JPH11288846A - Four-terminal capacitor - Google Patents

Four-terminal capacitor

Info

Publication number
JPH11288846A
JPH11288846A JP11025909A JP2590999A JPH11288846A JP H11288846 A JPH11288846 A JP H11288846A JP 11025909 A JP11025909 A JP 11025909A JP 2590999 A JP2590999 A JP 2590999A JP H11288846 A JPH11288846 A JP H11288846A
Authority
JP
Japan
Prior art keywords
metal foil
anode
foil
current collector
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11025909A
Other languages
Japanese (ja)
Other versions
JP3515698B2 (en
Inventor
Masakazu Tanahashi
正和 棚橋
Mikiya Shimada
幹也 嶋田
Emiko Igaki
恵美子 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02590999A priority Critical patent/JP3515698B2/en
Publication of JPH11288846A publication Critical patent/JPH11288846A/en
Application granted granted Critical
Publication of JP3515698B2 publication Critical patent/JP3515698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a four-terminal capacitor, which can realize high-frequency coutermeasure through low-ESR realization and low-ESR realization, has a high current capacity and high capacity, low impedance and little heating. SOLUTION: A valve-metal foil 23 for an anode, in which rough-surface formation is performed and a dielectric oxide film layer 25 are formed and a metal foil 24 for current collection are laminated via a cathode conducting macromolecule layer 26, so that the foils intersect with each other. Anode terminals 21 and cathode terminals 22 are connected to the respective both ends of the respective metal foils 23 and 24. For the anode valve metal foil 23, the aluminum foil having a bulk layer, whose surface has not been roughened, is used at the inner cross section. For the metal foil 24 for the current collector aluminum foil, for which the same aluminum foil, an Ni foil a Cu foil or carbon is added, is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電源などの電気回路
に用いられる電解コンデンサに関する。
The present invention relates to an electrolytic capacitor used for an electric circuit such as a power supply.

【0002】[0002]

【従来の技術】従来、コンデンサとしては、アルミニウ
ムやタンタルなどの弁金属を用いた電解コンデンサや、
PdやNiなどを電極として用い、チタン酸バリウムな
どを誘電体として用いた積層セラミックコンデンサなど
が知られている。これらのコンデンサは電源回路など電
気回路のほとんどに使用されているが、ほとんどのコン
デンサが、引き出し電極として2端子型の構造をとって
いる。一方近年では、電気回路の小型化、高周波対応化
が要求されており、これに伴って、コンデンサについて
も大容量化、低インピーダンス化が必要となっており、
特に、コンピュータのCPU駆動用電源回路やスイッチ
ング電源回路などに対しては、回路設計上、高周波対応
としてノイズやリプル電流の吸収性が要求され、低ES
R(等価直列抵抗)化、低ESL(等価直列インダクタ
ンス)化、耐高リップル電流化、大容量化が実現できる
コンデンサが強く求められている。このような要求に対
応するため、特に低ESR化を目的として、電気伝導度
の高い導電性高分子を電解コンデンサの陰極用固体電解
質として用いることが検討され、開発されてきている。
2. Description of the Related Art Conventionally, electrolytic capacitors using valve metals such as aluminum and tantalum,
A multilayer ceramic capacitor using Pd, Ni, or the like as an electrode and using barium titanate or the like as a dielectric is known. Although these capacitors are used in most electric circuits such as power supply circuits, most capacitors have a two-terminal structure as an extraction electrode. On the other hand, in recent years, miniaturization of electric circuits and adaptation to high frequencies have been required, and accordingly, capacitors have also been required to have large capacitance and low impedance.
In particular, a power supply circuit for driving a CPU or a switching power supply circuit of a computer is required to have high absorptivity for noise and ripple current for high frequency in circuit design.
There is a strong demand for a capacitor that can realize R (equivalent series resistance), low ESL (equivalent series inductance), high ripple current resistance, and large capacity. In order to meet such a demand, the use of a conductive polymer having high electric conductivity as a solid electrolyte for a cathode of an electrolytic capacitor has been studied and developed, particularly for the purpose of reducing the ESR.

【0003】従来の捲回形アルミ電解コンデンサの構造
について図10を用いて説明する。粗面化処理され、か
つ表面に誘電体酸化皮膜層が形成された陽極用電極箔8
1と粗面化処理された集電用陰極箔82との間にセパレ
ータ83を配置させ、これらを巻いたものをコンデンサ
素子としており、この素子を電解液とともにケースに入
れ封口している。端子となるリード84は陽極用電極箔
81と集電用陰極箔82よりそれぞれ導出されている。
A structure of a conventional wound type aluminum electrolytic capacitor will be described with reference to FIG. Anode electrode foil 8 having a roughened surface and a dielectric oxide film layer formed on the surface
A separator 83 is disposed between the surface-collecting cathode foil 82 and the surface-collected cathode foil 82, and a wound element is used as a capacitor element. This element is sealed in a case together with an electrolytic solution. Leads 84 serving as terminals are led out from an anode electrode foil 81 and a current collection cathode foil 82, respectively.

【0004】また、従来のチップ積層セラミックコンデ
ンサの構造について図11を用いて説明する。PdやN
iなどの焼結体からなる電極層91と誘電体層92とが
交互に積層されており、端子となる外部電極93により
電極層91がそれぞれ交互に導出されている。
A structure of a conventional chip multilayer ceramic capacitor will be described with reference to FIG. Pd or N
The electrode layers 91 made of a sintered body such as i and the dielectric layers 92 are alternately laminated, and the electrode layers 91 are alternately led out by the external electrodes 93 serving as terminals.

【0005】さらに、従来の機能性タンタル電解コンデ
ンサの構造について図12を用いて説明する。図12
(a)は従来の機能性タンタル電解コンデンサの構造を
示した断面図であり、また図12(b)はコンデンサ素
子の構成を示す部分拡大断面図である。タンタルコンデ
ンサ素子101はタンタル粉焼結体101cの表面に誘
電体層101bが形成され、誘電体層101bの表面に
導電性を有する機能性高分子層101aが形成されてい
る。機能性高分子層101aは真の陰極として作用し、
機能性高分子層101aは陰極端子102と導電性接着
剤層103で接続されている。また陽極端子104は焼
結体101cから引き出されているリード105と接続
されており、これらの素子全体はモールド樹脂層106
にてケーシングされている。
Further, the structure of a conventional functional tantalum electrolytic capacitor will be described with reference to FIG. FIG.
(A) is a sectional view showing a structure of a conventional functional tantalum electrolytic capacitor, and (b) is a partially enlarged sectional view showing a structure of a capacitor element. In the tantalum capacitor element 101, a dielectric layer 101b is formed on the surface of a tantalum powder sintered body 101c, and a functional polymer layer 101a having conductivity is formed on the surface of the dielectric layer 101b. The functional polymer layer 101a acts as a true cathode,
The functional polymer layer 101a is connected to the cathode terminal 102 by a conductive adhesive layer 103. The anode terminal 104 is connected to a lead 105 extending from the sintered body 101c.
It is a casing.

【0006】またさらには、およそ100kHz以上の
高周波でのインピーダンスを下げるために、インダクタ
ンス成分の低減が必要とされており、4端子型のコンデ
ンサの発明(特開平6−267802号公報、特開平6
−267801号公報、「SP−Cap」(松下電器産
業株式会社の商標、’92スイッチング電源システムシ
ンポジウム予稿集(S6(1994)−1−1)参照)など)
が報告されている。一方で、高周波対応とともにパワー
電源の一次側や二次側などに比較的大きな電流の流せる
コンデンサ開発が要求されており、インピーダンス全体
を低減し、電流容量を少しでも上げるためのコンデンサ
の発明(特開平4−32214号公報)も報告されてい
る。
Further, in order to lower the impedance at a high frequency of about 100 kHz or more, it is necessary to reduce the inductance component, and the invention of a four-terminal type capacitor (Japanese Patent Application Laid-Open Nos. Hei 6-267802 and Hei 6-267802).
-267801, "SP-Cap" (trademark of Matsushita Electric Industrial Co., Ltd., Proceedings of '92 Switching Power Supply System Symposium (refer to S6 (1994) -1-1)), etc.)
Have been reported. On the other hand, there is a demand for the development of a capacitor capable of supplying a relatively large current to the primary side and the secondary side of the power supply as well as supporting high frequencies. JP-A-4-32214) has also been reported.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
従来の捲回形アルミ電解コンデンサはエチレングリコー
ル等を主溶媒とする電解液を使用しているためにインピ
ーダンスが高く、また、電極箔を巻いているためにイン
ダクタンス成分が高いという欠点がある。また、従来の
機能性タンタル電解コンデンサにおいては、電解質とし
て導電性高分子を用いることにより、低ESR化を行な
っているが大容量化は不十分である。また、従来のチッ
プ積層セラミックコンデンサも従来のアルミ電解コンデ
ンサなどに比較して大容量化には限界がある。一方、従
来の発明において4端子構造をとることにより低ESL
化(インダクタンス成分を下げること)を行っているも
のの、大容量化は不十分であり、さらには、例えば、電
源の一次側や二次側のように数Aから数10A程度の比
較的大きな電流の流れるところではコンデンサ自身が発
熱して故障するなど、高周波対応に加えて、大電流を流
せるコンデンサとして使用することはできない。
However, the above-mentioned conventional wound type aluminum electrolytic capacitor has a high impedance because it uses an electrolytic solution containing ethylene glycol or the like as a main solvent. Therefore, there is a disadvantage that the inductance component is high. Further, in a conventional functional tantalum electrolytic capacitor, the ESR is reduced by using a conductive polymer as an electrolyte, but the increase in capacity is insufficient. Also, conventional chip multilayer ceramic capacitors have a limit in increasing the capacity as compared with conventional aluminum electrolytic capacitors and the like. On the other hand, the conventional invention has a low ESL by adopting a four-terminal structure.
(Reducing the inductance component), but the increase in capacity is insufficient. Further, for example, a relatively large current of several A to several tens A such as a primary side or a secondary side of a power supply. Where the capacitor flows, it cannot be used as a capacitor capable of flowing a large current in addition to supporting high frequencies, such as failure of the capacitor itself due to heat generation.

