃の場合について、計算で求めたものである。
In a vacuum furnace, the gas is exhausted by an evacuation pump from an exhaust pipe connected to a gas exhaust port connected to a furnace tube. In this case, the gas exhaust efficiency depends on the strength of the gas flow from the furnace tube to the exhaust tube. In general, under vacuum or reduced pressure, the number of gas molecules is small, so the number of collisions between gas molecules is small, and therefore the mean free path of gas molecules is long. The lower the pressure, the longer the mean free path of the gas molecules. FIG. 2 shows the relationship between pressure and molecular mean free path in helium at 1200 ° C. and 1 ° C.
It is obtained by calculation for the case of 550 ° C.

【0012】また、気体分子の平均自由工程が、装置内
の気体流通箇所の大きさよりも小さいと、気体分子は装
置の内壁に衝突せずに流れ易くなると期待される。そし
て、装置内の気体流通箇所の最も狭いところの寸法に対
して、平均自由工程が1/10以下であれば、気体分子
の大部分は内壁に衝突せずに流れると考えられる。図1
の真空炉の場合、気体流通箇所の最も狭い箇所は、真空
炉のガス排気口につながる排気管であるが、その内径は
約25mm程度なので、十分な排気効率を確保するに
は、平均自由工程を2.5mm以下とすることが望まし
い、ということになる。なお、図2から平均自由工程を
2.5mm以下とするには、圧力は50Pa以上にすれ
ば良いと見積もることが出来る。
When the mean free path of the gas molecules is smaller than the size of the gas flow point in the apparatus, the gas molecules are expected to flow easily without colliding with the inner wall of the apparatus. If the mean free path is 1/10 or less of the size of the narrowest part of the gas flow area in the apparatus, it is considered that most of the gas molecules flow without colliding with the inner wall. FIG.
In the case of the vacuum furnace described above, the narrowest part of the gas flow point is the exhaust pipe connected to the gas exhaust port of the vacuum furnace, but its inner diameter is about 25 mm. Is desirably 2.5 mm or less. From FIG. 2, it can be estimated that the pressure should be 50 Pa or more to make the mean free path 2.5 mm or less.

【0013】平均自由工程を小さくするには、雰囲気ガ
スの圧力は高ければ高いほど良いが、圧力が高くなりす
ぎると別の問題が生じる。即ち、雰囲気ガスの圧力が高
いと透明化母材内にガスが閉じ込められ易くなって気泡
が多くなり、透明化母材の品質低下をもたらす。透明化
母材内にガス閉じ込めによる気泡の発生が少ない圧力限
界を実験で調べたところ、150Paであった。これら
のことから、本発明では、雰囲気ガスの圧力範囲を50
〜150Paとしている。
To reduce the mean free path, the higher the pressure of the atmospheric gas, the better. However, if the pressure is too high, another problem arises. That is, when the pressure of the atmosphere gas is high, the gas is easily confined in the transparent base material, the number of bubbles increases, and the quality of the transparent base material is reduced. When the pressure limit at which generation of bubbles due to gas confinement in the transparent base material was small was examined by experiment, it was 150 Pa. From these facts, in the present invention, the pressure range of the atmospheric gas is set to 50
150150 Pa.