【0008】この理由としては、従来の捲回形のアルミ
電解コンデンサでは、細長い電極箔を巻いているため、
たとえ4端子構造をとったとしても、箔抵抗が比較的高
く、素子が発熱しやすものとなる。また、従来の機能性
タンタル電解コンデンサも機能性高分子を用いてある程
度低ESR化は実現できるが、焼結体を用いているた
め、体積当たりの容量を上げ、大容量化することは容易
ではなく、4端子構造を構成することも容易ではない。
また、特開平4−32214号公報に記載されている積
層セラミックコンデンサは4端子構造をとって低ESL
化を実現し、さらに、電極層2層を一組として構成する
ことにより電流容量を増加させているが、製造上、電極
層材料は焼結金属であり、その厚みも数μmであるた
め、流せる電流値は高々数アンペアであり、電源一次側
や二次側のように電流が多く流れる回路に用いる場合に
は積層数を上げていかねばならないことが予想される。
一方で、積層数を増やすことは製造上容易ではなく、た
とえ、電極層を多く積層できたとしても、容量当たりの
体積が大きくなってしまう。また、電極層を厚く3μm
以上に厚くすることも、製造プロセス上デラミネーショ
ン(誘電体層と電極層の剥がれ)が生じ、実現すること
は困難である。
[0008] The reason for this is that in a conventional wound type aluminum electrolytic capacitor, an elongated electrode foil is wound,
Even if a four-terminal structure is adopted, the foil resistance is relatively high, and the element easily generates heat. In addition, although the conventional functional tantalum electrolytic capacitor can achieve a certain degree of low ESR by using a functional polymer, it is not easy to increase the capacity per volume and increase the capacity because it uses a sintered body. In addition, it is not easy to configure a four-terminal structure.
The multilayer ceramic capacitor described in Japanese Patent Laid-Open No. 4-32214 has a four-terminal structure and has a low ESL.
And the current capacity is increased by configuring the two electrode layers as one set. However, since the electrode layer material is a sintered metal and its thickness is several μm in manufacturing, The current value that can be passed is at most several amperes, and it is expected that the number of stacked layers must be increased when used in a circuit where a large amount of current flows, such as a primary side or a secondary side of a power supply.
On the other hand, increasing the number of stacked layers is not easy in terms of manufacturing. Even if many electrode layers can be stacked, the volume per capacitor increases. Also, make the electrode layer thick 3 μm
Even if the thickness is increased, delamination (peeling of the dielectric layer and the electrode layer) occurs in the manufacturing process, and it is difficult to realize.

【0009】これらの課題について図13および図14
を用いて説明する。図13は従来の2端子形コンデンサ
の等価回路(点線内部)である。また、図14は従来の
4端子形コンデンサの課題を示す等価回路(点線内部)
である。コンデンサを高周波対応させるためには、ES
R(等価直列抵抗)111とESL(等価直列インダク
タンス)112を小さく必要があり、主に低ESR化に
ついては電解質に導電性高分子を用いたり、集電体を改
良することで可能である。また、低ESL化について
は、図14のように4端子形にすることで、実現が可能
である。しかしながら、図14の従来の4端子構造で
は、素子としてのインピーダンスは高く、回路配線とし
て作用する抵抗R+(陽極の回路抵抗)121とR−
(陰極集電体の回路抵抗)122が電流を流したときの
発熱に大きく寄与しており、電源の一次側や二次側など
の比較的大電流が流れる回路には使用できない。特性を
満足するためには、R+121とR−122を小さくす
る手段が必要となる。
FIGS. 13 and 14 show these problems.
This will be described with reference to FIG. FIG. 13 shows an equivalent circuit (inside a dotted line) of a conventional two-terminal capacitor. FIG. 14 is an equivalent circuit showing the problem of the conventional four-terminal capacitor (inside the dotted line).
It is. In order to make a capacitor compatible with high frequency, ES
It is necessary to reduce R (equivalent series resistance) 111 and ESL (equivalent series inductance) 112, and it is possible to reduce ESR mainly by using a conductive polymer for the electrolyte or improving the current collector. Further, low ESL can be realized by using a four-terminal type as shown in FIG. However, in the conventional four-terminal structure shown in FIG. 14, the impedance as an element is high, and the resistances R + (anode circuit resistance) 121 and R-
(Circuit resistance of cathode current collector) 122 greatly contributes to heat generation when a current flows, and cannot be used for a circuit such as a primary side or a secondary side of a power supply through which a relatively large current flows. In order to satisfy the characteristics, a means for reducing R + 121 and R-122 is required.

【0010】以上のように従来のコンデンサにおいて
は、低インピーダンスで、かつ高容量の特性を満足でき
ず、さらには、電源の一次側や二次側などの比較的大電
流の流れる高周波対応用の回路に使用した場合、素子の
発熱が大きく、比較的大電流が流せないという課題が存
在する。
As described above, the conventional capacitor cannot satisfy the characteristics of low impedance and high capacitance, and furthermore, has a high capacity for a relatively high current such as a primary side or a secondary side of a power supply. When used in a circuit, there is a problem that the element generates a large amount of heat and a relatively large current cannot flow.

【0011】本発明が解決しようとする課題もまさにこ
こにあり、本発明の目的も実現手段も従来と異なるもの
である。本発明は、陽極用と陰極集電用の電極箔を交互
に積層し、さらに電極箔としてその内部断面にバルク層
を有するアルミニウム箔や集電体用電極にNiなどの金
属箔を用いることにより、従来のコンデンサに存在する
課題を解決し、低ESR化および低ESL化による高周
波対応のみならず、電源の一次側や二次側などの比較的
大きな回路電流が流れる高周波対応の回路にも使用する
ことができる、電流容量が高く、かつ高容量、低インピ
ーダンスの発熱の小さい4端子コンデンサを提供するこ
とを目的とする。
There is exactly the problem to be solved by the present invention, and the object and realizing means of the present invention are different from the conventional one. The present invention is to alternately laminate the electrode foil for the anode and the cathode current collector, and further use the aluminum foil having a bulk layer in the internal cross section as the electrode foil or the metal foil of Ni or the like for the current collector electrode. It solves the problems that exist in conventional capacitors, and is used not only for high-frequency operation by low ESR and low ESL, but also for high-frequency operation circuits such as the primary and secondary sides of the power supply where relatively large circuit current flows. It is an object of the present invention to provide a four-terminal capacitor having a high current capacity, a high capacity, a low impedance, and a small heat generation.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の4端子コンデンサは、表面に誘電体酸化皮
膜層が形成された陽極用弁金属箔と、集電体用金属箔
と、前記陽極用弁金属箔と前記集電体用金属箔との間に
配置される陰極用導電性高分子層と、外部接続用の陽極
端子および陰極端子とを少なくとも有し、前記陽極用弁
金属箔の表面が粗面化され、かつ前記陽極用弁金属箔と
前記集電体用金属箔とが前記陰極用導電性高分子層を介
して交互に積層され、かつ各々の前記陽極用弁金属箔の
異なる2ヶ所が、別々の2ヶ所の陽極端子に電気的に接
続され、かつ各々の前記集電体用金属箔の異なる2ヶ所
が、別々の2ヶ所の陰極端子に電気的に接続されている
ことを特徴とする。かかる構成によれば、低ESR化、
低ESL化による高周波対応が実現できるのみならず、
電源の一次側や二次側のように比較的大きな電流が流れ
る回路にも使用でき、電流容量が高く、高容量、低イン
ピーダンスで、発熱の小さい4端子コンデンサを得るこ
とができる。
To achieve the above object, a four-terminal capacitor according to the present invention comprises a valve metal foil for an anode having a dielectric oxide film layer formed on a surface thereof, a metal foil for a current collector, A cathode conductive polymer layer disposed between the anode valve metal foil and the current collector metal foil, and an anode terminal and a cathode terminal for external connection, wherein the anode valve The surface of the metal foil is roughened, and the anode valve metal foil and the current collector metal foil are alternately laminated via the cathode conductive polymer layer, and each of the anode valves Two different places of the metal foil are electrically connected to two separate anode terminals, and two different places of each of the current collector metal foils are electrically connected to two separate cathode terminals. It is characterized by having been done. According to such a configuration, low ESR is achieved,
Not only can high frequency response by low ESL be realized,
The present invention can also be used in a circuit in which a relatively large current flows, such as a primary side or a secondary side of a power supply, and can obtain a four-terminal capacitor having a high current capacity, a high capacity, a low impedance, and a small heat generation.

【0013】上記の構成において、別々の2ヶ所の陽極
端子間(あるいは、陽極用弁金属箔において、各陽極端
子と接続される2ヶ所の接続箇所間)を結ぶ線分と、別
々の2ヶ所の陰極端子間(あるいは、集電体用金属箔に
おいて、各陰極端子と接続される2ヶ所の接続箇所間)
を結ぶ線分とは、積層方向から見て交差していても良
く、または交差していなくてもよい。
In the above structure, a line connecting two separate anode terminals (or two connection points connected to each anode terminal in the anode valve metal foil) and two separate anode terminals are connected. Between the cathode terminals (or between two connection points connected to each cathode terminal in the current collector metal foil)
May or may not intersect when viewed from the stacking direction.

【0014】さらに上記の構成において、陽極用弁金属
箔と集電体用金属箔とが表面を粗面化されたアルミニウ
ム箔であって、前記陽極用弁金属箔と前記集電体用金属
箔の内部断面に粗面化処理されていないバルク層をそれ
ぞれ有することが好ましい。
Further, in the above structure, the valve metal foil for the anode and the metal foil for the current collector are aluminum foils whose surfaces are roughened, and the valve metal foil for the anode and the metal foil for the current collector are provided. It is preferable to have a bulk layer that has not been subjected to surface roughening treatment on the internal cross section of each of them.

【0015】また、集電体用金属箔がニッケル箔または
銅箔またはカーボン粒子を加えたアルミニウム箔である
のが好ましい。
Preferably, the metal foil for a current collector is a nickel foil, a copper foil, or an aluminum foil to which carbon particles are added.

【0016】さらに、陽極用弁金属箔が表面を粗面化さ
れたアルミニウム箔であって、前記陽極用弁金属箔の内
部断面に粗面化処理されていないバルク層を有し、かつ
集電体用金属箔がニッケル箔または銅箔またはカーボン
粒子を加えたアルミニウム箔であることが好ましい。
Further, the anode valve metal foil is an aluminum foil having a roughened surface, and has a bulk layer which has not been subjected to a surface roughening treatment on an inner cross section of the anode valve metal foil. The body metal foil is preferably a nickel foil, a copper foil, or an aluminum foil to which carbon particles are added.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】(実施の形態1)図1は本発明の4端子コ
ンデンサのコンデンサ素子部の構成の一実施例を示す構
成図である。電解エッチングなどにより表面が粗面化さ
れ、表面積が拡大された陽極用弁金属箔11の表面には
陽極酸化(化成)により、誘電体酸化皮膜層13が形成
されている。この陽極用弁金属箔11と集電体用金属箔
12とを交差させ、それぞれの略中央部で重ねる。導通
をとるために陽極用弁金属箔11の両端あるいは端面の
陽極端子を接続しようとする部分には誘電体酸化皮膜層
は形成しない。これら陽極用弁金属箔11と集電体用金
属箔12との間に真の陰極となるポリピロールなどの導
電性高分子層を形成することにより、コンデンサ素子が
形成される。真の陰極として電気伝導度が比較的高い導
電性高分子層を用い、かつ集電体用金属箔12と導電性
高分子層が直接接触することにより、低ESR化が実現
でき、また、陽極用弁金属箔11と集電体用金属箔12
を交互に積層することにより、低ESL化が実現でき
る。
(Embodiment 1) FIG. 1 is a structural view showing an embodiment of a structure of a capacitor element portion of a four-terminal capacitor according to the present invention. A dielectric oxide film layer 13 is formed by anodic oxidation (chemical formation) on the surface of the anode valve metal foil 11 whose surface is roughened by electrolytic etching or the like and whose surface area is enlarged. The anode valve metal foil 11 and the current collector metal foil 12 intersect with each other and overlap each other at substantially the center. No dielectric oxide film layer is formed on both ends of the valve metal foil for anode 11 or portions of the end face where the anode terminals are to be connected in order to establish conduction. A capacitor element is formed by forming a conductive polymer layer such as polypyrrole serving as a true cathode between the valve metal foil for anode 11 and the metal foil 12 for current collector. The use of a conductive polymer layer having relatively high electrical conductivity as a true cathode and direct contact between the current collector metal foil 12 and the conductive polymer layer can realize low ESR, Valve metal foil 11 and current collector metal foil 12
Are alternately stacked to realize a low ESL.

【0019】次に、図2に本発明の4端子コンデンサの
構成の一実施例を示す構成図を示す。図2の(a)は外
観斜視図であり、図2の(b)は内部構造を示すため一
部を切り欠いた斜視断面図である。図2において21は
陽極端子、22は陰極端子、23は陽極用弁金属箔、2
4は集電体用金属箔、25は誘電体酸化皮膜層、26は
陰極用導電性高分子層、27はモールド樹脂を示す。粗
面化処理され、両端あるいは端面を除いた表面に誘電体
酸化皮膜層25が形成された陽極用弁金属箔23と集電
体用金属箔24が必要数だけ互いに交差するように積層
され、陽極用弁金属箔23と集電体用金属箔24との間
に陰極用導電性高分子層26が充填されている。集電体
用金属箔24の表面は粗面化されていても良い。陽極端
子21は陽極用弁金属箔23の両端にそれぞれ接続され
ており、陰極端子22は集電体用金属箔24の両端にそ
れぞれ接続されている。図2のように構成することによ
り、低ESR化、低ESL化に加えて大容量化が実現で
きる。
Next, FIG. 2 is a configuration diagram showing one embodiment of the configuration of the four-terminal capacitor of the present invention. FIG. 2A is an external perspective view, and FIG. 2B is a partially cutaway perspective view showing an internal structure. In FIG. 2, 21 is an anode terminal, 22 is a cathode terminal, 23 is an anode valve metal foil, 2
Reference numeral 4 denotes a metal foil for a current collector, 25 denotes a dielectric oxide film layer, 26 denotes a conductive polymer layer for a cathode, and 27 denotes a mold resin. A required number of anode valve metal foils 23 and current collector metal foils 24 each having a surface roughened and having a dielectric oxide film layer 25 formed on the surface excluding both ends or end faces are laminated so as to intersect with each other by a required number. The cathode conductive polymer layer 26 is filled between the anode valve metal foil 23 and the current collector metal foil 24. The surface of the current collector metal foil 24 may be roughened. The anode terminal 21 is connected to both ends of the anode valve metal foil 23, and the cathode terminal 22 is connected to both ends of the current collector metal foil 24, respectively. With the configuration as shown in FIG. 2, a large capacity can be realized in addition to low ESR and low ESL.

【0020】図3に本発明の4端子コンデンサに用いる
ことができる陽極用弁金属箔の一実施例の断面電子顕微
鏡写真を示す。図3に示す陽極用弁金属箔はアルミニウ
ム箔であり、電解直流エッチングにより、柱状ピット
(孔)32が形成されており、表面積の拡大がなされて
いる。図3において31は粗面化処理されていないバル
ク層である。図3における箔厚は約150μmであり、
バルク層31の厚みは約15μmである。このバルク層
31の厚みは柱状ピット32の長さ制御や箔厚制御によ
り自由にでき、より厚くすることも薄くすることも可能
である。したがって、陽極用弁金属箔の構造は本形態例
に限ったものではない。また、柱状ピット32は高圧級
の4端子コンデンサにも用いられるものであり、誘電体
酸化皮膜層を高圧用に形成(厚み5800オングストロ
ーム程まで(10オングストローム/1V))すること
ができる。より容量を得るために、誘電体酸化皮膜層を
薄くして、交流エッチングなどにより、より表面積を拡
大したものであってもよい。
FIG. 3 shows a cross-sectional electron micrograph of one embodiment of the anode valve metal foil which can be used in the four-terminal capacitor of the present invention. The anode valve metal foil shown in FIG. 3 is an aluminum foil, and columnar pits (holes) 32 are formed by electrolytic direct current etching, so that the surface area is increased. In FIG. 3, reference numeral 31 denotes a bulk layer that has not been subjected to a surface roughening treatment. The foil thickness in FIG. 3 is about 150 μm,
The thickness of the bulk layer 31 is about 15 μm. The thickness of the bulk layer 31 can be freely controlled by controlling the length of the columnar pits 32 and controlling the foil thickness, and can be made thicker or thinner. Therefore, the structure of the valve metal foil for the anode is not limited to this embodiment. The columnar pits 32 are also used for a high-voltage four-terminal capacitor, and can form a dielectric oxide film layer for a high voltage (up to about 5800 angstroms (10 angstroms / 1 V)). In order to obtain more capacity, the dielectric oxide film layer may be made thinner, and the surface area may be increased by AC etching or the like.

【0021】図4に本発明の4端子コンデンサに用いる
ことができる集電体用金属箔の一実施例の断面電子顕微
鏡写真を示す。図4に示す集電体用金属箔はアルミニウ
ム箔であり、交流エッチングによって粗面化され、表面
積が拡大されている。図4において41はバルク層、4
2はエッチングピット(孔)である。図4における箔厚
は約90μmであり、バルク層41の厚みは約45μm
である。このバルク層の厚みはエッチング条件や箔厚に
より、より厚くも薄くもできる。集電体用金属箔の構成
も本形態例に限ったものではない。
FIG. 4 shows a cross-sectional electron micrograph of one embodiment of a metal foil for a current collector which can be used in the four-terminal capacitor of the present invention. The metal foil for a current collector shown in FIG. 4 is an aluminum foil, which is roughened by AC etching and has an increased surface area. In FIG. 4, reference numeral 41 denotes a bulk layer,
2 is an etching pit (hole). The foil thickness in FIG. 4 is about 90 μm, and the thickness of the bulk layer 41 is about 45 μm
It is. The thickness of this bulk layer can be made thicker or thinner depending on the etching conditions and foil thickness. The configuration of the current collector metal foil is not limited to this embodiment.