【0014】また、真空炉の炉心管を約800℃に加熱
しておき、前室に挿入した光ファイバ多孔質母材をゲー
ト弁を開いて炉心管内へ挿入し、温度を徐々に約154
0℃まで上げて光ファイバ母材を透明化させ透明化母材
とするが、炉心管中でのガラス成分の放出と温度の関係
を調べたところ、大部分のガラス成分の放出は1200
℃以上の温度領域で発生していることが分かった。従っ
て、雰囲気ガスの圧力制御は、1200℃以上の温度領
域でだけ行うことによって、真空炉の長寿命化について
の相当の効果を上げることが出来る。なお、光ファイバ
母材を炉心管に挿入して透明化するまでの全温度領域で
圧力制御をすることによって、更に真空炉の長寿命化を
図ることが出来ることは勿論である。
Further, the furnace tube of the vacuum furnace is heated to about 800 ° C., the porous optical fiber preform inserted into the front chamber is inserted into the furnace tube by opening the gate valve, and the temperature is gradually increased by about 154.
The temperature was raised to 0 ° C. to make the optical fiber preform transparent and used as a transparent base material. When the relationship between the release of glass components and the temperature in the furnace tube was examined, the release of most of the glass components was 1200
It was found that it occurred in the temperature range of not less than ℃. Therefore, by controlling the pressure of the atmospheric gas only in the temperature range of 1200 ° C. or more, a considerable effect on the extension of the life of the vacuum furnace can be achieved. It is needless to say that the life of the vacuum furnace can be further extended by controlling the pressure in the entire temperature region until the optical fiber preform is inserted into the furnace tube and made transparent.

【0015】なお、雰囲気ガスとしては、光ファイバ多
孔質母材、炉心管等と反応しないように不活性ガスを用
いる。ガスの排気効率の点からは雰囲気ガスの圧力は高
い方が良いが、圧力を高くすると気泡が発生し易くなる
ので、雰囲気ガスとしても気泡の発生し難いガスが好ま
しい。不活性ガスの中ではヘリウムガスが透過率が高
く、気泡になり難いので、雰囲気ガスとしてはヘリウム
ガスが好ましい。
As the atmosphere gas, an inert gas is used so as not to react with the optical fiber porous preform, the furnace tube and the like. From the viewpoint of gas exhaust efficiency, the pressure of the atmosphere gas is preferably higher. However, if the pressure is increased, bubbles are easily generated. Therefore, the atmosphere gas is preferably a gas that hardly generates bubbles. Helium gas is preferable as the atmosphere gas because helium gas has a high transmittance among the inert gases and is unlikely to become bubbles.

【0016】[0016]

【実施例】「実施例1」として、図1の真空炉を使用
し、次の条件で光ファイバ多孔質母材を透明化した。炉
内は予め真空引きを行い温度を800℃に保ち、光ファ
イバ多孔質母材を前室に挿入した。そして、前室内を真
空引きした後ゲート弁を開いて光ファイバ母材を炉心管
内部に挿入し、炉心管の内部温度を約8時間かけて80
0℃から1540℃まで昇温し、光ファイバ多孔室母材
の透明化を行った。その間、炉心管及び炉内にはヘリウ
ムガスを5SLM(1分当たりの流量を標準状態0℃、
1気圧に換算してリットルで表示した単位)流し、圧力
を約100Paに保った。その結果得られた透明化母材
は気泡の発生は無く、良好であった。更に連続して光フ
ァイバ多孔質母材を100本同様の処理を行った後、炉
心管内及び排気管内を観察したが、ガラス膜の付着は殆
ど見当たらなかった。また、100本の透明化母材の平
均気泡数は0.2個/本で、透明化母材の表面には傷等
の異常は見当たらなかった。
EXAMPLE As Example 1, the vacuum furnace of FIG. 1 was used, and the optical fiber porous preform was made transparent under the following conditions. The inside of the furnace was evacuated in advance to maintain the temperature at 800 ° C., and the optical fiber porous preform was inserted into the front chamber. After evacuating the front chamber, the gate valve is opened and the optical fiber preform is inserted into the furnace tube, and the temperature inside the furnace tube is raised to 80 over about 8 hours.
The temperature was raised from 0 ° C. to 1540 ° C. to make the base material of the optical fiber porous chamber transparent. During this time, 5 SLM of helium gas was introduced into the furnace tube and the furnace (the flow rate per minute was set to a standard state of 0 ° C,
The pressure was maintained at about 100 Pa. As a result, the resulting transparent base material had no bubbles and was good. After the same treatment of 100 optical fiber preforms was continuously performed, the inside of the furnace tube and the inside of the exhaust tube were observed. However, adhesion of the glass film was hardly found. In addition, the average number of air bubbles in the 100 transparent base materials was 0.2 / bubble, and no abnormality such as a scratch was found on the surface of the transparent base material.