【0022】以上のように、内部断面に粗面化処理され
ていないバルク層を有する陽極用弁金属箔と集電体用金
属箔を用いることにより、本発明において、バルク層を
通して回路電流を流すことが容易になるため、素子の発
熱が少なく、電流容量が大きい4端子コンデンサを実現
することができる。また、短い電極箔を積層するため、
電流を流れる断面積は積層により大きくなり、抵抗を小
さくできる。例えば、Alの体積抵抗率を約2.6E−
6Ωcmとして、厚さ100μm、エッチングされてい
ないバルク層の厚みが50μm、長さが17cm、幅が
1.5cmの電極箔に1Aの電流を流した場合の発熱量
は約6mW、10Aの電流を流した場合の発熱量は約
0.6Wである。これに対し、上記の箔を10等分し、
10層積層すると、断面積が10倍、長さは10分の1
になるため、抵抗はおよそ100分の1となり、発熱量
も100分の1程度にすることができる。
As described above, by using the valve metal foil for the anode and the metal foil for the current collector having the bulk layer whose inner cross section is not roughened, the circuit current flows through the bulk layer in the present invention. Therefore, it is possible to realize a four-terminal capacitor that generates less heat from the element and has a large current capacity. Also, to laminate short electrode foils,
The cross-sectional area through which current flows increases due to lamination, and the resistance can be reduced. For example, the volume resistivity of Al is set to about 2.6E-
Assuming that 6 Ωcm, the calorific value when a current of 1 A is applied to an electrode foil having a thickness of 100 μm, an unetched bulk layer of 50 μm, a length of 17 cm, and a width of 1.5 cm is about 6 mW and a current of 10 A The calorific value when flowing is about 0.6 W. On the other hand, the above foil is divided into 10 equal parts,
When 10 layers are laminated, the cross-sectional area is 10 times and the length is 1/10.
Therefore, the resistance is reduced to about 1/100, and the calorific value can be reduced to about 1/100.

【0023】一方、集電体用金属箔に厚みを自由に設定
できるNi箔やCu箔やカーボン粒子を加えたアルミニ
ウム箔を用いることによっても電流容量を大きくするこ
とができる。Taの体積抵抗率は約10.4E−6Ωc
m、Alは約2.6E−6Ωcm、Niは約6.8E−
6Ωcm、Cuは約1.7E−6Ωcmである。このこ
とから、バルク層を有するアルミニウム箔や、Ni箔や
Cu箔を用いることにより、電流容量を大きくすること
ができることは明白である。
On the other hand, the current capacity can also be increased by using a Ni foil, a Cu foil, or an aluminum foil to which carbon particles are added, whose thickness can be freely set, as the metal foil for the current collector. The volume resistivity of Ta is about 10.4E-6Ωc
m, Al is about 2.6E-6Ωcm, Ni is about 6.8E-
6 Ωcm, Cu is about 1.7E-6 Ωcm. From this, it is clear that the current capacity can be increased by using an aluminum foil, a Ni foil, or a Cu foil having a bulk layer.

【0024】また、Niは表面に酸化物層を形成しにく
いため、導電性高分子層との界面抵抗を低くすることが
でき、低ESR化をより実現できる。さらには集電体用
金属箔に酸化皮膜による容量が生じないため、コンデン
サ容量の拡大を実現することができる。
Also, since it is difficult for Ni to form an oxide layer on the surface, the interface resistance with the conductive polymer layer can be reduced, and the ESR can be further reduced. Furthermore, since the capacity due to the oxide film does not occur in the metal foil for the current collector, the capacity of the capacitor can be increased.

【0025】また、図5に本発明の4端子コンデンサに
使用することのできるカーボンを加えたアルミニウム箔
の断面構成図を示す。図5において、51はアルミニウ
ム、52は導電性のカーボン粒子である。カーボンを加
えたアルミニウム箔は、表面に導電性のカーボン粒子を
露出させた構造とすることにより、導電性高分子層とカ
ーボン粒子とが酸化皮膜を介することなく接触するた
め、酸化皮膜を形成しやすいアルミニウム箔を用いた場
合に比べて、界面抵抗を小さくでき、低ESRを実現す
ることができる。さらに、従来、電解重合法で形成でき
なかった導電性高分子層を、カーボン粒子を加えたアル
ミニウム箔を使用することにより、カーボン粒子を加え
たアルミニウム箔上に電解重合で形成することができ、
本発明の4端子コンデンサの製造コストを削減すること
ができる。
FIG. 5 is a sectional view of a carbon-added aluminum foil which can be used in the four-terminal capacitor of the present invention. In FIG. 5, reference numeral 51 denotes aluminum, and 52 denotes conductive carbon particles. The aluminum foil with carbon has a structure in which conductive carbon particles are exposed on the surface, so that the conductive polymer layer and the carbon particles are in contact with each other without an oxide film, so that an oxide film is formed. The interface resistance can be reduced and a low ESR can be realized as compared with the case where an easy aluminum foil is used. Further, conventionally, the conductive polymer layer that could not be formed by the electrolytic polymerization method can be formed by electrolytic polymerization on the aluminum foil to which the carbon particles are added by using the aluminum foil to which the carbon particles are added,
The manufacturing cost of the four-terminal capacitor of the present invention can be reduced.

【0026】また、Cu箔を使用した場合、Cu箔は酸
化物層を形成しやすいが、金属としての体積抵抗率は小
さく、集電体用金属箔としてはもっとも電流を流すこと
ができる。
When a Cu foil is used, the Cu foil easily forms an oxide layer, but has a small volume resistivity as a metal, and can flow current most as a metal foil for a current collector.

【0027】このように、上記の実施の形態1をとるこ
とにより、低インピーダンスで電流容量が極めて大きい
4端子コンデンサの実現が可能となる。
As described above, by adopting the first embodiment, a four-terminal capacitor having a low impedance and a very large current capacity can be realized.

【0028】図6に本発明の4端子コンデンサの考え方
を表す等価回路図を示す。本発明により、図6に示すよ
うな等価回路に近い、低インピーダンス、低ESR、低
ESLの4端子コンデンサが実現できる。
FIG. 6 is an equivalent circuit diagram showing the concept of the four-terminal capacitor of the present invention. According to the present invention, a low-impedance, low-ESR, low-ESL four-terminal capacitor close to an equivalent circuit as shown in FIG. 6 can be realized.

【0029】なお、上記実施の形態1の説明において
は、別々の2ヶ所の陽極端子21,21間を結ぶ線分と
別々の2ヶ所の陰極端子22,22間を結ぶ線分とが、
積層方向から見たときに交差するように構成されていた
が、端子構成などはこれに限るものではない。
In the description of the first embodiment, the line connecting the two separate anode terminals 21 and 21 and the line connecting the two separate cathode terminals 22 and 22 are:
Although they are configured to intersect when viewed from the lamination direction, the terminal configuration is not limited to this.

【0030】図7に本発明の4端子コンデンサの別の構
成例を示す。図7(a)において、61は長方形又は正
方形の陽極用弁金属箔、62は陽極用弁金属箔61と略
同一形状の集電体用金属箔、63は誘電体酸化皮膜層で
ある。陽極用弁金属箔61は、その4隅のうち対向する
2隅に矩形状に切り欠かれた切り欠き部61aを有す
る。また、集電体用金属箔62も同様に、その4隅のう
ち対向する2隅に矩形状に切り欠かれた切り欠き部62
aを有する。但し、切り欠き部62aは、図示したよう
に、陽極用弁金属箔61と集電体用金属箔62とを積層
したときに、切り欠き部61aとは異なる位置に形成さ
れる。また、陽極用弁金属箔61は陽極端子と接続する
両端部の一部を除く部分に誘電体酸化皮膜層63が形成
される。このように構成された陽極用弁金属箔61と集
電体用金属箔62とを、図示しない陰極用導電性高分子
層を介して必要数だけ順次積層し、各陽極用弁金属箔6
1の2つの角部61bに異なる陽極端子を接続し、各集
電体用金属箔62の2つの角部62bに異なる陰極端子
を接続する。かくして、2つの陽極端子間を結ぶ線分
と、2つの陰極端子間を結ぶ線分とが、積層方向から見
たときに交差するように構成される4端子コンデンサを
構成できる。なお、上記の構成において、陽極用弁金属
箔61に代えて、図7(b)に示す構成の陽極用弁金属
箔61’を使用することも可能である。この陽極用弁金
属箔61’は、陽極端子を接続しようとする端面64を
除いて誘電体酸化皮膜層63が形成されている。
FIG. 7 shows another configuration example of the four-terminal capacitor of the present invention. In FIG. 7A, reference numeral 61 denotes a rectangular or square valve metal foil for an anode, 62 denotes a metal foil for a current collector having substantially the same shape as the valve metal foil 61 for an anode, and 63 denotes a dielectric oxide film layer. The anode valve metal foil 61 has cutouts 61a cut out in a rectangular shape at two opposing corners of the four corners. Similarly, the metal foil 62 for the current collector also has a cutout portion 62 cut out in a rectangular shape at two opposing corners of the four corners.
a. However, as shown, the notch 62a is formed at a position different from the notch 61a when the anode valve metal foil 61 and the current collector metal foil 62 are laminated. In addition, a dielectric oxide film layer 63 is formed on portions of the anode valve metal foil 61 except for a part of both ends connected to the anode terminal. The anode valve metal foil 61 and the current collector metal foil 62 configured as described above are sequentially laminated by a required number via a cathode conductive polymer layer (not shown).
Different anode terminals are connected to the two corner portions 61b, and different cathode terminals are connected to the two corner portions 62b of each current collector metal foil 62. Thus, a four-terminal capacitor configured such that the line connecting the two anode terminals and the line connecting the two cathode terminals intersect when viewed in the stacking direction can be configured. In the above configuration, it is possible to use an anode valve metal foil 61 ′ having a configuration shown in FIG. 7B instead of the anode valve metal foil 61. This anode valve metal foil 61 'has a dielectric oxide film layer 63 formed thereon except for an end face 64 to which an anode terminal is to be connected.

【0031】図8に本発明の4端子コンデンサの更に別
の構成例を示す。図8(a)において、66は長方形又
は正方形の陽極用弁金属箔、67は陽極用弁金属箔66
と略同一形状の集電体用金属箔、68は誘電体酸化皮膜
層である。陽極用弁金属箔66は、その4隅のうち隣り
合う2隅に矩形状に切り欠かれた切り欠き部66aを有
する。また、集電体用金属箔67も同様に、その4隅の
うち隣り合う2隅に矩形状に切り欠かれた切り欠き部6
7aを有する。但し、切り欠き部67aは、図示したよ
うに、陽極用弁金属箔66と集電体用金属箔67とを積
層したときに、切り欠き部66aとは異なる位置に形成
される。また、陽極用弁金属箔66は陽極端子と接続す
る両端部の一部を除く部分に誘電体酸化皮膜層68が形
成される。このように構成された陽極用弁金属箔66と
集電体用金属箔67とを、図示しない陰極用導電性高分
子層を介して必要数だけ順次積層し、各陽極用弁金属箔
66の2つの角部66bに異なる陽極端子を接続し、各
集電体用金属箔67の2つの角部67bに異なる陰極端
子を接続する。かくして、2つの陽極端子間を結ぶ線分
と、2つの陰極端子間を結ぶ線分とが、積層方向から見
たときに交差しないように構成される4端子コンデンサ
を構成できる。なお、上記の構成において、陽極用弁金
属箔66に代えて、図8(b)に示す構成の陽極用弁金
属箔66’を使用することも可能である。この陽極用弁
金属箔66’は、陽極端子を接続しようとする端面69
を除いて誘電体酸化皮膜層63が形成されている。
FIG. 8 shows still another configuration example of the four-terminal capacitor of the present invention. 8A, reference numeral 66 denotes a rectangular or square valve metal foil for an anode, and 67 denotes a valve metal foil 66 for an anode.
Reference numeral 68 denotes a current collector metal foil having substantially the same shape as that of the current collector. The anode valve metal foil 66 has a rectangular cutout 66a at two adjacent corners among the four corners. Similarly, the metal foil 67 for the current collector also has a notch 6 formed by cutting two adjacent corners of the four corners into a rectangular shape.
7a. However, as shown, the notch 67a is formed at a position different from the notch 66a when the anode valve metal foil 66 and the current collector metal foil 67 are laminated. Further, a dielectric oxide film layer 68 is formed on the anode valve metal foil 66 except for a part of both ends connected to the anode terminal. The anode valve metal foil 66 and the current collector metal foil 67 configured as described above are sequentially laminated by a required number via a cathode conductive polymer layer (not shown). Different anode terminals are connected to the two corners 66b, and different cathode terminals are connected to the two corners 67b of each current collector metal foil 67. Thus, a four-terminal capacitor can be configured such that the line connecting the two anode terminals and the line connecting the two cathode terminals do not intersect when viewed in the stacking direction. In the above configuration, it is also possible to use an anode valve metal foil 66 ′ having a configuration shown in FIG. 8B instead of the anode valve metal foil 66. The anode valve metal foil 66 'is connected to an end face 69 to which an anode terminal is to be connected.
Except for the above, a dielectric oxide film layer 63 is formed.

【0032】さらに、上記の実施の形態において、最終
製品の寸法は静電容量や電流容量にあわせて変更するこ
とが可能であることは言うまでもない。また、望まれる
電流容量にあわせて、陽極用弁金属箔のバルク層の厚み
や集電体用金属箔の厚みを決定することも可能である。
Further, in the above embodiment, it goes without saying that the dimensions of the final product can be changed according to the capacitance and the current capacity. It is also possible to determine the thickness of the bulk layer of the valve metal foil for the anode and the thickness of the metal foil for the current collector according to the desired current capacity.

【0033】[0033]

【実施例】(実施例1)図2に示す4端子コンデンサを
製造した。陽極用弁金属箔23として、純度99.98
%以上で厚み100μmのアルミニウム箔を用いた。陽
極用弁金属箔23の表面を濃度10wt%、液温35℃
の塩酸系溶液中で交流エッチングし、粗面化した後、こ
の箔を長方形にカットして用いた。陽極用弁金属箔23
のバルク層の厚みは55μmであった。誘電体酸化皮膜
25の形成は液温が60℃で、濃度が5wt%のアジピ
ン酸アンモニウムの水溶液を化成液として、陽極用弁金
属箔23の両端を除いて化成電圧12Vで定電圧化成を
行った(6.3WV用)。集電体用金属箔24には、上
記陽極用弁金属箔と略同一形状で、厚さ50μmのNi
箔を用いた。集電体用金属箔24の表面に、陰極端子2
2と接続しようとする両端を除いて、電解重合法により
ポリピロールを陰極用導電性高分子層26としてあらか
じめ数μmだけ形成した。次に陽極用弁金属箔23と前
記集電体用金属箔24を、それぞれの長手方向が約90
度に交差するように10層積層し、導通をとるため、陽
極用弁金属箔23と集電体用金属箔24の各両端をそれ
ぞれ陽極端子21および陰極端子22とともにカシメ
(機械圧接)た。次いで、端子接合部のみをモールド樹
脂27で被覆した後、上記集電体用金属箔24と陽極用
弁金属箔23との間に、含浸化学重合法を用いて陰極用
導電性高分子層26を完全に形成した。次いで、端子表
面を除いて、これら素子全体をモールド樹脂27でモー
ルドし、4端子コンデンサとした。ケースサイズはDサ
イズである。
(Example 1) A four-terminal capacitor shown in FIG. 2 was manufactured. Purity 99.98 as the anode valve metal foil 23
% Or more and an aluminum foil having a thickness of 100 μm was used. The surface of the anode valve metal foil 23 has a concentration of 10 wt% and a liquid temperature of 35 ° C.
Was subjected to AC etching in a hydrochloric acid-based solution to roughen the surface, and then this foil was cut into a rectangle and used. Valve metal foil for anode 23
The thickness of the bulk layer was 55 μm. The dielectric oxide film 25 is formed by performing a constant voltage formation at a formation voltage of 12 V except for the both ends of the anode valve metal foil 23 by using an aqueous solution of ammonium adipate having a solution temperature of 60 ° C. and a concentration of 5 wt% as a formation solution. (For 6.3 WV). The current collector metal foil 24 is made of Ni having the same shape as the anode valve metal foil and a thickness of 50 μm.
A foil was used. The cathode terminal 2 is provided on the surface of the current collector metal foil 24.
Except for both ends to be connected to No. 2, polypyrrole was previously formed to a thickness of several μm as the conductive polymer layer 26 for the cathode by electrolytic polymerization. Next, the valve metal foil 23 for the anode and the metal foil 24 for the current collector were separated by about 90
Ten layers were laminated so as to intersect each other, and both ends of the valve metal foil for anode 23 and the metal foil for current collector 24 were caulked (mechanically pressed) together with the anode terminal 21 and the cathode terminal 22, respectively, in order to establish conduction. Next, after only the terminal joint is covered with the mold resin 27, the cathode conductive polymer layer 26 is impregnated between the current collector metal foil 24 and the anode valve metal foil 23 using an impregnation chemical polymerization method. Was completely formed. Next, these elements were entirely molded with a molding resin 27 except for the terminal surfaces to obtain a four-terminal capacitor. The case size is D size.

【0034】(実施例2)図2に示す4端子コンデンサ
を製造した。陽極用弁金属箔23として、純度99.9
8%以上で厚み100μmのアルミニウム箔を用いた。
陽極用弁金属箔23の表面を濃度10wt%、液温35
℃の塩酸系溶液中で交流エッチングし、粗面化した後、
この箔を長方形にカットして用いた。陽極用弁金属箔2
3のバルク層の厚みは55μmであった。誘電体酸化皮
膜25の形成は液温が60℃で、濃度が5wt%のアジ
ピン酸アンモニウムの水溶液を化成液として、陽極用弁
金属箔23の両端を除いて化成電圧12Vで定電圧化成
を行った。集電体用金属箔24には、上記陽極用弁金属
箔と略同一形状で、厚さ50μmの導電性カーボン添加
アルミニウム箔を用いた。カーボン添加アルミニウム箔
は表面を粗面化したアルミニウム箔上に導電性カーボン
を塗布した後に、プレスし、その後さらに表面を粗面化
して作成した。次いで、集電体用金属箔24の表面に、
陰極端子22と接続しようとする両端を除いて、電界重
合法によりポリピロールを陰極用導電性高分子層26と
してあらかじめ数μmだけ形成した。次に陽極用弁金属
箔23と前記集電体用金属箔24を、それぞれ長手方向
が約90に交差するように10層積層し、導通をとるた
め、陽極用弁金属箔23と集電体用金属箔24の各両端
をそれぞれ陽極端子21および陰極端子22とともにカ
シメ(機械圧接)た。次いで、端子接合部のみをモール
ド樹脂27で被覆した後、上記集電体用金属箔24と陽
極用弁金属箔23との間に、含浸化学重合法を用いて陰
極用導電性高分子層26を完全に形成した。次いで、端
子表面を除いて、これら素子全体をモールド樹脂27で
モールドし、4端子コンデンサとした。ケースサイズは
Dサイズである。
Example 2 A four-terminal capacitor shown in FIG. 2 was manufactured. 99.9 purity as the anode valve metal foil 23
An aluminum foil with a thickness of 8% or more and a thickness of 100 μm was used.
The surface of the anode valve metal foil 23 is made to have a concentration of 10 wt% and a liquid temperature of 35.
After AC etching and roughening in hydrochloric acid solution at ℃
This foil was cut into a rectangle and used. Valve metal foil for anode 2
The thickness of the bulk layer of No. 3 was 55 μm. The dielectric oxide film 25 is formed by performing a constant voltage formation at a formation voltage of 12 V except for the both ends of the anode valve metal foil 23 by using an aqueous solution of ammonium adipate having a solution temperature of 60 ° C. and a concentration of 5 wt% as a formation solution. Was. As the collector metal foil 24, a conductive carbon-added aluminum foil having substantially the same shape as the anode valve metal foil and a thickness of 50 μm was used. The carbon-added aluminum foil was prepared by applying conductive carbon onto an aluminum foil having a roughened surface, followed by pressing, and then further roughening the surface. Next, on the surface of the current collector metal foil 24,
Except for both ends to be connected to the cathode terminal 22, polypyrrole was previously formed to a thickness of several μm as a conductive polymer layer 26 for a cathode by an electric field polymerization method. Next, the anode valve metal foil 23 and the current collector are laminated in ten layers so that the longitudinal direction thereof intersects at about 90 in the longitudinal direction. Both ends of the metal foil 24 were caulked (mechanically pressed) together with the anode terminal 21 and the cathode terminal 22, respectively. Next, after only the terminal joint is covered with the mold resin 27, the cathode conductive polymer layer 26 is impregnated between the current collector metal foil 24 and the anode valve metal foil 23 using an impregnation chemical polymerization method. Was completely formed. Next, these elements were entirely molded with a molding resin 27 except for the terminal surfaces to obtain a four-terminal capacitor. The case size is D size.