【0017】「実施例2」として、図1の真空炉を使用
し、実施例1とは次の点で条件を異ならせて光ファイバ
多孔質母材を透明化した。炉心管の内部温度を800℃
から1540℃まで昇温する間において、800℃から
1200℃まで昇温する間はヘリウムガスを5SLM流
して圧力を約100Paに保ち、1200℃から154
0℃まで昇温する間はヘリウムガスを8SLM流して圧
力を約120Paに保った。連続して光ファイバ多孔質
母材を100本同様の処理を行った後、炉心管内及び排
気管内を観察したが、ガラス膜の付着は殆ど見当たらな
かった。また、100本の透明化母材の平均気泡数は
0.3個/本で、透明化母材の表面には傷等の異常は見
当たらなかった。
As Example 2, the vacuum furnace of FIG. 1 was used, and the optical fiber porous preform was made transparent under the following conditions different from Example 1. 800 ° C inside furnace tube
During the heating from 800 ° C to 1200 ° C, the pressure was maintained at about 100 Pa by flowing 5 SLM of helium gas while the temperature was rising from 800 ° C to 1200 ° C.
Helium gas was flown at 8 SLM while the temperature was raised to 0 ° C., and the pressure was maintained at about 120 Pa. After the same treatment of 100 porous optical fiber preforms continuously, the inside of the furnace tube and the inside of the exhaust tube were observed, but almost no glass film adhesion was found. In addition, the average number of air bubbles in 100 pieces of the transparent base material was 0.3 / book, and no abnormality such as a scratch was found on the surface of the transparent base material.

【0018】「実施例3」として、図1の真空炉を使用
し、実施例1とは次の点で条件を異ならせて光ファイバ
多孔質母材を透明化した。炉心管の内部温度を800℃
から1540℃まで昇温する間において、800℃から
1200℃まで昇温する間はヘリウムガスを流さず圧力
を約5Paの真空に保ち、1200℃から1540℃ま
で昇温する間はヘリウムガスを4SLM流して圧力を約
80Paに保った。連続して光ファイバ多孔質母材を1
00本同様の処理を行った後、炉心管内及び排気管内を
観察したが、ガラス膜の付着は殆ど見当たらなかった。
また、100本の透明化母材の平均気泡数は0.2個/
本で、透明化母材の表面には傷等の異常は見当たらなか
った。
In Example 3, the vacuum furnace of FIG. 1 was used, and the optical fiber porous preform was made transparent under the following conditions different from Example 1. 800 ° C inside furnace tube
During the heating from 800 ° C. to 1540 ° C., the pressure was maintained at a vacuum of about 5 Pa without flowing helium gas during the heating from 800 ° C. to 1200 ° C., and the helium gas was heated at 4 SLM during the heating from 1200 ° C. to 1540 ° C. The pressure was maintained at about 80 Pa by flowing. Continuously use one porous optical fiber preform
After the same treatment as above, the inside of the furnace tube and the inside of the exhaust tube were observed, but adhesion of the glass film was hardly found.
The average number of bubbles of 100 transparent base materials is 0.2 /
In the book, no abnormality such as a scratch was found on the surface of the transparent base material.