【0035】(比較例)捲回形アルミ電解コンデンサ
(105℃品、400WV、化成電圧580V)を基本
構造として、陽極用電極箔、集電用陰極箔の両端から陽
極リード、陰極リードをそれぞれ2ヶ所ずつ導出させ、
セパレータを介して、これらを巻き、コンデンサ素子と
した。電極箔及び陰極箔の長さは19cmで、幅は2c
mである。陽極用電極箔表面の粗面化は、液温85℃の
塩酸−硫酸系溶液中で直流エッチングして柱状ピットを
形成し、表面を粗面化した。誘電体酸化皮膜の形成は液
温が60℃で、濃度が5wt%のアジピン酸アンモニウ
ムの水溶液を化成液として、化成電圧580Vで定電圧
化成を行った。この時、陽極用電極箔のバルク層の厚み
は3〜5μmであった。集電用陰極箔には厚さ50μm
のアルミニウム箔を用い、濃度10wt%、液温35℃
の塩酸系溶液中で交流エッチングし、粗面化した。さら
に、上記コンデンサ素子をアルミケース(D:30m
m、L:30mm)に入れ、電解液を減圧含浸した後、
開口部を封止して、捲回形の4端子コンデンサとした。
なお、リード接続部の化成については、封止後、電解液
中で行っている。
(Comparative Example) A wound aluminum electrolytic capacitor (105 ° C. product, 400 WV, formation voltage 580 V) has a basic structure, and an anode lead and a cathode lead are provided at both ends of the anode electrode foil and the collector cathode foil, respectively. Derived at each location,
These were wound through a separator to form a capacitor element. Electrode foil and cathode foil are 19cm long and 2c wide
m. The surface of the anode electrode foil was roughened by DC etching in a hydrochloric acid-sulfuric acid solution at a liquid temperature of 85 ° C. to form columnar pits, and the surface was roughened. The formation of the dielectric oxide film was carried out at a constant voltage of 580 V by using an aqueous solution of ammonium adipate having a solution temperature of 60 ° C. and a concentration of 5 wt% as a formation solution. At this time, the thickness of the bulk layer of the anode electrode foil was 3 to 5 μm. 50 μm thickness for the current collector cathode foil
Using aluminum foil, concentration 10wt%, liquid temperature 35 ℃
Was subjected to AC etching in a hydrochloric acid-based solution to roughen the surface. Furthermore, the above capacitor element is placed in an aluminum case (D: 30 m
m, L: 30 mm) and impregnated with the electrolyte under reduced pressure.
The opening was sealed to form a wound four-terminal capacitor.
The formation of the lead connection portion is performed in an electrolytic solution after sealing.

【0036】以上の実施例1、実施例2および比較例に
おける4端子コンデンサを、4端子コンデンサとして使
用した場合の性能について、表1を用いて以下に説明す
る。
The performance when the four-terminal capacitors in Examples 1, 2 and Comparative Examples are used as four-terminal capacitors will be described below with reference to Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1において、発熱量は1A通電時、容量
は120Hz、インピーダンスZおよびESRは1MH
zでの測定値である。
In Table 1, when the amount of heat generated is 1 A, the capacity is 120 Hz, the impedance Z and the ESR are 1 MH.
It is a measured value at z.

【0039】この表1から明らかなように、実施例1お
よび実施例2では、本発明の4端子構造を有することに
より、発熱量が極めて小さいことがわかる。なお、表1
において「未発熱」とは、発熱量が極めて小さいことを
意味する。また、実施例1ではESRが大幅に小さくな
っており、実施例2においては更に小さくなっている。
また、本発明の4端子コンデンサとすることにより、高
周波での低インピーダンス化(低L成分化)が図れる。
As is clear from Table 1, in Examples 1 and 2, the amount of heat generated is extremely small due to the four-terminal structure of the present invention. Table 1
"Not generating heat" means that the calorific value is extremely small. In the first embodiment, the ESR is significantly reduced, and in the second embodiment, the ESR is further reduced.
Further, by using the four-terminal capacitor of the present invention, low impedance (low L component) at high frequencies can be achieved.

【0040】(実施例3)図2に示す4端子コンデンサ
を製造した。陽極用弁金属箔23として、純度99.9
8%以上で厚み100μm、幅5mm、長さ25mmの
アルミニウム箔を用いた。陽極用弁金属箔23は濃度1
0wt%、液温35℃の塩酸系溶液中で交流エッチング
してピットを形成し、表面を粗面化したものを用いた。
誘電体酸化皮膜25の形成は液温が60℃で、濃度が5
wt%のアジピン酸アンモニウムの水溶液を化成液とし
て、陽極用弁金属箔23の両端を除いて化成電圧23V
で定電圧化成を行った。集電体用金属箔24には厚さ9
0μmのアルミニウム箔を用い、濃度10wt%、液温
35℃の塩酸系溶液中で交流エッチングし、粗面化した
箔を切断して使用した。集電体用金属箔24の幅は5m
m、長さは25mmである。次いで、集電体用金属箔2
4の表面に、陰極端子22と接続しようとする両端を除
いて、電界重合法によりポリピロールを陰極用導電性高
分子層26としてあらかじめ数μmだけ形成した。次に
陽極用弁金属箔23と前記集電体用金属箔24とを、長
手方向が約90度に交差するように3層分積層し、導通
をとるため、陽極用弁金属箔23と集電体用金属箔24
の各両端をそれぞれ陽極端子21および陰極端子22と
ともにカシメ(機械圧接)た。次いで、端子接合部のみ
をモールド樹脂27で被覆した後、上記集電体用金属箔
24と陽極用弁金属箔23との間に、含浸化学重合法を
用いて陰極用導電性高分子層26を完全に形成した。次
いで、端子表面を除いて、これら素子全体をモールド樹
脂27でモールドし、4端子コンデンサとした。
Example 3 A four-terminal capacitor shown in FIG. 2 was manufactured. 99.9 purity as the anode valve metal foil 23
An aluminum foil having a thickness of 100 μm, a width of 5 mm, and a length of 25 mm at 8% or more was used. The valve metal foil 23 for the anode has a concentration of 1
Pits were formed by AC etching in a hydrochloric acid solution at a liquid temperature of 35 ° C. at a concentration of 0 wt%, and the surface was roughened.
The dielectric oxide film 25 is formed at a liquid temperature of 60 ° C and a concentration of 5 ° C.
An aqueous solution of wt% ammonium adipate was used as a chemical conversion solution, except that both ends of the anode valve metal foil 23 were formed.
At constant voltage. The thickness of the metal foil 24 for the current collector is 9
Using a 0 μm aluminum foil, AC etching was performed in a hydrochloric acid solution having a concentration of 10 wt% and a liquid temperature of 35 ° C., and the roughened foil was cut and used. The width of the current collector metal foil 24 is 5 m
m, length is 25 mm. Next, the metal foil for current collector 2
On the surface of No. 4, polypyrrole was previously formed to a thickness of several μm as a conductive polymer layer for a cathode 26 by an electric field polymerization method except for both ends to be connected to the cathode terminal 22. Next, the anode valve metal foil 23 and the current collector metal foil 24 are laminated in three layers so that the longitudinal direction intersects at about 90 degrees, and the anode valve metal foil 23 and the anode metal foil 23 are collected for conduction. Metal foil 24 for electric body
Were crimped (mechanically pressed) together with the anode terminal 21 and the cathode terminal 22, respectively. Next, after only the terminal joint is covered with the mold resin 27, the cathode conductive polymer layer 26 is impregnated between the current collector metal foil 24 and the anode valve metal foil 23 using an impregnation chemical polymerization method. Was completely formed. Next, these elements were entirely molded with a molding resin 27 except for the terminal surfaces to obtain a four-terminal capacitor.

【0041】次いで実施例3の4端子コンデンサのL成
分低下の特性について、ゲイン−フェースインピーダン
ス測定において、2端子での測定と4端子での測定をし
たの場合の結果を用いて説明する。図9に実施例3の4
端子コンデンサを2端子測定した場合と4端子測定した
場合の周波数とゲインの関係を示す。図9において、2
端子測定とは実施例3の4端子コンデンサを4端子構造
にもかかわらず、2端子形として使用した場合の特性を
示したものであり、4端子測定とは、実施例3の4端子
コンデンサを本発明の目的の1つに合致するように4端
子形として使用した場合の、低ESL化の特性を示した
ものである。
Next, the characteristic of lowering the L component of the four-terminal capacitor according to the third embodiment will be described with reference to the results of the case where two terminals and four terminals are measured in gain-face impedance measurement. FIG. 9 shows Example 3-4.
The relationship between the frequency and the gain when the terminal capacitor is measured at two terminals and when the terminal capacitor is measured at four terminals is shown. In FIG. 9, 2
The terminal measurement indicates the characteristics when the four-terminal capacitor according to the third embodiment is used as a two-terminal type despite the four-terminal structure. FIG. 4 shows characteristics of low ESL when used as a four-terminal type so as to meet one of the objects of the present invention.

【0042】この図9から明らかなように、4端子形と
して使用した場合、高周波でのインダクタンスが低下
し、低インピーダンス化が実現できた。なお、上記の陽
極用弁金属箔23と集電体用金属箔24を、図7及び図
8に示したように積層して4端子コンデンサを製造し
て、上記と同様の評価を行なったが、いずれの場合にも
高周波でのインダクタンスの低下がみられた。
As is apparent from FIG. 9, when used as a four-terminal type, the inductance at high frequencies was reduced, and low impedance was realized. The valve metal foil 23 for anode and the metal foil 24 for current collector were laminated as shown in FIGS. 7 and 8 to manufacture a four-terminal capacitor, and the same evaluation as above was performed. In each case, a decrease in inductance at high frequencies was observed.

【0043】このように、本実施例による4端子コンデ
ンサは、電流容量、低インピーダンス化の点で優れた効
果が得られる。
As described above, the four-terminal capacitor according to the present embodiment has excellent effects in terms of current capacity and low impedance.

【0044】[0044]

【発明の効果】以上のように本発明によれば、低ESR
化、低ESL化による高周波対応のみならず、電源の一
次側や二次側の比較的大きな電流が流れる回路にも使用
することができ、電流容量が高く、かつ高容量、低イン
ピーダンスで発熱の小さいという有利な効果が得られ
る。
As described above, according to the present invention, low ESR
Not only for high frequency due to low power consumption and low ESL, but also for circuits where a relatively large current flows on the primary and secondary sides of the power supply. It has a high current capacity, high capacity, low impedance and heat generation. An advantageous effect of being small is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の4端子コンデンサのコンデンサ素子部
の構成の一実施例を示す構成図
FIG. 1 is a configuration diagram showing one embodiment of a configuration of a capacitor element portion of a four-terminal capacitor according to the present invention.

【図2】本発明の4端子コンデンサの構成の一実施例を
示す構成図
FIG. 2 is a configuration diagram showing one embodiment of a configuration of a four-terminal capacitor of the present invention.

【図3】本発明の4端子コンデンサに用いることができ
る陽極用弁金属箔の一実施例の断面電子顕微鏡写真
FIG. 3 is a cross-sectional electron micrograph of one embodiment of an anode valve metal foil that can be used in the four-terminal capacitor of the present invention.

【図4】本発明の4端子コンデンサに用いることができ
る集電体用金属箔の一実施例の断面電子顕微鏡写真
FIG. 4 is a cross-sectional electron micrograph of one embodiment of a metal foil for a current collector that can be used for the four-terminal capacitor of the present invention.

【図5】本発明の4端子コンデンサに用いることができ
るカーボンを加えたアルミニウム箔の構成の一例を示す
断面構成図
FIG. 5 is a cross-sectional configuration diagram showing an example of a configuration of an aluminum foil to which carbon is added, which can be used for the four-terminal capacitor of the present invention.

【図6】本発明の4端子コンデンサの考え方を表す等価
回路図
FIG. 6 is an equivalent circuit diagram showing the concept of a four-terminal capacitor according to the present invention.

【図7】本発明の4端子コンデンサの別の構成例を示し
た分解斜視図
FIG. 7 is an exploded perspective view showing another configuration example of the four-terminal capacitor of the present invention.

【図8】本発明の4端子コンデンサの更に別の構成例を
示した分解斜視図
FIG. 8 is an exploded perspective view showing still another configuration example of the four-terminal capacitor of the present invention.

【図9】本発明の実施例3の4端子コンデンサの4端子
測定と2端子測定の場合の周波数−ゲイン関係図
FIG. 9 is a diagram showing a frequency-gain relationship in the case of four-terminal measurement and two-terminal measurement of the four-terminal capacitor according to the third embodiment of the present invention.

【図10】従来の捲回形アルミ電解コンデンサの構造図FIG. 10 is a structural diagram of a conventional wound type aluminum electrolytic capacitor.

【図11】従来のチップ積層セラミックコンデンサの構
造を示した断面図
FIG. 11 is a sectional view showing the structure of a conventional chip multilayer ceramic capacitor.

【図12】従来の機能性タンタル電解コンデンサの構造
FIG. 12 is a structural diagram of a conventional functional tantalum electrolytic capacitor.

【図13】従来の2端子形コンデンサの等価回路図FIG. 13 is an equivalent circuit diagram of a conventional two-terminal capacitor.

【図14】従来の4端子形コンデンサの課題を示す等価
回路図
FIG. 14 is an equivalent circuit diagram showing a problem of a conventional four-terminal capacitor.

【符号の説明】[Explanation of symbols]

11 陽極用弁金属箔 12 集電体用金属箔 13 誘電体酸化皮膜層 21 陽極端子 22 陰極端子 23 陽極用弁金属箔 24 集電体用金属箔 25 誘電体酸化皮膜層 26 陰極用導電性高分子層 27 モールド樹脂 31 バルク層 32 柱状ピット 41 バルク層 42 エッチングピット 51 アルミニウム 52 導電性のカーボン粒子 61,61’ 陽極用弁金属箔 61a 切り欠き部 61b 角部 62 集電体用金属箔 63 誘電体用酸化被膜層 64 端面 66,66’ 陽極用弁金属箔 66a 切り欠き部 66b 角部 67 集電体用金属箔 68 誘電体用酸化被膜層 69 端面 81 陽極用電極箔 82 集電用陰極箔 83 セパレータ 84 リード 91 電極層 92 誘電体層 93 外部電極 101 タンタルコンデンサ素子 101a 機能性高分子層 101b 誘電体層 101c タンタル粉焼結体 102 陰極端子 103 導電性接着剤層 104 陽極端子 105 リード 106 モールド樹脂層 111 等価直列抵抗 112 等価直列インダクタンス 121 陽極内部回路抵抗 122 陰極集電体内部回路抵抗 REFERENCE SIGNS LIST 11 valve metal foil for anode 12 metal foil for current collector 13 dielectric oxide film layer 21 anode terminal 22 cathode terminal 23 valve metal foil for anode 24 metal foil for current collector 25 dielectric oxide film layer 26 high conductivity for cathode Molecular layer 27 Mold resin 31 Bulk layer 32 Columnar pit 41 Bulk layer 42 Etching pit 51 Aluminum 52 Conductive carbon particles 61, 61 'Valve metal foil for anode 61a Notch 61b Corner 62 Metal foil for current collector 63 Dielectric Body oxide film layer 64 End face 66, 66 'Valve metal foil for anode 66a Notch 66b Corner 67 Metal foil for current collector 68 Oxide film layer for dielectric 69 End face 81 Electrode foil for anode 82 Cathode foil for current collection 83 Separator 84 Lead 91 Electrode layer 92 Dielectric layer 93 External electrode 101 Tantalum capacitor element 101a Functional polymer layer 1 1b dielectric layer 101c tantalum powder sintered 102 a cathode terminal 103 conductive adhesive layer 104 anode terminals 105 lead 106 a molding resin layer 111 equivalent series resistance 112 equivalent series inductance 121 anode internal circuit resistance 122 cathode current collector body internal circuit resistance