【0019】「比較例1」として、図1の真空炉を使用
し、実施例1とは次の点で条件を異ならせて光ファイバ
多孔質母材を透明化した。炉心管の内部温度を800℃
から1540℃まで昇温する間、ヘリウムガスを流さず
圧力を約1Paの真空に保った。得られた透明化母材に
は気泡は無かったが、連続して光ファイバ多孔質母材を
20本同様の処理を行い、透明化母材を調べたところ透
明化母材の表面に微少な傷が多数付いているのが見つか
った。また、炉心管内及び排気管内を観察したところ、
炉心管の内壁にガラス膜が形成され、その内、数箇所で
ガラス膜が剥がれている箇所が見つかった。更に排気管
内にもガラス成分と思われる異物が堆積し、排気管は閉
塞していた。
As Comparative Example 1, the vacuum furnace of FIG. 1 was used, and the optical fiber porous preform was made transparent under the following conditions different from Example 1. 800 ° C inside furnace tube
While the temperature was raised from 1 to 1540 ° C., the pressure was maintained at a vacuum of about 1 Pa without flowing helium gas. Although there were no air bubbles in the obtained transparent preform, the same process was continuously performed on 20 optical fiber porous preforms, and the transparent preform was examined. Many wounds were found. Also, when observing the inside of the furnace core tube and the inside of the exhaust tube,
A glass film was formed on the inner wall of the furnace core tube, and several places where the glass film was peeled were found. In addition, foreign substances considered to be glass components also accumulated in the exhaust pipe, and the exhaust pipe was closed.

【0020】「比較例2」として、図1の真空炉を使用
し、実施例1とは次の点で条件を異ならせて光ファイバ
多孔質母材を透明化した。炉心管の内部温度を800℃
から1540℃まで昇温する間、ヘリウムガスを20S
LM流して圧力を約200Paに保った。得られた1本
目の透明化母材には気泡が5個発生していた。連続して
光ファイバ多孔質母材を20本同様の処理を行い、透明
化母材を調べたところ透明化母材の表面には傷の発生は
無かったが、気泡は平均して3.5個/本認められた。
また、炉心管内及び排気管内を観察したところ、ガラス
膜の形成、付着は見られなかった。しかし、この比較例
2の場合は、気泡の数が多くその部分は不良として廃却
せざるを得なかったので、生産性は実施例1〜3に比較
して劣っていた。
As Comparative Example 2, the vacuum furnace of FIG. 1 was used, and the optical fiber porous preform was made transparent under the following conditions different from Example 1. 800 ° C inside furnace tube
Helium gas for 20S while heating from
The pressure was maintained at about 200 Pa by LM flow. Five bubbles were generated in the obtained first transparent base material. The same treatment was continuously performed on 20 optical fiber porous preforms, and a transparent preform was examined. As a result, no scratch was found on the surface of the transparent preform, but bubbles were averaged at 3.5. One / piece was accepted.
When the inside of the furnace tube and the inside of the exhaust tube were observed, no formation or adhesion of a glass film was observed. However, in the case of Comparative Example 2, since the number of bubbles was large and the portion had to be discarded as defective, the productivity was inferior to Examples 1 to 3.

【0021】[0021]

【発明の効果】本発明の光ファイバ多孔質母材の透明化
方法では、炉心管を有する真空炉の該炉心管内に光ファ
イバ多孔質母材を挿入して加熱し透明化するに際し、1
200℃以上の温度領域では圧力を50〜150Paと
した不活性ガスを流した雰囲気下に光ファイバ多孔質母
材を置いて透明化することとしたので、真空炉を長期間
使用しても炉心管、排気管等へのガラス膜の付着は少な
く、真空炉の長寿命化が図れる。また、炉心管へ付着し
たガラス膜の剥がれによって光ファイバ多孔質母材を傷
つけること、透明化母材に気泡が多数発生すること、と
いった製品品質にかかわる問題も少なくすることが出来
る。
According to the method for transparentizing an optical fiber porous preform of the present invention, when the optical fiber porous preform is inserted into the furnace tube of a vacuum furnace having a furnace tube and heated to make it transparent, 1
In a temperature range of 200 ° C. or higher, the optical fiber porous preform is placed in an atmosphere in which an inert gas is supplied at a pressure of 50 to 150 Pa to make it transparent. Adhesion of the glass film to pipes, exhaust pipes, etc. is small, and the life of the vacuum furnace can be extended. In addition, it is possible to reduce problems related to product quality such as damage to the porous optical fiber preform due to peeling of the glass film adhered to the furnace tube and generation of many bubbles in the transparent preform.

【0022】また、光ファイバ多孔質母材の透明化工程
中、800℃以上の温度領域にわたって、圧力を50〜
150Paとした不活性ガスを流した雰囲気下に光ファ
イバ多孔質母材を置くこと、あるいは光ファイバ多孔質
母材を炉心管に挿入後透明化に至るまでの炉心管内での
全温度領域にわたって、圧力を50〜150Paとした
不活性ガスを流した雰囲気下に光ファイバ多孔質母材を
置くことによって、更なる真空炉の長寿命化を図ること
が出来る。
Further, during the step of clearing the porous optical fiber preform, the pressure is set to 50 to over a temperature range of 800 ° C. or more.
Putting the optical fiber porous preform under an atmosphere in which an inert gas was flowed at 150 Pa, or inserting the optical fiber porous preform into the furnace core tube and clarifying it after the entire temperature range in the furnace core tube until it became transparent. The life of the vacuum furnace can be further extended by placing the optical fiber porous preform under an atmosphere in which an inert gas is supplied at a pressure of 50 to 150 Pa.

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空炉の断面図である。FIG. 1 is a sectional view of a vacuum furnace.

【図2】ヘリウムガスの分子平均自由工程と圧力の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the molecular mean free path of helium gas and pressure.

【符号の説明】[Explanation of symbols]

1:炉心管 2:加熱ヒータ 3:断熱材 4:炉体 5:光ファイバ多孔質母材 6:種棒 7:母材吊下げロッド 8:前室 9:扉 10:上蓋 11:ゲート弁 12:炉体ガス導入口 13:炉心管ガス導入口 14:炉体ガス排出口 15:炉心管ガス排出口 16:真空排気ポンプ 17:常圧排気口 18:前室ガス排気口 1: Furnace tube 2: Heater 3: Heat insulation material 4: Furnace body 5: Optical fiber porous base material 6: Seed bar 7: Base material hanging rod 8: Front room 9: Door 10: Top cover 11: Gate valve 12 : Furnace body gas inlet 13: Furnace tube gas inlet 14: Furnace body gas outlet 15: Furnace tube gas outlet 16: Vacuum exhaust pump 17: Normal pressure exhaust port 18: Front chamber gas exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 文雄 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 脇保 英之 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Fumio Yoshimura 1st Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Inside Sumitomo Electric Industries Co., Ltd. Electric Manufacturing Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉心管を有する真空炉の該炉心管内に光
ファイバ多孔質母材を挿入して加熱し透明化する方法に
おいて、該炉心管内の温度領域1200℃以上において
は、圧力を50〜150Paとした不活性ガスを流した
雰囲気下に光ファイバ多孔質母材を置いて透明化するこ
とを特徴とする光ファイバ多孔質母材の透明化方法。
1. A method of inserting a porous optical fiber preform into a furnace tube of a vacuum furnace having a furnace tube to heat and make it transparent, wherein a pressure of 50-200 ° C. is set in a temperature region of 1200 ° C. or more in the furnace tube. A method for making a porous optical fiber preform transparent, comprising placing an optical fiber porous preform in an atmosphere of an inert gas at 150 Pa and flowing the same.
【請求項2】 炉心管を有する真空炉の該炉心管内に光
ファイバ多孔質母材を挿入して加熱し透明化する方法に
おいて、該炉心管内の温度領域800℃以上において
は、圧力を50〜150Paとした不活性ガスを流した
雰囲気下に光ファイバ多孔質母材を置いて透明化するこ
とを特徴とする光ファイバ多孔質母材の透明化方法。
2. A method of inserting a porous optical fiber preform into a furnace tube of a vacuum furnace having a furnace tube to heat and make it transparent, wherein a pressure of 50 to 800 ° C. or more in the furnace tube is used. A method for making a porous optical fiber preform transparent, comprising placing an optical fiber porous preform in an atmosphere of an inert gas at 150 Pa and flowing the same.
【請求項3】 炉心管を有する真空炉の該炉心管内に光
ファイバ多孔質母材を挿入して加熱し透明化する方法に
おいて、該光ファイバ多孔質母材を該炉心管に挿入後透
明化に至るまでの全ての温度領域において、圧力を50
〜150Paとした不活性ガスを流した雰囲気下に光フ
ァイバ多孔質母材を置いて透明化することを特徴とする
光ファイバ多孔質母材の透明化方法。
3. A method for inserting a porous optical fiber preform into a furnace tube of a vacuum furnace having a furnace tube and heating and making the optical fiber transparent, and then inserting the optical fiber porous preform into the furnace tube to make the fiber tube transparent. Pressure in all temperature ranges up to
A method for making a porous optical fiber preform transparent, comprising placing the optical fiber porous preform in an atmosphere in which an inert gas at a pressure of up to 150 Pa is flown.
JP9978598A 1998-04-13 1998-04-13 Method for making optical fiber porous preform transparent Pending JPH11292557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9978598A JPH11292557A (en) 1998-04-13 1998-04-13 Method for making optical fiber porous preform transparent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9978598A JPH11292557A (en) 1998-04-13 1998-04-13 Method for making optical fiber porous preform transparent

Publications (1)

Publication Number Publication Date
JPH11292557A true JPH11292557A (en) 1999-10-26

Family

ID=14256599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9978598A Pending JPH11292557A (en) 1998-04-13 1998-04-13 Method for making optical fiber porous preform transparent

Country Status (1)

Country Link
JP (1) JPH11292557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101457A1 (en) * 2003-05-19 2004-11-25 Shin-Etsu Chemical Co., Ltd. Process for producing glass parent material of optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101457A1 (en) * 2003-05-19 2004-11-25 Shin-Etsu Chemical Co., Ltd. Process for producing glass parent material of optical fiber

Similar Documents

Publication Publication Date Title
JP2008511753A (en) Cleaning process and operation process of CVD reactor
AU656643B2 (en) Process for heating vitrification of porous preform for optical fiber
JPH04123257U (en) Bias ECR plasma CVD equipment
JPH1116858A (en) Method of cleaning and processing film forming device
WO1993023978A1 (en) Process apparatus
JPH11292557A (en) Method for making optical fiber porous preform transparent
WO2017151288A1 (en) Method and apparatus for purifying target material for euv light source
JP2002115064A (en) Method for cleaning cvd system for graphite nanofiber thin film deposition
JP3856397B2 (en) Wafer processing method for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JPH1067522A (en) Production of synthetic silica glass and apparatus therefor
JP7298406B2 (en) Method and apparatus for regenerating members in silicon single crystal pulling apparatus, and method for manufacturing silicon single crystal using regenerated members
JP2002305190A (en) Heat treating apparatus and method for cleaning the same
SU755861A1 (en) Method of thermal treatment of hollow long-sized articles
JP2834538B2 (en) Optical fiber drawing method
JPS63151628A (en) Mold for forming optical element
JPS6394635A (en) Device for manufacturing semiconductor
JPH10265235A (en) Production of transparent glass preform and apparatus for its production
JPH04187547A (en) Device for preparing hermetic-coated optical fiber
JP2000003906A (en) Semiconductor manufacturing device
JPH01278715A (en) Film manufacturing device
JP2000001783A (en) Film forming device and cleaning method therefor
JPH042127A (en) Formation of insulating film
JPH118198A (en) Reaction furnace
JPH01215980A (en) Device for forming cvd thin film
JPS63172420A (en) Mounting structure of light source in photo-cvd apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124