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】表面に誘電体酸化皮膜層が形成された陽極
用弁金属箔と、集電体用金属箔と、前記陽極用弁金属箔
と前記集電体用金属箔との間に配置される陰極用導電性
高分子層と、外部接続用の陽極端子および陰極端子とを
少なくとも有し、前記陽極用弁金属箔の表面が粗面化さ
れ、かつ前記陽極用弁金属箔と前記集電体用金属箔とが
前記陰極用導電性高分子層を介して交互に積層され、か
つ各々の前記陽極用弁金属箔の異なる2ヶ所が、別々の
2ヶ所の陽極端子に電気的に接続され、かつ各々の前記
集電体用金属箔の異なる2ヶ所が、別々の2ヶ所の陰極
端子に電気的に接続されていることを特徴とする4端子
コンデンサ。
An anode valve metal foil having a dielectric oxide film layer formed on a surface thereof, a current collector metal foil, and disposed between the anode valve metal foil and the current collector metal foil. A cathode conductive polymer layer, an anode terminal and a cathode terminal for external connection, the surface of the anode valve metal foil is roughened, and the anode valve metal foil is The metal foil for an electric conductor is alternately laminated via the conductive polymer layer for a cathode, and two different portions of each of the valve metal foils for an anode are electrically connected to two separate anode terminals. And two different points of the current collector metal foil are electrically connected to two separate cathode terminals.
【請求項2】別々の2ヶ所の陽極端子間を結ぶ線分と、
別々の2ヶ所の陰極端子間を結ぶ線分とが交差すること
を特徴とする請求項1に記載の4端子コンデンサ。
2. A line segment connecting two separate anode terminals,
2. The four-terminal capacitor according to claim 1, wherein a line connecting two separate cathode terminals intersects.
【請求項3】別々の2ヶ所の陽極端子間を結ぶ線分と、
別々の2ヶ所の陰極端子間を結ぶ線分とが交差しないこ
とを特徴とする請求項1に記載の4端子コンデンサ。
3. A line segment connecting two separate anode terminals,
2. The four-terminal capacitor according to claim 1, wherein a line connecting two separate cathode terminals does not intersect.
【請求項4】陽極用弁金属箔と集電体用金属箔とが表面
を粗面化されたアルミニウム箔であって、前記陽極用弁
金属箔と前記集電体用金属箔の内部断面に粗面化処理さ
れていないバルク層をそれぞれ有することを特徴とする
請求項1に記載の4端子コンデンサ。
4. The anode valve metal foil and the current collector metal foil are aluminum foils whose surfaces are roughened, and the anode valve metal foil and the current collector metal foil have an internal cross section. The four-terminal capacitor according to claim 1, further comprising a bulk layer that has not been subjected to surface roughening.
【請求項5】集電体用金属箔がニッケル箔または銅箔ま
たはカーボン粒子を加えたアルミニウム箔よりなること
を特徴とする請求項1に記載の4端子コンデンサ。
5. The four-terminal capacitor according to claim 1, wherein the current collector metal foil is made of a nickel foil, a copper foil, or an aluminum foil to which carbon particles are added.
【請求項6】陽極用弁金属箔が表面を粗面化されたアル
ミニウム箔であって、前記陽極用弁金属箔の内部断面に
粗面化処理されていないバルク層を有し、かつ集電体用
金属箔がニッケル箔または銅箔またはカーボン粒子を加
えたアルミニウム箔であることを特徴とする請求項1〜
3のいずれかに記載の4端子コンデンサ。
6. The anode valve metal foil is an aluminum foil having a roughened surface, the inner cross section of the anode valve metal foil having a bulk layer that has not been subjected to surface roughening treatment, and a current collector. The body metal foil is a nickel foil or a copper foil or an aluminum foil to which carbon particles are added.
4. The four-terminal capacitor according to any one of 3.
JP02590999A 1998-02-09 1999-02-03 4-terminal capacitor Expired - Fee Related JP3515698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02590999A JP3515698B2 (en) 1998-02-09 1999-02-03 4-terminal capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-44439 1998-02-09
JP4443998 1998-02-09
JP02590999A JP3515698B2 (en) 1998-02-09 1999-02-03 4-terminal capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003062312A Division JP2003243267A (en) 1998-02-09 2003-03-07 Four-terminal capacitor

Publications (2)

Publication Number Publication Date
JPH11288846A true JPH11288846A (en) 1999-10-19
JP3515698B2 JP3515698B2 (en) 2004-04-05

Family

ID=26363607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02590999A Expired - Fee Related JP3515698B2 (en) 1998-02-09 1999-02-03 4-terminal capacitor

Country Status (1)

Country Link
JP (1) JP3515698B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196270A (en) * 1999-11-04 2001-07-19 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
WO2002052614A1 (en) * 2000-12-22 2002-07-04 Epcos Ag Electric multilayer component and interference suppression circuit with said component
JP2003059776A (en) * 2001-08-10 2003-02-28 Nippon Chemicon Corp Solid electrolytic capacitor
US6580601B2 (en) 2001-10-30 2003-06-17 Matsushita Electric Industrial Co., Ltd. Solid electrolyte capacitor and method for manufacturing the same
US6661644B2 (en) 2001-10-05 2003-12-09 Matsushita Electric Industrial Co., Ltd. Capacitor
WO2004084243A1 (en) * 2003-03-17 2004-09-30 Tdk Corporation Capacitor element, solid electrolyic capacitor, process for producing the same, and combination of capacitor elements
JP2006324555A (en) * 2005-05-20 2006-11-30 Nec Tokin Corp Laminated capacitor and its manufacturing method
US7184257B2 (en) 2003-02-26 2007-02-27 Tdk Corporation Solid electrolytic capacitor
JP2007096272A (en) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd Electric device and electric circuit
JP2007202103A (en) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd Electric circuit device
US7342771B2 (en) 2002-06-18 2008-03-11 Tdk Corporation Solid electrolytic capacitor and a method for manufacturing a solid electrolytic capacitor
KR100872926B1 (en) * 2006-02-21 2008-12-08 엘에스엠트론 주식회사 Collector for electric double layer capacitor and electric double layer capacitor
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
CN109791844A (en) * 2016-10-17 2019-05-21 株式会社村田制作所 Solid electrolytic capacitor
US10304635B2 (en) 2016-08-29 2019-05-28 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor having a directly bonded cathode layer
WO2021200197A1 (en) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Electrolytic capacitor
WO2022092010A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Carbon paste for solid electrolytic capacitors, solid electrolytic capacitor element, and solid electrolytic capacitor
WO2023176684A1 (en) * 2022-03-15 2023-09-21 パナソニックIpマネジメント株式会社 Capacitor and power source module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196270A (en) * 1999-11-04 2001-07-19 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4560940B2 (en) * 1999-11-04 2010-10-13 パナソニック株式会社 Solid electrolytic capacitor and manufacturing method thereof
WO2002052614A1 (en) * 2000-12-22 2002-07-04 Epcos Ag Electric multilayer component and interference suppression circuit with said component
US6850404B2 (en) 2000-12-22 2005-02-01 Epcos Ag Component and interference suppression circuit
JP2003059776A (en) * 2001-08-10 2003-02-28 Nippon Chemicon Corp Solid electrolytic capacitor
US6661644B2 (en) 2001-10-05 2003-12-09 Matsushita Electric Industrial Co., Ltd. Capacitor
US6580601B2 (en) 2001-10-30 2003-06-17 Matsushita Electric Industrial Co., Ltd. Solid electrolyte capacitor and method for manufacturing the same
US7342771B2 (en) 2002-06-18 2008-03-11 Tdk Corporation Solid electrolytic capacitor and a method for manufacturing a solid electrolytic capacitor
US7184257B2 (en) 2003-02-26 2007-02-27 Tdk Corporation Solid electrolytic capacitor
US7365963B2 (en) 2003-03-17 2008-04-29 Tdk Corporation Capacitor element, solid electrolytic capacitor, processes for their production and capacitor element combination
WO2004084243A1 (en) * 2003-03-17 2004-09-30 Tdk Corporation Capacitor element, solid electrolyic capacitor, process for producing the same, and combination of capacitor elements
JP2006324555A (en) * 2005-05-20 2006-11-30 Nec Tokin Corp Laminated capacitor and its manufacturing method
US7898363B2 (en) 2005-09-02 2011-03-01 Sanyo Electric Co., Ltd. Electric element and electric circuit
JP2007096272A (en) * 2005-09-02 2007-04-12 Sanyo Electric Co Ltd Electric device and electric circuit
US8027146B2 (en) 2005-12-26 2011-09-27 Sanyo Electric Co., Ltd. Electric circuit device enabling impedance reduction
JP2007202103A (en) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd Electric circuit device
KR100872926B1 (en) * 2006-02-21 2008-12-08 엘에스엠트론 주식회사 Collector for electric double layer capacitor and electric double layer capacitor
US10304635B2 (en) 2016-08-29 2019-05-28 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor having a directly bonded cathode layer
CN109791844A (en) * 2016-10-17 2019-05-21 株式会社村田制作所 Solid electrolytic capacitor
WO2021200197A1 (en) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Electrolytic capacitor
CN115335935A (en) * 2020-03-31 2022-11-11 松下知识产权经营株式会社 Electrolytic capacitor
WO2022092010A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Carbon paste for solid electrolytic capacitors, solid electrolytic capacitor element, and solid electrolytic capacitor
WO2023176684A1 (en) * 2022-03-15 2023-09-21 パナソニックIpマネジメント株式会社 Capacitor and power source module

Also Published As

Publication number Publication date
JP3515698B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
US6185091B1 (en) Four-terminal capacitor
JP3276113B1 (en) Solid electrolytic capacitors
JPH11288846A (en) Four-terminal capacitor
US20090116173A1 (en) Solid electrolytic capacitor
CN107275091B (en) Solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JPH05205984A (en) Laminated solid electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2003086459A (en) Solid electrolytic capacitor
JPH11219861A (en) Electrolytic capacitor and manufacture thereof
US8018713B2 (en) Solid electrolytic capacitor having dual cathode plates surrounded by an anode body and a plurality of through holes
JP2003332173A (en) Capacitor element, solid electrolytic capacitor, and substrate with built-in capacitor
WO2002078026A1 (en) Solid electrolytic capacitor and method of manufacturing the capacitor
JP2003178933A (en) Capacitor
JP2002198264A (en) Electrolytic capacitor, circuit board containing electrolytic capacitors and manufacturing method thereof
JP4876705B2 (en) Solid electrolytic capacitor
JPH08273983A (en) Aluminum solid capacitor
JP2003243267A (en) Four-terminal capacitor
JPH11274002A (en) Chip-laminated electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JPH11274003A (en) Chip-type laminated solid electrolytic capacitor
JP2010040960A (en) Solid-state electrolytic capacitor
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
WO2009051297A1 (en) Metal capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees