JPH11286770A - High corrosion resistance molybdenum-based composite material and its production - Google Patents

High corrosion resistance molybdenum-based composite material and its production

Info

Publication number
JPH11286770A
JPH11286770A JP10588798A JP10588798A JPH11286770A JP H11286770 A JPH11286770 A JP H11286770A JP 10588798 A JP10588798 A JP 10588798A JP 10588798 A JP10588798 A JP 10588798A JP H11286770 A JPH11286770 A JP H11286770A
Authority
JP
Japan
Prior art keywords
corrosion
sample
phase
nitride layer
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10588798A
Other languages
Japanese (ja)
Inventor
潤 ▲高▼田
Jun Takada
Masahiro Nagae
正寛 長江
Yutaka Hiraoka
裕 平岡
Hideyuki Kuwabara
秀行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10588798A priority Critical patent/JPH11286770A/en
Publication of JPH11286770A publication Critical patent/JPH11286770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To impart a corrosion performance equal to that of Ta to a material and to obtain a mechanical strength and hardness more excellent than those of Ta by subjecting Mo and an Mo-based alloy to nitriding treatment. SOLUTION: This high corrosion resistance Mo-based composite material is characterized by providing the surface of an Mo alloy with an Mo2 N layer of 0.5 to 10 μm thickness. The method for producing a high corrosion resistance Mo-based composite material is characterized by subjecting an Mo series alloy to nitriding treatment for 0.2 to 100 hr in an atmosphere heated at a temp. of 700 to 1,150 deg.C in the presence of gaseous N2 or gaseous NH3 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はMo合金の表面
に、高強度で、Taと同等以上の高耐食性を有するMo
2 N層を設けることを特徴とした高耐食性Mo系複合材
料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Mo alloy having a high strength and a high corrosion resistance equal to or higher than that of Ta.
The present invention relates to a high corrosion-resistant Mo-based composite material provided with a 2N layer and a method for producing the same.

【0002】[0002]

【従来の技術】従来苛酷な条件下の高耐食性材料として
は、ステンレス容器にTaの内張りをした物が知られて
いる。
2. Description of the Related Art Conventionally, as a highly corrosion-resistant material under severe conditions, a stainless steel container with a Ta lining is known.

【0003】この発明で取扱うMo金属には、窒化物と
してγ−Mo2 N(面心立方系、fcc)、β−Mo2
N(体心正方系、bctと考えられている)、δ−Mo
N(六方晶hcpおよび非平衡相のBI型)の3つの相
がある。然し乍ら、取扱い容易な純N2 ガス中では、こ
れらの窒化物は殆んど生成しないため、Mo窒化物に関
する研究は数少ない。前記β相は700℃以下の低温域
でのみ安定した相であり、γ相の2倍C軸長を有するb
ct構造であるとされている。またγ相は、窒素量が少
ないと組成域でも700℃以上から急冷によって得るこ
とができる。一方δ−MoNは、MoO3 やMoS2
NH3 ガスによる窒化により合成されることが知られて
いる。このδ−MoNの結晶構造は格子定数a=0.5
725μm、c=0.5608μmの六方晶系(hc
p)構造とされているが、詳細には判らない。この様に
Mo窒化物に関しては、その物性、結晶構造、生成温度
域等の詳細は不明であり、処理物の高耐食性は全然知ら
れていない。
The Mo metal used in the present invention includes γ-Mo 2 N (face-centered cubic, fcc) and β-Mo 2 as nitrides.
N (body-centered square, considered bct), δ-Mo
There are three phases, N (hexagonal hcp and non-equilibrium phase BI form). However, there are few studies on Mo nitrides since these nitrides hardly form in pure N 2 gas which is easy to handle. The β phase is a phase that is stable only in a low temperature range of 700 ° C. or lower, and has a C-axis length twice that of the γ phase.
ct structure. If the amount of nitrogen is small, the γ phase can be obtained by rapid cooling from 700 ° C. or higher even in the composition range. On the other hand, δ-MoN is known to be synthesized by nitriding MoO 3 or MoS 2 with NH 3 gas. The crystal structure of δ-MoN has a lattice constant a = 0.5
725 μm, c = 0.5608 μm hexagonal system (hc
p) Structure, but details are unknown. As described above, the details of Mo nitride, such as its physical properties, crystal structure, and formation temperature range, are unknown, and the high corrosion resistance of the treated product is not known at all.

【0004】[0004]

【発明により解決しようとする課題】現に使用されてい
るTaは、耐食性については優れた性能があるが、機械
的強度が低く、摩耗や劣化が著しく、長期間の使用が困
難(耐久性がない)であり、かつ比重が大きく、高価で
あるなどの問題点があった。
The Ta used in the present invention has excellent performance in terms of corrosion resistance, but has low mechanical strength, is significantly worn or deteriorated, and is difficult to use for a long time (has no durability). ), High specific gravity, and high cost.

【0005】またMo系合金の表面窒化ができることは
知られていたが、どのように優れているか、どのような
特性があるか、どのように使用できるかということが一
切知られていない問題点があった。
Although it has been known that surface nitriding of a Mo-based alloy can be performed, it is not known how excellent it is, what characteristics it has, and how it can be used. was there.

【0006】[0006]

【課題を解決する為の手段】然るにこの発明は、一定の
条件のもとに、Mo系合金を窒化処理し、その表面に窒
化Moの薄い層を設けることにより、耐食性に優れ、機
械的強度が大きく、低廉かつ軽量な複合材料を得ること
に成功したのである。
SUMMARY OF THE INVENTION The present invention provides an excellent corrosion resistance and a high mechanical strength by subjecting a Mo alloy to a nitriding treatment under a certain condition and providing a thin layer of Mo nitride on the surface thereof. And succeeded in obtaining an inexpensive and lightweight composite material.

【0007】即ち材料の発明は、Mo合金の表面に厚さ
0.5μm〜10μmのMo2 N層を設けたことを特徴
とする高耐食性Mo系複合材料であり、Mo2 N層は、
β−Mo2 N層としたものである。
Namely invention materials are high corrosion resistance Mo-based composite material characterized in that a Mo 2 N layer having a thickness of 0.5μm~10μm the surface of the Mo alloy, Mo 2 N layer,
This is a β-Mo 2 N layer.

【0008】また方法の発明は、Mo系合金をN2 ガス
又はNH3 ガスの存在下で700℃〜1150℃の雰囲
気内で0.2時間〜100時間窒化処理することを特徴
とする高耐食性Mo系複合材料の製造方法である。次に
他の方法の発明は、Mo系合金をN2 ガス又はNH3
スの存在下で700℃〜1150℃の雰囲気内で窒化処
理し、厚さ0.5μm以上でクラックを生じない厚さの
Mo2 N層を設けることを特徴とする高耐食性Mo系複
合材料の製造方法であり、クラックを生じない厚さを1
0μm未満とするものである。
Further, the invention of the method is characterized in that the Mo-based alloy is subjected to nitriding treatment in an atmosphere of 700 ° C. to 1150 ° C. for 0.2 hours to 100 hours in the presence of N 2 gas or NH 3 gas. This is a method for producing a Mo-based composite material. Next, the invention of another method is that a Mo-based alloy is nitrided in an atmosphere of 700 ° C. to 1150 ° C. in the presence of N 2 gas or NH 3 gas and has a thickness of 0.5 μm or more that does not cause cracks. A high corrosion-resistant Mo-based composite material characterized by providing a Mo 2 N layer of
It should be less than 0 μm.

【0009】前記発明において、窒化処理温度が700
℃未満又は1150℃を越えると、目的とする耐食性の
優れたMo2 N層ができない。またMo2 N層の厚さが
0.5μm未満の場合、又は10μmを越える場合に
も、この発明の目的とする耐食性を得ることは困難であ
る。またβ−Mo2 N層の場合は確実に優れた耐食性を
示している。
In the above invention, the nitriding temperature is 700
If the temperature is lower than 1 ° C. or higher than 1150 ° C., a desired Mo 2 N layer having excellent corrosion resistance cannot be obtained. Also, when the thickness of the Mo 2 N layer is less than 0.5 μm or more than 10 μm, it is difficult to obtain the corrosion resistance aimed at by the present invention. In the case of the β-Mo 2 N layer, excellent corrosion resistance is certainly exhibited.

【0010】前記において、雰囲気温度が1200℃を
越えると、Mo2 N層は形成されないが、これは分解す
る為と推定される。また雰囲気温度が700℃未満で
は、Mo2 N層の成長が著しく遅くなるので、工業生産
に不適当である。例えば700℃で窒化処理し、必要な
厚さ(1μm以上)を得るには100時間以上を要する
ことが判明している。
In the above, when the ambient temperature exceeds 1200 ° C., no Mo 2 N layer is formed, but this is presumed to be due to decomposition. If the ambient temperature is lower than 700 ° C., the growth of the Mo 2 N layer is remarkably slowed down, which is not suitable for industrial production. For example, it has been found that it takes 100 hours or more to perform a nitriding treatment at 700 ° C. to obtain a required thickness (1 μm or more).

【0011】この発明においては、処理温度が高いとM
2 N層を所定の厚さまで成長させる時間が短くなり、
温度が低いと長い時間がかかる。例えば、800℃、1
時間で厚さ1μmのMo2 N層を得ることができるが、
1000℃、1時間で厚さ12μmのMo2 N層となっ
た。
In the present invention, when the processing temperature is high, M
The time for growing the o 2 N layer to a predetermined thickness is reduced,
Low temperatures take a long time. For example, 800 ° C., 1
In time, a 1 μm thick Mo 2 N layer can be obtained,
At 1000 ° C. for 1 hour, a Mo 2 N layer having a thickness of 12 μm was formed.

【0012】従って窒化温度と時間のコントロールによ
りMo2 N層の厚さをコントロールすることができる。
Therefore, the thickness of the Mo 2 N layer can be controlled by controlling the nitriding temperature and time.

【0013】[0013]

【発明の実施の形態】この発明は、Mo系合金を窒化処
理することにより、前記Mo系合金の表面に厚さ0.5
μm〜10μmのMo2 N層を設けたMo系複合材料又
はその製造方法である。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a Mo-based alloy is subjected to a nitriding treatment so that the Mo-based alloy has a thickness of 0.5
Mo system provided Mo 2 N layer of μm~10μm a composite material or a manufacturing method thereof.

【0014】前記Mo2 N層はβ−Mo2 Nが好まし
く、その厚さを0.5μm〜10μmに成長させるに
は、700℃〜1150℃の雰囲気内で0.2時間〜1
00時間処理する。
The Mo 2 N layer is preferably β-Mo 2 N. In order to grow the thickness to 0.5 μm to 10 μm, the Mo 2 N layer should be in an atmosphere at 700 ° C. to 1150 ° C. for 0.2 hours to 1 hour.
Process for 00 hours.

【0015】(実験例1)高純度のMo粉末およびTi
C粉末を原材料として圧粉体を作製し、これを1800
℃の水素雰囲気中で焼結して焼結体を得た。この焼結体
を熱間・温間圧延し、さらに冷間圧延を経て厚さ1mm
の板材を得た。この板材より角棒状試料(2mmW ×1
mmE ×25mmL )を切り出し、表面をエメリー紙に
より研摩後、電解研摩を行った。その後真空中(約1.
3×10-4Pa)で1500℃、1時間の熱処理により
再結晶化し、窒化用試料とした。窒化は1atmのNH
3 ガス気流中で4〜16時間行った。
(Experimental Example 1) High-purity Mo powder and Ti
A compact was prepared using C powder as a raw material,
The sintered body was obtained by sintering in a hydrogen atmosphere at ℃. This sintered body is hot- and warm-rolled, and further cold-rolled to a thickness of 1 mm.
Was obtained. From this plate material, a square rod-shaped sample (2 mm W x 1
cut out mm E × 25mm L), after polishing the surface by emery paper, it was subjected to electrolytic polishing. Then, in a vacuum (about 1.
It was recrystallized by a heat treatment at 1500 ° C. for 1 hour at 3 × 10 −4 Pa) to obtain a sample for nitriding. Nitriding is 1 atm NH
This was performed for 4 to 16 hours in a stream of three gases.

【0016】前記により得られた試料について、断面を
機械研摩後、光学顕微鏡による組織観察およびビッカー
ス硬さ試験機による硬さ試験(荷重25gf、保持期間
15s)を行った。前記光学顕微鏡観察のためのエッチ
ングは村上試薬(K3 [(Fe(CN)6 ]:NaO
H:H2 O=1:1:10(重量比)を用い行った。ま
た、試料表面及び内部の窒化物層の同定のために、X線
回折(XRD、Cu−Ka、Rigaku Geige
r Flex)を行った。さらに、窒化物層の微細組織
を透過型電子顕微鏡(TEM、Topcon EM−0
02B)観察および電子線回折(ED)によって検討し
た。前記電子顕微鏡用試料は機械的な研摩によって約1
50μm厚さの薄板とし、試料中央にディンプラーによ
ってくぼみをつけた後、イオンミリング装置を用いて作
製した。イオンミリングは、Arイオンを5〜7k
V、2mAで加速させ、約10°の入射角で行った。
The cross section of the sample obtained above was mechanically polished, and then the structure was observed with an optical microscope and a hardness test was performed with a Vickers hardness tester (load: 25 gf, holding period: 15 s). The etching for the optical microscope observation is performed by using Murakami reagent (K 3 [(Fe (CN) 6 ]: NaO
H: H 2 O = 1: 1: 10 (weight ratio). In order to identify the nitride layer on the sample surface and inside, X-ray diffraction (XRD, Cu-Ka, Rigaku Geige) was used.
r Flex). Further, the fine structure of the nitride layer was examined by a transmission electron microscope (TEM, Topcon EM-0).
02B) Observation and examination by electron beam diffraction (ED). The sample for electron microscope is about 1
A thin plate having a thickness of 50 μm was formed, and a sample was formed using a dimple at the center of the sample, and then manufactured using an ion milling device. For ion milling, Ar + ions are 5 to 7k
V, accelerated at 2 mA and performed at an incident angle of about 10 °.

【0017】前記処理で得た試料は、図1に示すよう
に、何れの試料においても立方晶(fcc)のγ−Mo
2 Nの回折線のみが認められた。この結果は、窒化によ
り試料表面に比較的厚いγ−Mo2 Nが形成されること
を示している。
As shown in FIG. 1, the samples obtained by the above-mentioned treatment were cubic (fcc) γ-Mo
Only the diffraction line of 2 N was observed. This result indicates that a relatively thick γ-Mo 2 N is formed on the sample surface by nitriding.

【0018】またMo−Ti合金を(a)600℃〜
(f)1100℃で、16時間N2 ガス窒化処理した試
料表面におけるXRDパターンは図2のようになった。
Further, the Mo—Ti alloy is (a) 600 ° C.
(F) The XRD pattern on the sample surface which was subjected to N 2 gas nitriding at 1100 ° C. for 16 hours was as shown in FIG.

【0019】次に図3(a)、(b)に1100℃で4
時間および16時間窒化した純Mo試料の断面の光学顕
微鏡写眞を示す。何れの試料においても試料表面に平行
な白色の層が均一に形成しており、窒化時間の延長に伴
いこの表面層の厚さが増加しているのが分かる。前記図
1(b)の結果を考慮すると、この表面層はMo窒化物
層であると判断される。また、この表面層と内部のMo
との界面は非常に平滑である。従ってこの表面層の成長
に対する窒素の粒界拡散の寄与はほとんど無いと考えら
れる。以後この表面層を表面(Mo)窒化物層と呼ぶこ
とにする。
Next, FIGS. 3 (a) and 3 (b) show that 4 ° C. at 1100 ° C.
1 shows optical micrographs of cross sections of pure Mo samples nitrided for 16 hours and 16 hours. In each of the samples, a white layer parallel to the sample surface was formed uniformly, and it can be seen that the thickness of this surface layer increased as the nitriding time was extended. In consideration of the result of FIG. 1B, it is determined that this surface layer is a Mo nitride layer. In addition, this surface layer and the internal Mo
Interface is very smooth. Therefore, it is considered that the grain boundary diffusion of nitrogen hardly contributes to the growth of the surface layer. Hereinafter, this surface layer will be referred to as a surface (Mo) nitride layer.

【0020】一般に、この様な化合物層が成長する場
合、その律速式には律速機構の違いにより、二つの式が
考えられる。即ち、反応律速支配の場合、化合物層の厚
さ(E)が反応時間(t)に比例する。次の直線則式
(1)が成立する。
In general, when such a compound layer grows, there are two types of rate-determining formulas depending on the difference in the rate-controlling mechanism. That is, in the case where the reaction is rate-controlled, the thickness (E) of the compound layer is proportional to the reaction time (t). The following linear law equation (1) holds.

【0021】[0021]

【数1】 他方、拡散律速機構の場合には、Eがtの平方根に比例
する次の放物線則式(2)が成立する。
(Equation 1) On the other hand, in the case of the diffusion-controlled mechanism, the following parabolic law equation (2) in which E is proportional to the square root of t holds.

【0022】[0022]

【数2】 ここでKは成長速度定数である。そこで、この発明の
純MoおよびMo−0.5Ti合金の1100℃窒化に
よる表面窒化物層の厚さEと、窒化時間tの平方根の関
係を図4に示す。両者間には直線関係が成立し、放物線
則が成立することがわかった。ここで純MoとMo−
0.5Ti合金のKの値はそれぞれ3.25×10-4
mm´s-1/2、2.96×10-4mm´s-1/2であっ
た。この結果は表面窒化物層の成長が見掛上、Mo又は
窒素の表面窒化物層中の拡散により律速されていること
を示唆している。
(Equation 2) Here, Kp is a growth rate constant. Thus, FIG. 4 shows the relationship between the thickness E of the surface nitride layer obtained by nitriding the pure Mo and Mo-0.5Ti alloys at 1100 ° C. and the square root of the nitriding time t. It was found that a linear relationship was established between the two, and the parabolic law was established. Here pure Mo and Mo-
Each value of K p of 0.5Ti alloy 3.25 × 10 -4
mm ′s −1/2 , 2.96 × 10 −4 mm ′s −1/2 . This result suggests that the growth of the surface nitride layer is apparently limited by the diffusion of Mo or nitrogen in the surface nitride layer.

【0023】表面窒化物層の成長が試料表面から外側に
向って進行するのか、或いは内側に向って進行するのか
を検討するために、窒化前後の厚さWb (ここでは1000
μm厚さの試料を用いた)およびWa を測定し、その差
△W=Wa −Wb の窒化時間に伴う変化を検討した。そ
の結果をMo−0.5Ti合金について図5に示す。1
200℃以上で酸化した純Niの場合と同様に、表面窒
化物層の成長がMoの試料表面への拡散による外向き成
長で進行するのであれば、窒化後の試料厚さは生成した
窒化物層の2倍の厚さ増加すると予想される。しかしな
がら、図5に示すように窒化の前後で試料の厚さはほと
んど変化していないことを示しているし、純Moの場合
も同様な結果が得られた。従って、この発明の表面窒化
物層の成長は内部への内向き成長であると判断される。
前記の通り、純MoおよびMo−0.5Ti合金のNH
3 窒化による表面窒化物層の成長は試料内部への窒素の
拡散が律速であると結論される。この結果は、Mo系材
料ではMoイオンの試料表面への拡散によるボイドを形
成することなく窒化が可能であることがわかる。
In order to examine whether the growth of the surface nitride layer proceeds outward or inward from the sample surface, a thickness W b before and after nitriding (here, 1000 b ) is used.
μm with the thickness of the sample) the and W a was measured to examine the change with nitridation time of the difference △ W = W a -W b. The results are shown in FIG. 5 for the Mo-0.5Ti alloy. 1
As in the case of pure Ni oxidized at 200 ° C. or more, if the growth of the surface nitride layer proceeds by outward growth due to diffusion of Mo to the sample surface, the thickness of the nitrided sample is It is expected to double the thickness of the layer. However, as shown in FIG. 5, the thickness of the sample hardly changed before and after nitriding, and similar results were obtained in the case of pure Mo. Therefore, it is determined that the growth of the surface nitride layer of the present invention is inward growth inward.
As described above, NH of pure Mo and Mo-0.5Ti alloy
It is concluded that the diffusion of nitrogen into the sample is rate-limiting for the growth of the surface nitride layer by 3 nitriding. This result indicates that the Mo-based material can be nitrided without forming a void due to diffusion of Mo ions to the sample surface.

【0024】次に図6に16時間窒化した純MoとMo
−0.5Ti合金の試料の断面の硬さ分布を示す。試料
最表面付近のHvは約1800であり、窒化前の純Mo
およびMo−0.5Ti合金の硬さ(Hv〜200)に
比較して著しく高くなっていることがわかる。また、表
面窒化物層の硬さは、窒化層内部に向うに従い低下する
傾向を示した。この硬さの低下は、表面窒化物層内での
相変化が原因であると推測した。そこで16時間窒化し
た試料について、窒化物が試料表面から内部に向ってど
のように相変化しているかを検討した。具体的には、試
料表面から内部に向って所定の厚さだけ平行に注意深く
研摩し削除した後、X線回折を行う操作を繰り返し行っ
た。その結果を純Moについて図7に示す。深さd=0
(a)〜25(b)μmの試料表面近傍では立方晶(f
cc構造)のγ−Mo2 N(γ相)であるのに対し、そ
れより内部(d=35(c)〜70(e)μm)では正
方晶のβ−Mo2 N(β相)が生成していることがわか
る。さらに内部のd=80μm(f)は未窒化層であっ
てMoの回折ピークのみが観察された。これらMo窒化
物の相変化が表面窒化物層内での硬さの違いをもたらす
と考えられる。Mo−0.5Ti合金の表面窒化物層に
ついても純Moの表面窒化物層と同様であった。
FIG. 6 shows pure Mo and Mo nitrided for 16 hours.
3 shows a hardness distribution of a cross section of a sample of -0.5Ti alloy. Hv near the outermost surface of the sample is about 1800, and pure Mo before nitriding is used.
It can be seen that the hardness is significantly higher than that of the Mo-0.5Ti alloy (Hv-200). Further, the hardness of the surface nitride layer showed a tendency to decrease toward the inside of the nitride layer. This decrease in hardness was presumed to be due to a phase change in the surface nitride layer. Thus, for the sample nitrided for 16 hours, it was examined how the nitride changed phase from the sample surface toward the inside. Specifically, an operation of performing X-ray diffraction after carefully polishing and removing a predetermined thickness in parallel from the sample surface toward the inside was repeated. The result is shown in FIG. 7 for pure Mo. Depth d = 0
(A) to 25 (b) Cubic (f)
(While a gamma phase), it from the inside (d = 35 (c) cc Structure) γ-Mo 2 N of to 70 (e) [mu] m) in tetragonal β-Mo 2 N (β phase) You can see that it is generated. Furthermore, d = 80 μm (f) inside is an unnitrided layer, and only the Mo diffraction peak was observed. It is considered that the phase change of these Mo nitrides causes a difference in hardness within the surface nitride layer. The surface nitride layer of the Mo-0.5Ti alloy was the same as the surface nitride layer of pure Mo.

【0025】そこで以下純Moについて述べる。図8に
X線回折の結果から求めた表面Mo窒化物の格子定数の
深さに伴う変化を示す。図8より興味ある二つの結果が
得られた。第一は、表面窒化物層内の深さ約28μmで
格子定数は不連続に変化する。この結果より、表面側の
γ−Mo2 Nと内部側のβ−Mo2 Nが共存する領域は
ほとんどないか、あるとしても極めて狭いと推測でき
る。第二に、表面付近のγ相(d〈30μm)および窒
化物層内部のβ相(d〉30μm)の格子定数は共に試
料深さに依存して変化しており、試料内部へ向うほどγ
相のa軸長、β相のc軸長が明らかに短くなっているこ
とが分かる。ことろで窒素量の異なる(28.4at%
〜34.6%)γ−Mo2 Nおよびβ−Mo2 Nについ
て格子定数をX線回折により求めた結果、これら窒化物
の格子定数(γ相のa軸、β相のc軸)は窒素量の低下
に伴い直線的に短くなることがわかる。従って、この発
明における表面窒化物層内でのMo窒化物の相変化は、
γ−Mo2 Nおよびβ−Mo2 N相中の窒素の濃度変化
(勾配)に起因すると考えられる。
Therefore, pure Mo will be described below. FIG. 8 shows the change in lattice constant of surface Mo nitride with depth, determined from the result of X-ray diffraction. FIG. 8 shows two interesting results. First, the lattice constant changes discontinuously at a depth of about 28 μm in the surface nitride layer. From this result, it can be inferred that the region where γ-Mo 2 N on the surface side and β-Mo 2 N on the inner side coexist hardly exists or is very narrow, if at all. Second, the lattice constants of the γ phase (d <30 μm) near the surface and the β phase (d> 30 μm) inside the nitride layer both change depending on the sample depth.
It can be seen that the a-axis length of the phase and the c-axis length of the β phase are clearly shorter. The amount of nitrogen differs in each case (28.4 at%
〜34.6%) As a result of obtaining lattice constants of γ-Mo 2 N and β-Mo 2 N by X-ray diffraction, the lattice constants of these nitrides (a-axis of γ phase, c-axis of β phase) It can be seen that the amount decreases linearly as the amount decreases. Therefore, the phase change of Mo nitride in the surface nitride layer in the present invention is
It is thought to be due to the change in concentration (gradient) of nitrogen in the γ-Mo 2 N and β-Mo 2 N phases.

【0026】図9によれば、表面窒化物層内のMo窒化
物がγ相からβ相に変化すると、構造が立方晶から正方
晶に変化しc/aの値は1からずれることになる。しか
し、図9の結果からβ相の軸比は0.966〜0.95
3の範囲内で変化しており、ほぼ1に近い値とみなすこ
とができる。即ち、β相は立方晶に近い正方晶であると
言える。更にβ相のc/aについて結晶構造中のMo原
子の格子に注目して検討する。図10(a)、(b)に
γ−Mo2 Nおよびβ−Mo2 Nの結晶構造の模式図を
示す。β相の構造は最も信頼しうるエバンスアンドジャ
ック(Evans and Jack)のデータを用い
た。γ相の構造は、Mo原子が構成するfcc格子の格
子位置(8面体隙間)に窒素原子が侵入した構造と見な
すことができる。一方、β相の構造はγ相に類似した構
造であるが、結晶の単位格子を考えるとβ相はa、b軸
に比べc軸がわずかに(0.018nm)短いfctで
あると考えることができる。また、図9よりβ相の軸比
はほぼ1である。従って、この発明では以後β相は近似
的にfcc構造であるとする。
According to FIG. 9, when the Mo nitride in the surface nitride layer changes from the γ phase to the β phase, the structure changes from cubic to tetragonal and the value of c / a deviates from 1. . However, from the results in FIG. 9, the axial ratio of the β phase is 0.966 to 0.95.
3, which can be regarded as a value almost close to 1. That is, it can be said that the β phase is a tetragonal crystal close to a cubic crystal. Further, the c / a of the β phase will be examined by focusing on the lattice of Mo atoms in the crystal structure. FIGS. 10A and 10B are schematic diagrams of the crystal structures of γ-Mo 2 N and β-Mo 2 N. The structure of the β phase used the most reliable data from Evans and Jack. The structure of the γ phase can be regarded as a structure in which nitrogen atoms penetrate into lattice positions (octahedral gaps) of the fcc lattice formed by Mo atoms. On the other hand, the structure of the β phase is similar to that of the γ phase, but considering the unit cell of the crystal, the β phase is considered to be fct whose c-axis is slightly (0.018 nm) shorter than the a and b axes. Can be. Also, from FIG. 9, the axis ratio of the β phase is almost 1. Therefore, in the present invention, the β phase is hereinafter assumed to have an approximately fcc structure.

【0027】前記β相では図11に示すようにγ−Fe
の急冷組織と同様なマルテンサイト的な組織が多数観察
され、幅約0.2μmの互いに平行なパンド内に無数の
縞の存在が認められる。この領域で表面Mo窒化物層と
母相Moとの熱膨張率の違いや格子のミスフィット等に
よる応力の緩和が起っていると考えられる。このβ相に
ついて電子線回折を行った結果の一部を透過電子顕微鏡
写眞と共に、図12(a)、(b)に示す。ここで電子
線の入射方向はいずれも[100]である。前記図12
の(a)、(b)はそれぞれ互いに隣り合うバンド領域
(図中a、b)からの回折パターンである。両者の回折
パターンを比較すると、隣り合ったバンド同士は基本的
に同一の結晶方位を持つことが分かる。また、バンドb
からの回折パターン(b)中にバンド内の縞に垂直な方
向に板状物質の存在を示唆するストリークが認められ
る。この結果より、バンド内の縞は試料[100]に垂
直な面欠陥のトレースであると考えられる。この縞につ
いて種々の方位の電子線回折像からステレオ投影図を用
いてトレース解析を行った。図13(a)、(b)はそ
の結果の一部であり、(a)は[100]入射、(b)
は[211]入射の場合の解析図である。その結果、縞
の方向は、[100]入射の場合は[011](図13
中に矢印で示した)、また前記[211]入射の場合は
[1 -31]であることが分かった。したがって、縞の
面指数はそれぞれ[011]晶帯、[1-31]晶帯に
含まれ、縞の面指数は図13に示した[011]晶帯の
大円、[1 -31]晶帯の大円上に存在する。図14よ
り両者に共通する面指数は{011}であることが分か
る。即ち、図12の(a)の場合は(0 -11)面、
(b)の場合は( -101)面である。以上の検討よ
り、β相中のバンド内に無数に存在する縞は{100}
面に垂直な{011}面上の面欠陥であると考えられ
る。
In the β phase, as shown in FIG.
A number of martensitic structures similar to the rapidly quenched structure are observed, and countless stripes are observed in mutually parallel bands having a width of about 0.2 μm. It is considered that in this region, the stress is relaxed due to the difference in the coefficient of thermal expansion between the surface Mo nitride layer and the mother phase Mo, and misfit of the lattice. FIGS. 12A and 12B show a part of the result of electron beam diffraction of the β phase together with a transmission electron microscope photograph. Here, the incident directions of the electron beams are all [100]. FIG. 12
(A) and (b) are diffraction patterns from adjacent band regions (a and b in the figure), respectively. Comparing the two diffraction patterns, it can be seen that adjacent bands have basically the same crystal orientation. Also, band b
A streak suggesting the presence of a plate-like substance in a direction perpendicular to the stripes in the band is observed in the diffraction pattern (b) from FIG. From this result, it is considered that the stripe in the band is a trace of a plane defect perpendicular to the sample [100]. Trace analysis was performed on this fringe from electron diffraction images in various directions using stereographic projections. FIGS. 13A and 13B show a part of the result, in which FIG. 13A shows [100] incidence, and FIG.
Is an analysis diagram in the case of [211] incidence. As a result, the direction of the stripe is [011] in the case of [100] incidence (FIG. 13).
(Indicated by an arrow in the figure), and it was found that the incidence was [1-31] in the case of the [211] incidence. Therefore, the plane index of the stripe is included in the [011] zone and the [1-31] zone, respectively, and the plane index of the stripe is the great circle of the [011] zone and the [1-31] zone shown in FIG. Exists on the great circle of the obi. FIG. 14 shows that the plane index common to both is {011}. That is, in the case of FIG. 12A, the (0-11) plane,
In the case of (b), it is the (-101) plane. According to the above examination, the stripes innumerably existing in the band in the β phase are {100}.
It is considered to be a plane defect on the {011} plane perpendicular to the plane.

【0028】次に、このβ相の{011}面上の面欠陥
について論ずる。無機固体材料の代表的な面欠陥として
は積層欠陥と双晶の2種類が考えられる。β相の構造は
図9(b)に示したように基本的にはfcc構造であ
る。この構造に対して{011}面上の面欠陥を考える
必要がある。{011}面の積層の仕方は面内の原子配
列を考えると、図14に示すように2種類の格子面が相
互に積み重なったABABAB……の形式である。この
構造での積層欠陥は、AAまたはBBの積層を生じる。
この積層構造は非常に大きな歪エネルギーを生じるの
で、{011}面の積層欠陥の可能性は非常に低いと言
える。
Next, surface defects on the {011} plane of the β phase will be discussed. As typical surface defects of the inorganic solid material, two types of stacking faults and twins can be considered. The structure of the β phase is basically an fcc structure as shown in FIG. It is necessary to consider a surface defect on the {011} plane for this structure. Considering the atomic arrangement in the plane, the {011} plane is stacked in the form of ABABAB... In which two types of lattice planes are stacked on each other as shown in FIG. Stacking faults in this structure result in AA or BB stacking.
Since this laminated structure generates a very large strain energy, it can be said that the possibility of the {011} plane stacking fault is very low.

【0029】次に、β相中の面欠陥が{011}面を双
晶面とする双晶である可能性を検討する。β相の構造が
γ相と同じ完全な立方晶のfccならば、その様な双晶
は存在しない。なぜならば、{011}面に直交するど
のような格子面を考えても、最初から{011}面に関
してその両側の格子が互いに鏡映対称関係にあるからで
ある。然し乍ら、実際にはβ相はc軸がほんのわずかに
短い正方晶である(c/a=0.966〜0.95
3)、β相の(011)面の原子配列を模式的に表わす
と図15(a)の様になる。この原子配列において、図
15(b)に示すように(011)面上[0 -11]方
向へ原子がほんの僅かに変位すると、(011)面に関
して鏡映対称な(011)[0 -11]型の双晶(せん
断歪量s=0.087)を考えることができる。この双
晶によるせん断歪量sは、双晶面が(011)面、せん
断によって回転する面が(0 -11)面であることか
ら、2φ=87.5°となり、式(2.3)よりs=
0.087と評価できる。この値は前述の{111}<
112>型双晶でのs=0.077と比較して著しく小
さい。この結果は(011)[0 -11]型の双晶が生
じ易いことを示唆している。また、この型の双晶は、純
金属中唯一のfct金属であるInで実際に観測されて
いる。以上の検討から、この発明のβ相において、(0
11)[0 -11]型の双晶が発生したと考えられる。
そこでこの様な原子配列をTEMによって直接観察する
ことを試みた。図16に倍率55万倍で撮影したβ相の
高分解能電子顕微鏡(HR−TEM)像を示す。試料面
は図15(a)、(b)と同じ(011)面である。図
から、β相の(020)面および(002)面の格子縞
がかなり歪んでいることが分かる。然し乍ら、図15
(b)に示すような原子配列は認められなかった。これ
は、高分解能像を観察する際に電子線を収束すると、電
子線照射によるダメージでβ相の組織が容易に崩れるこ
とに起因することが後で分かった。そこで倍率を8万3
千倍まで下げ、電子線照射によるダメージを極力少なく
した条件での撮影を試みた。図17にその結果を示す。
試料面は図15と同じ(100)面である。[0 -1
1]方向に伸びた幅約10nmの縞の中に互いにほぼ直
交関係にある(002)面の格子縞の存在が認められ
た。図18は図17の写眞を引き伸ばした像の逆フーリ
エ変換像である。比較のため図15(b)の(011)
双晶の模式図もあわせて示す。逆フーリエ変換像に現れ
ている互いにほぼ直交関係にある(002)面の格子縞
のなす角度は約87.5°であり、この角度は下に示す
(011)双晶の模式図における(002)面のなす角
度87.7°(計算値)にほぼ一致していることが分か
る。以上の結果から、図17に見られる無数の縞は{0
11}面を双晶面とする{011}<011>型の双晶
であると判断された。以上の結果より、純金属中ではI
nでしか見られない極めて珍しい型の{011}<01
1>型双晶がβ−Mo2 N窒化物においても発生するこ
とが明らかとなった。
Next, the possibility that the plane defect in the β phase is a twin with the {011} plane as a twin plane will be examined. If the structure of the β phase is the same cubic fcc as the γ phase, then no such twins exist. This is because no matter what lattice plane is orthogonal to the {011} plane, the lattices on both sides of the {011} plane are mirror-symmetrical to each other from the beginning. However, in practice, the β phase is a tetragonal crystal whose c-axis is only slightly shorter (c / a = 0.966 to 0.95).
3) A schematic representation of the atomic arrangement of the (011) plane of the β phase is as shown in FIG. In this atomic arrangement, when atoms are slightly displaced in the [0-11] direction on the (011) plane as shown in FIG. 15B, (011) [0-11] which is mirror-symmetric with respect to the (011) plane. ] Type twin (shear strain s = 0.087) can be considered. Since the twin plane is the (011) plane and the plane rotated by shearing is the (0-11) plane, the shear strain s due to the twin is 2φ = 87.5 °, and the equation (2.3) is obtained. From s =
It can be evaluated as 0.087. This value is the above {111} <
It is significantly smaller than s = 0.077 for the 112> type twin. This result indicates that twins of the (011) [0-11] type are likely to be generated. This type of twin is actually observed in In, which is the only fct metal in pure metal. From the above study, it is found that (0)
11) It is considered that [0-11] type twins were generated.
Therefore, an attempt was made to directly observe such an atomic arrangement by TEM. FIG. 16 shows a β-phase high-resolution electron microscope (HR-TEM) image taken at a magnification of 550,000. The sample surface is the same (011) surface as in FIGS. 15A and 15B. From the figure, it can be seen that the lattice fringes on the (020) plane and the (002) plane of the β phase are considerably distorted. However, FIG.
No atomic arrangement as shown in (b) was observed. It was later found that this is because, when an electron beam is converged when observing a high-resolution image, the β-phase structure easily collapses due to damage caused by electron beam irradiation. So the magnification is 83,000
We tried to shoot under conditions that reduced the damage by electron beam irradiation as much as 1000 times. FIG. 17 shows the result.
The sample surface is the same (100) surface as in FIG. [0-1
In the stripes having a width of about 10 nm extending in the [1] direction, the existence of lattice stripes of (002) plane which are almost orthogonal to each other was recognized. FIG. 18 is an inverse Fourier transform image of the enlarged image of FIG. For comparison, (011) in FIG.
A schematic diagram of twins is also shown. The angle formed by the lattice fringes of the (002) planes which are substantially orthogonal to each other and appear in the inverse Fourier transform image is about 87.5 °, and this angle is (002) in the schematic diagram of the (011) twin shown below. It can be seen that the angle substantially matches the angle 88.7 ° (calculated value) formed by the surfaces. From the above results, the countless stripes shown in FIG.
It was determined to be a {011} <011> type twin with the {11} plane being a twin plane. From the above results, in pure metal, I
very rare type {011} <01 which can only be seen in n
It has been clarified that 1> type twins also occur in β-Mo 2 N nitride.

【0030】(実験例2)この発明の製品の耐食性につ
いて説明する。試料は粉末冶金法で作製した純Moであ
る。厚さ1mmおよび1.5mmの板材から10mm角
の正方形状、あるいは幅2mm、長さ20mmの短冊状
の試料を切り出し、表面の酸化皮膜をエメリー紙によっ
て研摩・除去した後、電解研摩を行った。短冊状の試料
についてはその後真空中(約1.3×10-4Pa)で1
500℃、1時間の熱処理により再結晶化した。窒化は
NH3 ガス気流中で950℃、0.5〜9時間行い、窒
化後に炉心管の温室部まで試料を移動させることによっ
て試料を冷却した。
(Experimental Example 2) The corrosion resistance of the product of the present invention will be described. The sample is pure Mo produced by a powder metallurgy method. A square sample of 10 mm square or a rectangular sample of 2 mm width and 20 mm length was cut out from a plate material having a thickness of 1 mm and 1.5 mm, and an oxide film on the surface was polished and removed with emery paper, and then electropolished. . The sample in the form of a strip is then placed in a vacuum (about 1.3 × 10 −4 Pa) to reach 1
It was recrystallized by heat treatment at 500 ° C. for 1 hour. Nitriding was performed at 950 ° C. for 0.5 to 9 hours in an NH 3 gas stream, and after nitriding, the sample was cooled by moving the sample to a greenhouse portion of a furnace tube.

【0031】腐食試験は図19に示すような腐食試験器
具を用い、40〜75wt%沸騰硫酸中、または5〜7
0wt%の硝酸中(常温)で3分〜8日間行った。沸騰
硫酸中での腐食試験には10mm角の正方形状試料を、
硝酸中での腐食試験には再結晶処理を施した短冊状試料
を用いた。
The corrosion test was carried out using a corrosion test apparatus as shown in FIG. 19, in 40-75 wt% boiling sulfuric acid, or 5-7%.
Performed in 0 wt% nitric acid (normal temperature) for 3 minutes to 8 days. For a corrosion test in boiling sulfuric acid, a 10 mm square sample was used.
For the corrosion test in nitric acid, a strip-shaped sample subjected to a recrystallization treatment was used.

【0032】得られた試料について、腐食前後の表面状
態及び断面の腐食状態を、走査型電子顕微鏡(SEM、
JEOL JSM6300)および光学顕微鏡を用い観
察した。また、腐食前後の試料表面相の同定のためX線
回折(XRD、Cu−Ka、Rigiaku Geig
er Flex)を行った。侵食度(腐食速度)は腐食
前後の重量変化から次式を(3)を用い算出した。
With respect to the obtained sample, the surface state before and after corrosion and the corrosion state of the cross section were measured by a scanning electron microscope (SEM,
(JEOL JSM6300) and an optical microscope. In addition, X-ray diffraction (XRD, Cu-Ka, Rigiaku Geig) was used to identify the sample surface phase before and after corrosion.
er Flex). The erosion degree (corrosion rate) was calculated from the weight change before and after corrosion using the following equation (3).

【0033】[0033]

【数3】 但し W1 :腐食前重量(g) W2 :腐食前重量
(g) H:腐食時間 d :密度(g/cm3 ) s:表面積(cm2 ) である。耐食判定基準は、表1に示す現在一般的に使用
されている金属材料の耐食判定基準を用いた。
(Equation 3) Here, W 1 : weight before corrosion (g) W 2 : weight before corrosion (g) H: corrosion time d: density (g / cm 3 ) s: surface area (cm 2 ). As the corrosion resistance criterion, the corrosion criterion for metal materials generally used at present shown in Table 1 was used.

【0034】[0034]

【表1】 但しこの基準はあくまでも工業製品の生産装置を構成す
るうえで機械的に耐えることができるかどうかに着目し
た基準である。
[Table 1] However, this criterion is a criterion that focuses on whether it can be mechanically endured in configuring an industrial product production apparatus.

【0035】従って、その他の要因(例えば、溶出金属
による医薬品の汚染、使用予定期間が短い場合など)が
より重要になる場合にはそれぞれのケースに応じて異な
る基準を用いる必要がある。また、硫酸の濃度と沸点の
関係は表2に示す通りである。
Therefore, when other factors (for example, contamination of a drug by an eluting metal, a short expected use period, etc.) become more important, it is necessary to use different standards for each case. Table 2 shows the relationship between the sulfuric acid concentration and the boiling point.

【0036】[0036]

【表2】 図20に沸騰硫酸中での各種金属の腐食速度を示す。純
Moは60%以下の比較的濃度の低い沸騰硫酸中では優
れた耐食性を示す。しかし、濃度が60%を越え、硫酸
の酸化性が増すに従い急速に耐食性を失うことがわか
る。
[Table 2] FIG. 20 shows the corrosion rates of various metals in boiling sulfuric acid. Pure Mo exhibits excellent corrosion resistance in boiling sulfuric acid having a relatively low concentration of 60% or less. However, it can be seen that the corrosion resistance is rapidly lost as the concentration exceeds 60% and the oxidizing property of sulfuric acid increases.

【0037】図21(a)、(b)、(c)に950
℃、9時間窒化した試料の各種沸騰硫酸中における腐食
試験前後の表面のSEM写眞を示す。試験期間は8日間
である。図21より、40%(a)、60%(b)、7
5%(c)のいずれの濃度においても、腐食前後で試料
表面の状態に変化が認められず、沸騰硫酸によってほと
んど腐食されていないことがわかる。この結果は、NH
3 ガス窒化によって形成したMo窒化物層(Mo2 N)
が低濃度域はもちろん、純Moが耐食性を失う60%以
上の濃度域の沸騰硫酸に対しても優れた耐食性を示すこ
とを示唆している。
FIGS. 21 (a), 21 (b) and 21 (c) show 950 in FIG.
The SEM photograph of the surface before and after the corrosion test in various boiling sulfuric acids of the sample nitrided at 9 ° C. for 9 hours is shown. The test period is 8 days. From FIG. 21, 40% (a), 60% (b), 7%
At any concentration of 5% (c), no change was observed in the state of the sample surface before and after corrosion, indicating that the sample was hardly corroded by boiling sulfuric acid. The result is that NH
Mo nitride layer (Mo 2 N) formed by 3 gas nitriding
Suggests that pure Mo exhibits excellent corrosion resistance not only in the low concentration region but also in boiling sulfuric acid in the concentration region of 60% or more where the corrosion resistance is lost.

【0038】図22に950℃、9時間窒化した試料の
沸騰硫酸中における腐食速度を示す。比較のため純Mo
の腐食速度を実線で示す。図22より、NH3 ガス窒化
によって形成したMo窒化物層は硫酸濃度60%以下で
は完全耐食性を示すことがわかる。然し乍ら、硫酸濃度
75%では試料表面の状態に全く変化が認められないに
もかかわらず(図21(c))、純Moの約20分の1
ではあるがかなりの速度(約0.4mm/y)で腐食が
進行することが明らかとなった。
FIG. 22 shows the corrosion rate of a sample nitrided at 950 ° C. for 9 hours in boiling sulfuric acid. Pure Mo for comparison
The corrosion rate is shown by the solid line. FIG. 22 shows that the Mo nitride layer formed by NH 3 gas nitriding shows complete corrosion resistance at a sulfuric acid concentration of 60% or less. However, at a sulfuric acid concentration of 75%, no change was observed in the state of the sample surface (FIG. 21 (c)), but about 1/20 of that of pure Mo.
However, it was found that corrosion progressed at a considerable speed (about 0.4 mm / y).

【0039】表3に950℃、9時間窒化した試料の腐
食前後における試料の厚さを示す。
Table 3 shows the sample thickness before and after corrosion of the sample nitrided at 950 ° C. for 9 hours.

【0040】[0040]

【表3】 図22の腐食速度で8日の試験を行うと、硫酸濃度75
%の場合、試料厚さは計算上表裏合計で約18μm減少
する。然し乍ら、表3より75%硫酸中8日間の試験後
においても、試料の厚さはほとんど減少していないこと
がわかる。つまり、75%硫酸中でもMo窒化物層の腐
食はほとんど進行しないことがわかった。
[Table 3] The test for 8 days at the corrosion rate shown in FIG.
%, The thickness of the sample is calculated to decrease by about 18 μm on both sides. However, from Table 3, it can be seen that the thickness of the sample hardly decreased even after the test in 75% sulfuric acid for 8 days. That is, it was found that corrosion of the Mo nitride layer hardly progressed even in 75% sulfuric acid.

【0041】図23(a)、(b)に950℃、9時間
窒化した試料の腐食前の試料表面の光学顕微鏡写眞を示
す、(a)は10mm角の試料であり、(b)は窒化前
に再結晶処理を行った短冊状試料である。これより
(a)、(b)共に窒化後の試料表面には試料冷却中に
生じる歪によって発生したと思われるクラックが存在す
ることがわかる(図中矢印で示す)。図23(b)から
明らかなように、これらのクラックはMo窒化物の粒界
に沿ってではなく、窒化物の粒内を突き抜けて伝播して
いる。従って、腐食前後の試料厚さに変化が無いにもか
かわらず腐食が進行するのは、クラックが窒化物層と母
相Moとの界面まで達しており、クラックの先端で母相
のMoが選択的に腐食されるためであると考えられる。
FIGS. 23 (a) and 23 (b) show optical micrographs of the sample surface before corrosion of the sample nitrided at 950 ° C. for 9 hours. FIG. 23 (a) shows a 10 mm square sample, and FIG. This is a strip sample that has been subjected to a recrystallization treatment before nitriding. From these results, it can be seen that both (a) and (b) have cracks on the sample surface after nitriding which are considered to have been caused by strain generated during cooling of the sample (indicated by arrows in the figure). As is clear from FIG. 23B, these cracks propagate not through the grain boundaries of the Mo nitride but through the nitride grains. Therefore, the reason why the corrosion progresses despite the fact that there is no change in the sample thickness before and after the corrosion is that the crack reaches the interface between the nitride layer and the parent phase Mo, and the parent phase Mo is selected at the tip of the crack. This is considered to be due to corrosion.

【0042】図24に腐食前(a)及び75%沸騰硫酸
中で8日間腐食試験を行った試料(b)の断面の光学顕
微鏡写眞を示す。図中矢印で示す様にMo窒化物層に発
生したクラックは窒化物層を完全に突き抜けており、そ
の先端は母相のMoのみが選択的に腐食された様子が明
瞭に観察される。また、図24(a)、(b)を比較す
ると、8日間の試験後も腐食の前後で窒化物層の厚さ
(約30μm)やクラックの幅に変化が認められず、M
o窒化物層はほとんど腐食されていないことがわかる
(図24(b))において窒化物層表面が凸凹に見える
のは、研摩によって窒化物が欠け落ちたためである。
FIG. 24 shows an optical microscope photograph of the cross section of the sample before corrosion (a) and the sample (b) subjected to the corrosion test in 75% boiling sulfuric acid for 8 days. As indicated by arrows in the figure, the cracks generated in the Mo nitride layer completely penetrate the nitride layer, and it is clearly observed that only the parent phase Mo is selectively corroded at the tip. In addition, comparing FIGS. 24 (a) and 24 (b), even after the test for 8 days, no change was observed in the thickness of the nitride layer (about 30 μm) and the width of the crack before and after the corrosion.
o It can be seen that the nitride layer is hardly corroded (FIG. 24 (b)). The reason why the surface of the nitride layer looks uneven is that the nitride has been chipped off by polishing.

【0043】以上の結果により、NH3 ガス窒化によっ
て形成したMo窒化物層は沸騰硫酸に対して極めて良好
な耐食性を示すが、試料冷却中に生じる歪によって発生
すると考えられるクラックを通して母相と硫酸溶液が接
触する結果、Moが耐食性を失う60%より高濃度域で
は、クラックの先端部でMoの選択的な腐食が進行する
ことが明らかとなった。従って、Mo窒化物層を耐食材
料として使用するためには、クラックの発生を完全に抑
えることが必要不可欠である。
According to the above results, the Mo nitride layer formed by NH 3 gas nitriding shows extremely good corrosion resistance to boiling sulfuric acid, but the mother phase and sulfuric acid pass through cracks which are considered to be generated by strain generated during cooling of the sample. As a result of the contact of the solution, it was found that in a concentration region higher than 60% where Mo loses corrosion resistance, selective corrosion of Mo progresses at the tip of the crack. Therefore, in order to use the Mo nitride layer as a corrosion resistant material, it is essential to completely suppress the occurrence of cracks.

【0044】一般に、結晶性物質が他の結晶の上に被膜
として成長する場合の歪エネルギーは膜厚に比例して増
加することが知られている。そこで、窒化時間を短くし
Mo窒化物層の厚さを薄くすれば歪エネルギーは低く抑
えることができるので、冷却中のクラックの発生を制御
できると考えた。図25に再結晶材を950℃で1時間
(a)および0.5時間(b)窒化した試料の表面の光
学顕微鏡写眞を示す。図24により、9時間の窒化で生
成する窒化物層の厚さは約30μmである。従って、N
3 ガス窒化によるMo窒化物層の成長に関して(2)
式の放物線則が成立すると考えると、950℃、1時間
および0.5時間の窒化で生成する窒化物層の厚さはそ
れぞれ10μmおよび7μmと見積もられる。窒化時間
が1時間(a)の場合依然として矢印で示す部分にクラ
ックの発生が認められるのに対し、0.5時間(b)で
は同様なクラックの発生は認められない、従って、窒化
時間の短縮によるMo窒化物層の薄層化はクラック発生
の制御に対して極めて効果的であることが明らかとなっ
た。
In general, it is known that when a crystalline substance grows as a film on another crystal, the strain energy increases in proportion to the film thickness. Therefore, it was considered that if the nitriding time is shortened and the thickness of the Mo nitride layer is reduced, the strain energy can be suppressed low, so that the generation of cracks during cooling can be controlled. FIG. 25 shows an optical microscope photograph of the surface of a sample obtained by nitriding the recrystallized material at 950 ° C. for 1 hour (a) and 0.5 hour (b). According to FIG. 24, the thickness of the nitride layer generated by nitriding for 9 hours is about 30 μm. Therefore, N
Regarding growth of Mo nitride layer by H 3 gas nitriding (2)
Assuming that the parabolic law of the equation holds, the thickness of the nitride layer generated by nitriding at 950 ° C. for 1 hour and 0.5 hour is estimated to be 10 μm and 7 μm, respectively. When the nitriding time is 1 hour (a), cracks are still observed at the portion indicated by the arrow, whereas when 0.5 hours (b), similar cracks are not observed. Therefore, the nitriding time is shortened. It has been clarified that the reduction of the thickness of the Mo nitride layer is extremely effective for controlling crack generation.

【0045】図26に9時間窒化材(a)、1時間窒化
材(b)および0.5時間窒化材(c)の表面のXRD
パターンを示す。9時間窒化材(a)および1時間窒化
材(b)の表面層はγ−Mo2 Nであるのに対し、0.
5時間窒化材(c)ではわずかにγ相の回折線が認めら
れるがメインはβ相であることがわかる。この結果は、
窒化の初期に生成する窒化物はβ相であることを示唆し
ている点でも非常に重要な結果である。図26(c)で
Moの回折線が認められるのは、Mo窒化物層の厚さが
薄いためである。0.5時間窒化材においてクラックの
発生が制御される原因は、窒化物層が薄いためであると
考えられるが、β相に発生する{011}双晶によって
歪が緩和された可能性もあり、今後の検討課題である。
FIG. 26 shows the XRD of the surfaces of the nitrided material for 9 hours (a), the nitrided material for one hour (b) and the nitrided material for 0.5 hour (c).
Indicates a pattern. The surface layer of the 9-hour nitride material (a) and the 1-hour nitride material (b) is γ-Mo 2 N, whereas
In the case of the nitrided material (c) for 5 hours, a slight diffraction line of the γ phase is recognized, but it can be seen that the main phase is the β phase. The result is
This is also a very important result in that it suggests that the nitride formed at the beginning of nitriding is a β phase. The reason why the Mo diffraction line is recognized in FIG. 26C is that the thickness of the Mo nitride layer is small. It is considered that the reason why the crack generation is controlled in the nitrided material for 0.5 hour is that the nitride layer is thin, but the strain may have been relaxed by {011} twins generated in the β phase. This is an issue for future study.

【0046】表4に9時間窒化材および0.5時間窒化
材の75%沸騰硫酸中での腐食速度と窒化前後の試料厚
さを示す、比較のため純Moの値もあわせて示す。また
図27に未窒化Mo材(a)、NH3 ガス中950℃で
9時間(b)および0.5時間(c)窒化材の75%硫
酸中での腐食速度の比較を図示する。窒化時間を短縮し
て窒化物層を薄くすることによってクラックの発生を抑
えた結果、0.5時間窒化材の腐食速度は9時間窒化材
の約3分の1(Moの約60分の1)まで低下し、窒化
物層の薄層化の著しく効果が認められる。しかしなが
ら、0.5時間窒化材の試料厚さは腐食前後で全く変化
がなく、β−Mo2 N相も9時間窒化材のγ相同様優れ
た耐食性を示すと考えられるにもかかわらず、依然とし
て腐食が進行していることがわかる。
Table 4 shows the corrosion rates of the 9-hour nitriding material and the 0.5-hour nitriding material in 75% boiling sulfuric acid and the sample thickness before and after nitriding. The values of pure Mo are also shown for comparison. FIG. 27 shows a comparison of corrosion rates of the unnitrided Mo material (a) and the nitrided material in NH 3 gas at 950 ° C. for 9 hours (b) and 0.5 hours (c) in 75% sulfuric acid. As a result of suppressing the occurrence of cracks by shortening the nitriding time and making the nitride layer thinner, the corrosion rate of the nitride material for 0.5 hour is about one third of that of the nitride material for 9 hours (about 1/60 of Mo). ), And a remarkable effect of reducing the thickness of the nitride layer is recognized. However, despite the fact that the sample thickness of the 0.5-hour nitride material did not change at all before and after corrosion, and that the β-Mo 2 N phase is considered to exhibit excellent corrosion resistance like the γ-phase of the 9-hour nitride material, It can be seen that corrosion is progressing.

【0047】図28に75%沸騰硫酸中で5日間腐食試
験を行った0.5時間窒化材の表面の光学顕微鏡写眞を
示す。腐食前の0.5時間窒化材にはクラックが認めら
れないのに対し(図25(b))、腐食後の試料を注意
深く観察すると、矢印で示す様にクラックが発生してい
ることが明らかとなった。Mo窒化物層がほとんど腐食
されないことを考えると、これらのクラックは、光学顕
微鏡観察では分からないほど細いクラックが腐食前から
存在し、これが腐食によって広がったとは考えにくい、
従って、これらのクラックが腐食試験中に僅かに発生し
た結果、見掛け上表4に示す速度で腐食が進行したと考
えられる。塩化物中でオーステナイト系ステンレス鋼は
応力腐食割れを発生することがよく知られている。この
発明のMoの0.5時間窒化材においても同様な現象が
起こった可能性があるが、詳細は今後残留応力測定等を
行い明らかにする必要がある。
FIG. 28 shows an optical microscope photograph of the surface of the nitrided material for 0.5 hour subjected to a corrosion test in 75% boiling sulfuric acid for 5 days. No cracks were observed in the nitrided material for 0.5 hours before corrosion (FIG. 25 (b)), but when the sample after corrosion was carefully observed, it was clear that cracks were generated as indicated by arrows. It became. Considering that the Mo nitride layer is hardly corroded, it is difficult to think that these cracks existed before corrosion, which were so small that they could not be seen by optical microscopy.
Therefore, it is considered that as a result of these cracks occurring slightly during the corrosion test, corrosion progressed apparently at the speed shown in Table 4. It is well known that austenitic stainless steels produce stress corrosion cracking in chlorides. A similar phenomenon may have occurred in the Mo 0.5 hour nitride material of the present invention, but it is necessary to clarify the details by measuring residual stress in the future.

【0048】ここで、クラックの発生を抑制する目的
で、表面Mo窒化物層をNH3 ガス中950℃、0.5
時間窒化の場合よりも格段に薄くし、飛躍的に耐食性を
向上することを目指して、N2 ガス中800℃での窒化
を試みた。その1例としてN2ガス中800℃、48時
間窒化した材料の表面のXRDパターンを図29に示
す。Moの強化回折ピークの他にβ−Mo2 Nの回折ピ
ークが明瞭に観察され、ほぼ0.5〜1μm程度と推測
される極めて薄いβ−Mo2 Nの形成が示唆されてい
る。この窒化材の75%濃硫酸溶液中の腐食試験の結果
を図27に示す。この図により、N2 ガス中800℃窒
化材の腐食速度は0.02mm/yであり、NH3 ガス
中950℃、0.5時間窒化材よりも飛躍的に腐食性が
向上して、75%硫酸溶液中でも完全耐食性を示すこと
を見出した。つまり、極めて薄いMo窒化物層を材料表
面に形成させることによって、沸騰濃硫酸溶液において
も驚威的な高耐食性を有するMo系複合材料の作製でき
ることが明示された。
Here, for the purpose of suppressing the generation of cracks, the surface Mo nitride layer was formed in NH 3 gas at 950 ° C. and 0.5 ° C.
Attempts were made to perform nitriding at 800 ° C. in N 2 gas with the aim of making it much thinner than in the case of time nitriding and dramatically improving corrosion resistance. As one example, FIG. 29 shows an XRD pattern of the surface of a material nitrided at 800 ° C. for 48 hours in N 2 gas. The diffraction peak of β-Mo 2 N is clearly observed in addition to the enhanced diffraction peak of Mo, suggesting the formation of extremely thin β-Mo 2 N, which is estimated to be about 0.5 to 1 μm. FIG. 27 shows the results of a corrosion test of this nitrided material in a 75% concentrated sulfuric acid solution. According to this figure, the corrosion rate of the nitrided material at 800 ° C. in N 2 gas is 0.02 mm / y, and the corrosion rate is significantly improved compared to the nitrided material at 950 ° C. for 0.5 hour in NH 3 gas. It has been found that the composition exhibits complete corrosion resistance even in a sulfuric acid solution at a concentration of 2%. In other words, it has been clarified that by forming an extremely thin Mo nitride layer on the material surface, a Mo-based composite material having surprisingly high corrosion resistance can be produced even in a boiling concentrated sulfuric acid solution.

【0049】[0049]

【表4】 図30に各種高融点金属の沸騰硝酸中での腐食速度を示
す。Ta、Nb、Zrは全濃度で良好な耐食性を示す
が、TiおよびWは中間濃度でやや腐食速度が大きくな
る傾向を示す。
[Table 4] FIG. 30 shows the corrosion rates of various refractory metals in boiling nitric acid. Ta, Nb and Zr show good corrosion resistance at all concentrations, while Ti and W tend to have a slightly higher corrosion rate at intermediate concentrations.

【0050】図31に純Mo(a)および950℃で、
9時間の窒化材を行った試料(b)の常温における硝酸
中での腐食速度を示す。純Mo(a)は図30に示す他
の高融点金属とは異なり、硝酸に対する不動態化能が小
さいため常温においてもかなりの速度で腐食される。硝
酸濃度が10%を越えると全く耐食性を示さなくなり、
濃度50%付近で極大を示す。純Moが常温で完全耐食
性を示すのは硝酸濃度5%以下であった。一方、9時間
の窒化を行った試料(b)の場合、傾向は純Moと同様
であるが、10%〜50%の濃度域における腐食速度
(約0.33mm/y〜240mm/y)は純Mo(約
3mm/104 mm/y)よりも一桁以上小さいことが
わかる。9時間の窒化材では図22に示すようなクラッ
クが存在しており、クラックの先端部でMoが腐食され
ることを考慮すると、Mo窒化物層の腐食速度は実際に
はもっと小さいと考えられる。然し乍ら、図32に示す
9時間の窒化材の50%硝酸中での腐食前後のSEM写
眞より、Mo窒化物層も全面的に腐食されていることが
わかる(写眞(b))、従って、硝酸に対するMo窒化
物層の耐食性を向上させるためには、他の不動態型金属
との合金化が必要であると考えられる。
FIG. 31 shows that pure Mo (a) and 950 ° C.
The corrosion rate of the sample (b) in which nitriding was performed for 9 hours in nitric acid at room temperature is shown. Pure Mo (a), unlike the other high melting point metals shown in FIG. 30, has a low passivation ability against nitric acid and is corroded at a considerable rate even at room temperature. If the nitric acid concentration exceeds 10%, it will not show any corrosion resistance,
It shows a maximum around 50% concentration. Pure Mo showed complete corrosion resistance at room temperature at a nitric acid concentration of 5% or less. On the other hand, in the case of the sample (b) in which nitriding was performed for 9 hours, the tendency was similar to that of pure Mo, but the corrosion rate (about 0.33 mm / y to 240 mm / y) in the concentration region of 10% to 50% was It turns out that it is smaller than pure Mo (about 3 mm / 10 4 mm / y) by one digit or more. The cracks as shown in FIG. 22 are present in the nitrided material for 9 hours, and considering the corrosion of Mo at the tip of the crack, the corrosion rate of the Mo nitride layer is actually considered to be lower. . However, the SEM photographs before and after the corrosion of the nitride material in 50% nitric acid for 9 hours shown in FIG. 32 show that the Mo nitride layer was also completely corroded (Photo (b)). In order to improve the corrosion resistance of the Mo nitride layer against nitric acid, alloying with another passive metal is considered necessary.

【0051】次に、塩酸溶液中に対する耐食性を検討し
た。図33に各種金属の塩酸溶液中での腐食速度の比較
を示す。Ta、W、Mo、Zrは、他の金属と比較し、
耐食性に優れている。図34に未窒化Mo材とNH3
ス中950℃で9時間の窒化材料の35%塩酸溶液中で
の腐食速度の比較を示す。この窒化材は前述(図23、
24、25、26)の如く試料表面にβ−Mo2 N相が
比較的厚く形成している。図34より、未窒化Mo材は
腐食速度:0.0059mm/yと優れた耐食性を示し
ているが、窒化材はこのMo材よりも格段に耐食性が向
上していることがわかる。つまり、窒化材の腐食速度は
0.0011mm/yと未窒化Mo材の約1/5まで減
少し、驚威的な高耐食性を有することが見出された。
Next, the corrosion resistance to hydrochloric acid solution was examined. FIG. 33 shows a comparison of corrosion rates of various metals in a hydrochloric acid solution. Ta, W, Mo, Zr are compared with other metals,
Excellent corrosion resistance. FIG. 34 shows a comparison of corrosion rates of an unnitrided Mo material and a nitrided material in NH 3 gas at 950 ° C. for 9 hours in a 35% hydrochloric acid solution. This nitride material is described above (FIG. 23,
24, 25, 26), the β-Mo 2 N phase is formed relatively thick on the sample surface. From FIG. 34, it can be seen that the non-nitrided Mo material has excellent corrosion resistance with a corrosion rate of 0.0059 mm / y, but the nitrided material has significantly improved corrosion resistance than this Mo material. That is, it was found that the corrosion rate of the nitrided material was 0.0011 mm / y, which was about 1/5 that of the unnitrided Mo material, and that the material had surprisingly high corrosion resistance.

【0052】ついで、Mo系材料のアルカリ性溶液での
耐食性を検討するために水酸化ナトリウム溶液中の腐食
試験を行った。結果の1例を図35に示す。図35は未
窒化Mo材とNH3 ガス中950℃、9時間窒化した材
料の20%水酸化ナトリウム溶液中での腐食速度の比較
を示したものである。未窒化Mo材も腐食速度0.00
20mm/yと完全耐食性を示すが、窒化材料では腐食
速度は0.0015mm/yを示し、未窒化Mo材より
も優れた耐食性を示すことがわかった。
Next, in order to examine the corrosion resistance of the Mo-based material in an alkaline solution, a corrosion test in a sodium hydroxide solution was performed. One example of the results is shown in FIG. FIG. 35 shows a comparison of corrosion rates of a non-nitrided Mo material and a material nitrided at 950 ° C. for 9 hours in NH 3 gas in a 20% sodium hydroxide solution. Corrosion rate of unnitrided Mo material is 0.00
Although it shows complete corrosion resistance of 20 mm / y, the corrosion rate of the nitrided material is 0.0015 mm / y, indicating that the corrosion resistance is superior to that of the unnitrided Mo material.

【0053】(実験例3)図36に窒化した純Mo
(a)およびMo−1.0Ti合金(b)の断面の光学
顕微鏡写眞を示す。断面を樹脂埋めした後機械的研摩を
行い、その後粒径1μmのダイヤモンドスラリーを用い
バフ研摩を行った。いずれの試料においても表面に厚さ
約80μmの表面窒化物層の生成が認められる。純Mo
(図36(a))では表面窒化物層より内部の組織の研
摩状態に違いが認められないのに対し、Mo−1.0T
i合金図36(b)では表面窒化物層より内部の組織の
研摩状態に明らかな違いが認められる。表面窒化物層と
母相との界面から約200μmまでの領域では、それよ
り内部に比べて硬度が高いため研摩速度が遅く凹凸の少
ない平坦な組織となっている。この領域は固溶Tiが優
先的に窒化され微細なTi窒化物粒子が分散析出したと
考えられる内部窒化物層である。なお、Mo−1.0T
i合金をNH3 ガスで窒化した場合でも、同様に表面窒
化物層にクラックの発生が認められた。図37に窒化し
た純Mo(a)とMo−0.5Ti(b)およびMo−
1.0Ti(c)合金の断面の硬さ分布を示す。表面か
らの深さが約80μmまでの高硬度領域(Hv〜170
0)は図30に示したMo2 N表面窒化物層に対応す
る。Mo−Ti合金を窒化した場合((b)、
(c))、表面窒化物層のすぐ内側に、純Moの場合に
は見られない硬さの高い内部窒化層が形成される。この
領域の硬さは、表面窒化物層直下ではHvが800〜9
80の高い値を示し、内部に向って徐々に減少する。内
部窒化層内での硬さの最大値はMo−0.5Ti合金で
Hv〜800、Mo−1.0Ti合金でHv〜980で
あり、Ti量に依存する。この内部窒化層内での高い硬
度は微細なTi窒化物粒子の分散強化によるものと推測
される。
(Experimental Example 3) Pure Mo nitrided as shown in FIG.
(A) and the optical microscope photograph of the cross section of Mo-1.0Ti alloy (b) are shown. After the cross section was filled with resin, mechanical polishing was performed, and then buff polishing was performed using a diamond slurry having a particle diameter of 1 μm. In each of the samples, the formation of a surface nitride layer having a thickness of about 80 μm was observed on the surface. Pure Mo
(FIG. 36 (a)) shows no difference in the polishing state of the structure inside the surface nitride layer, whereas the Mo-1.0T
In the i-alloy FIG. 36 (b), a clear difference is observed in the polishing state of the structure inside the surface nitride layer. In the region from the interface between the surface nitride layer and the mother phase to about 200 μm, the hardness is higher than that in the inside, so that the polishing rate is slow and the structure is flat with few irregularities. This region is an internal nitride layer in which it is considered that solid-solution Ti is preferentially nitrided and fine Ti nitride particles are dispersed and precipitated. In addition, Mo-1.0T
Even when the i-alloy was nitrided with NH 3 gas, cracks were similarly observed in the surface nitride layer. FIG. 37 shows the nitrided pure Mo (a), Mo-0.5Ti (b) and Mo-
3 shows a hardness distribution of a cross section of a 1.0Ti (c) alloy. High hardness area (Hv-170) up to about 80 μm deep from the surface
0) corresponds to the Mo 2 N surface nitride layer shown in FIG. When the Mo—Ti alloy is nitrided ((b),
(C), an internal nitride layer having high hardness, which cannot be seen in the case of pure Mo, is formed immediately inside the surface nitride layer. The hardness in this region is such that Hv is 800 to 9 immediately below the surface nitride layer.
It shows a high value of 80 and gradually decreases toward the inside. The maximum value of the hardness in the internal nitride layer is Hv-800 for the Mo-0.5Ti alloy and Hv-980 for the Mo-1.0Ti alloy, which depends on the amount of Ti. This high hardness in the internal nitride layer is presumed to be due to the dispersion strengthening of fine Ti nitride particles.

【0054】粒子分散によるMo合金の強化について
は、メカニカルアロイング(MA)法によってTiC粒
子を分散した研究が知られている。この合金での最高硬
さはHv〜500を示すが、この値にはTiC粒子(1
wt%)による強化に加えて、MAによる加工硬化を含
んでいる。これに対し、この発明での内部窒化層での強
化は加工硬化を含まず、純粋にTi窒化物粒子の分散強
化によるものであり、僅かなTi窒化物量で著しい強化
を示す点が大きな特徴である。
Regarding the strengthening of the Mo alloy by particle dispersion, a study in which TiC particles are dispersed by a mechanical alloying (MA) method is known. The maximum hardness of this alloy is between Hv and 500, and this value is based on TiC particles (1
wt%) and work hardening by MA. On the other hand, the strengthening of the internal nitride layer according to the present invention does not include work hardening and is purely due to the dispersion strengthening of Ti nitride particles. is there.

【0055】図38に窒化したMo−0.5Ti(a)
およびMo−1.0Ti(b)合金の内部窒化層内にお
いて硬さが最大となる深さ(Mo−0.5Tiでは約8
0μm、Mo−1.0Tiでは約130μm)での透過
電子顕微鏡写眞を示すO電子線の入射方向はいずれの場
合も母相Moの[001]に平行である。歪場(黒色の
部分に対応)を持った粒子(歪場の中心の白い細長い部
分)が多数分散析出している様子が明瞭に観察される。
電子線回折の結果で母相の<100>方向に伸びた粒子
に対して垂直な方向にストリークが認められたことか
ら、これらのTi窒化物粒子は母相Moの{100}面
上に板状粒子として析出していることが分かった。その
サイズは幅約2〜4nm、厚さ約0.45nmの極めて
微細で超薄板状の粒子であり、この粒子がTi窒化物
(TiN)であると考えられる。ここで析出物の厚さ約
0.45nmは、TiNの1ユニットセルの大きさ(a
TiN=0.424nm)であり、この様な超薄板状の
粒子の析出分散は従来他の金属材料でもほとんど報告例
がない。また、Mo−0.5Ti合金(a)に比べTi
量の多いMo−1.0Ti合金(b)の方が析出粒子の
数が多い、これらの結果より、内部窒化物層における硬
化は歪場を有した超微細Ti窒化物の分散析出が原因で
あると判断される。
FIG. 38 shows the nitrided Mo-0.5Ti (a).
And the depth at which the hardness is maximum in the internal nitride layer of the Mo-1.0Ti (b) alloy (approximately 8
The incidence direction of the O-electron beam showing a transmission electron microscope photograph at 0 μm (about 130 μm for Mo-1.0Ti) is parallel to the [001] of the parent phase Mo in each case. It is clearly observed that a large number of particles having a strain field (corresponding to the black portions) (white elongated portions at the center of the strain field) are dispersed and precipitated.
As a result of electron beam diffraction, streaks were observed in the direction perpendicular to the particles extending in the <100> direction of the parent phase, these Ti nitride particles were deposited on the {100} plane of the parent phase Mo. It was found that the particles were precipitated as particles. The size is extremely fine and ultra-thin plate-like particles having a width of about 2 to 4 nm and a thickness of about 0.45 nm, and the particles are considered to be Ti nitride (TiN). Here, the thickness of the precipitate of about 0.45 nm corresponds to the size (a) of one unit cell of TiN.
(TiN = 0.424 nm), and there is hardly any report on the precipitation and dispersion of such ultra-thin plate-like particles even with other metal materials. Also, compared to the Mo-0.5Ti alloy (a),
The Mo-1.0Ti alloy (b) having a larger amount has a larger number of precipitated particles. From these results, it can be seen that the hardening in the internal nitride layer is caused by the dispersed precipitation of ultrafine Ti nitride having a strain field. It is determined that there is.

【0056】図39に内部窒化層内に分散した析出物の
HR−TEM像(a)およびその逆フーリエ変換(IF
FT)像(b)を示す。試料面は図32と同様に(00
1)面であり、母相の(110)面および(1 -10)
面の格子縞が見えている。図39(a)中↑で示した粒
子を拡大して逆フーリエ変換を行った像(b)では、析
出物の周囲にかなりの格子歪が認められた。然し乍ら、
これらの析出物は母相と格子がつながっており、完全に
整合性を保っている。また、母相と析出物の格子のミス
フィットによる転位は認められない。溶質元素がTiで
あることから析出物はfcc構造のTiNであると考え
られる。このTiN粒子が母相Mo(bcc)の{10
0}面上に析出する場合、それぞれの格子定数はaMo
=0.314[nm]、aTiN=0.424[nm]
であることから、最もミスフィットが少なくなる方位関
係は図40に示す様な次式の関係である。
FIG. 39 shows an HR-TEM image (a) of the precipitate dispersed in the internal nitride layer and its inverse Fourier transform (IF).
FT) Image (b) is shown. The sample surface was (00) as in FIG.
1) plane, the (110) plane and (1-10) of the parent phase
Plaid on the surface is visible. In the image (b) obtained by enlarging the particles indicated by ↑ in FIG. 39A and performing the inverse Fourier transform, considerable lattice distortion was observed around the precipitate. However,
These precipitates are connected to the matrix and the lattice, and maintain perfect consistency. No dislocation due to misfit between the matrix and the lattice of the precipitate is observed. Since the solute element is Ti, the precipitate is considered to be TiN having an fcc structure. The TiN particles have a size of $ 10 of the parent phase Mo (bcc).
When deposited on the 0 ° plane, each lattice constant is a Mo
= 0.314 [nm], a TiN = 0.424 [nm]
Therefore, the azimuth relationship that minimizes the misfit is the relationship of the following equation as shown in FIG.

【0057】[0057]

【数4】 (Equation 4)

【0058】[0058]

【数5】 この関係はγ−Fe系合金(bcc)での析出物の場合
によく見られるバッカーナッティング(Backer−
Nutting)の関係と同様の関係である。また、こ
の方位関係はMo−Ti合金を純窒素中で1300℃で
内部窒化を行った結果とも一致している。
(Equation 5) This relationship is based on the backer notting (Backer-notching) often seen in the case of a precipitate in a γ-Fe alloy (bcc).
(Nuting). This orientation relationship is also consistent with the result of internal nitriding of the Mo-Ti alloy at 1300 ° C in pure nitrogen.

【0059】TiNが母相と完全に整合性を保ちながら
析出する場合、その直径Dおよび厚さtの最大サイズ
は、ミスフィット転位の間隔δDとδtに等しくなる次
式(6)、(7)と考えられる。
When TiN precipitates while maintaining perfect coherence with the parent phase, the maximum size of its diameter D and thickness t is equal to the gaps δD and δt of the misfit dislocations. )it is conceivable that.

【0060】[0060]

【数6】 (Equation 6)

【0061】[0061]

【数7】 ここでε1 =|d(220)Mo−d(200)TiN
|、ε2 =|d(200)Mo−d(200)TiN
である。従って、上式にd(200)Mo=0.15n
m、d(220)Mo=0.222nm、d
(200)TiN=0.212nmを代入して計算を行
うと、整合性を保ちながら析出しうるTiNのサイズは
(Equation 7) Where ε 1 = | d (220) Mo −d (200) TiN
|, Ε 2 = | d (200) Mo− d (200) TiN |
It is. Therefore, d (200) Mo = 0.15n
m, d (220) Mo = 0.222 nm, d
When the calculation is performed by substituting (200) TiN = 0.212 nm, the size of TiN that can be precipitated while maintaining the consistency is:

【0062】[0062]

【数8】 (Equation 8)

【0063】[0063]

【数9】 と見積もることができる。この発明で見られる析出サイ
ズは前述のように幅約2〜4nm、厚さ0.45nmで
あり、この観測値は式(6.7)の計算値とほぼ一致し
ている。従って、1100℃で窒化した場合の内部窒化
層内では、厚さ1ユニット分(0.424nm)のTi
Nが整合性を保って析出していると考えられる。
(Equation 9) It can be estimated. As described above, the precipitate size observed in the present invention has a width of about 2 to 4 nm and a thickness of 0.45 nm, and this observed value almost coincides with the calculated value of the formula (6.7). Therefore, in the internal nitride layer when nitrided at 1100 ° C., a unit (0.424 nm) of Ti
It is considered that N was precipitated while maintaining consistency.

【0064】窒化したMo−1.0Ti合金において内
部窒化層内の種々の深さでの析出物の微細分布をTEM
により直接観察した。電子線の入射方向は何れの場合も
図38同様母相Mo[001]に平行である。図41
(a)、(b)、(c)はMo−1.0Ti合金の試料
表面からの深さdがそれぞれd=130μm、最大値
(〜980)の位置、中間的な値(〜700)まで減少
した位置、そして母相の値に近い値(〜310)まで減
少した位置に対応する。これらの写眞より、試料の内部
の位置ほど、つまり硬さが低下するに従いTiN析出物
粒子の密度が減少することが明らかとなった。また、そ
の析出物粒子のサイズはほとんど変化しなことも分かっ
た。従って、硬さの低い領域図41(b)、(c)では
固溶Tiがまだかなり存在すると思われる。
The fine distribution of precipitates at various depths in the inner nitrided layer of the nitrided Mo-1.0Ti alloy was determined by TEM.
Was observed directly. In each case, the incident direction of the electron beam is parallel to the parent phase Mo [001] as in FIG. FIG.
(A), (b) and (c) show that the depth d from the sample surface of the Mo-1.0Ti alloy is d = 130 μm, the position of the maximum value (値 980), and the intermediate value (〜700). It corresponds to the reduced position and the position reduced to a value close to the value of the parent phase ((310). From these photographs, it was clarified that the density of the TiN precipitate particles decreased as the position was more inside the sample, that is, as the hardness decreased. It was also found that the size of the precipitate particles hardly changed. Therefore, it can be considered that a considerable amount of solid solution Ti still exists in the low hardness regions in FIGS. 41 (b) and 41 (c).

【0065】図41のTEM観察の写眞から測定したT
iN析出物粒子の分布密度の平方根(N)と硬さの上昇
量(△Hv)との関係を図42に示す。ここで△Hvは
各深さでの硬さHv母相Moの硬さ(Hv)
matrixの差である。つまり、
T measured from a photograph of the TEM observation in FIG.
FIG. 42 shows the relationship between the square root (N) of the distribution density of iN precipitate particles and the amount of increase in hardness (△ Hv). Here, △ Hv is the hardness at each depth Hv The hardness of the parent phase Mo (Hv)
The difference of the matrix . That is,

【0066】[0066]

【数10】 これより△HvはNの平方根に比例していることがわか
る。すなわち、
(Equation 10) From this it can be seen that ΔHv is proportional to the square root of N. That is,

【0067】[0067]

【数11】 ここで析出物の形状を第一次近似として立方体で近似す
ると、その体積分率(f)は母相の体積(V)、粒子大
きさ(r)およびその中に含まれる粒子の個数(n)を
用いて次のような式で表わすことができる。
[Equation 11] Here, when the shape of the precipitate is approximated by a cube as a first approximation, the volume fraction (f) is the volume (V) of the matrix, the particle size (r), and the number of particles (n) contained therein. ) Can be expressed by the following equation.

【0068】[0068]

【数12】 図41のTEM観察での内部窒化層内で析出物のサイズ
に変化が認められなかった結果を考慮すると、上式にお
いて析出物の大きさrは一定であると考えることができ
る。この場合fとNの間に次のような関係を得る。
(Equation 12) Considering the result that no change was observed in the size of the precipitate in the internal nitride layer in the TEM observation in FIG. 41, it can be considered that the size r of the precipitate is constant in the above equation. In this case, the following relationship is obtained between f and N.

【0069】[0069]

【数13】 式(13)と式(11)より、△HvがTiN析出物粒
子の体積分率fの平方根に比例することがわかる。すな
わち、
(Equation 13) From Equations (13) and (11), it can be seen that ΔHv is proportional to the square root of the volume fraction f of the TiN precipitate particles. That is,

【0070】[0070]

【数14】 以上の検討より、内部窒化層内での△Hvの深さ方向の
減少は式(14)に示すように、TiN粒子の体積分率
の深さ方向での減少によって理解できることが明らかと
なった。
[Equation 14] From the above examination, it has been clarified that the decrease in ΔHv in the depth direction in the internal nitride layer can be understood by the decrease in the volume fraction of TiN particles in the depth direction as shown in Expression (14). .

【0071】窒化によって第2相が析出する場合の強化
の機構について大きく分けると2種類の機構が考えられ
る。即ち、析出物が小さく、転位が析出物を通過するこ
とが可能な、転位による析出物のせん断機構と、析出物
が大きく、転位が析出物を迂回する時に析出物の周囲に
残す転位ループが次の転位の運動の抵抗力となるオロワ
ン機構の2種類である。整合歪みを持った微細な析出粒
子の転位によるせん断機構の場合、実験的に△Hvは析
出物の体積分率の平方根に比例することが知られてい
る。この発明における析出物は母相と整合性を保った非
常に小さく且つ薄い粒子であり、転位の通過が十分可能
であると考えられることと、式(14)の△Hvとf
1/2 との間の比例関係を考慮すると、1100℃での窒
化による内部窒化層の強化の機構は転位による析出物の
せん断機構であると判断される。
The mechanism of strengthening when the second phase is precipitated by nitriding can be roughly classified into two types. That is, the precipitate is small, the dislocation can pass through the precipitate, the shear mechanism of the precipitate by the dislocation, and the dislocation loop leaving around the precipitate when the precipitate is large and the dislocation bypasses the precipitate. There are two types of the Orowan mechanism that will resist the movement of the next dislocation. It has been experimentally known that ΔHv is proportional to the square root of the volume fraction of precipitates in the case of a shear mechanism by dislocation of fine precipitate particles having matching strain. The precipitate in the present invention is a very small and thin particle that maintains consistency with the parent phase, and it is considered that the dislocation can be sufficiently passed.
Considering the proportional relationship between 1/2 , the mechanism of strengthening the internal nitride layer by nitriding at 1100 ° C. is determined to be a mechanism of shearing precipitates by dislocation.

【0072】前記で説明したように、Mo−Ti合金を
NH3 ガスを用いて窒化すると、表面Mo窒化物層より
内部に、微細TiN粒子の分散析出によると推測される
相硬さの高い内部窒化層が形成される。内部窒化層内で
の硬さは表面窒化物相直下で最大値を示し、内部に向う
にしたが、徐々に減少する。内部窒化層の硬さの最大値
は、Mo−0.5Ti合金でHv−800、Mo−1.
0Ti合金でHv−980、であり、Ti量の多い方が
硬くなっている。
As described above, when the Mo—Ti alloy is nitrided by using NH 3 gas, the inside of the surface Mo nitride layer has a high phase hardness, which is presumed to be due to the dispersion and precipitation of fine TiN particles. A nitride layer is formed. The hardness in the internal nitride layer has a maximum value immediately below the surface nitride phase, and gradually decreases as it goes inward. The maximum value of the hardness of the internal nitride layer is Hv-800, Mo-1.
Hv-980 for the 0Ti alloy, and the higher the Ti content, the harder.

【0073】[0073]

【実施例】粉末冶金で作成したMo−0.5wt%Ti
合金の材料を圧延し、切断した角棒状試料(2mm×1
mm×25mm)を1atmのNH3 ガス気流中で95
0℃で0.5時間窒化した所、厚さ7μmのβ−Mo2
N層を得た。この加工品を耐食試験として希硫酸に1週
間浸漬した後取出して観察したが、腐食は見当らなかっ
た。この場合の硬度はHv−800であった。尚純Mo
の硬度はHv−200である。
[Example] Mo-0.5wt% Ti prepared by powder metallurgy
Rolled alloy material and cut square bar-shaped sample (2 mm x 1
mm × 25 mm) in a stream of NH 3 gas of 1 atm.
After nitriding at 0 ° C. for 0.5 hour, β-Mo 2 having a thickness of 7 μm
An N layer was obtained. As a corrosion resistance test, the processed product was immersed in dilute sulfuric acid for one week and then taken out and observed, but no corrosion was found. The hardness in this case was Hv-800. Sho Mo
Has a hardness of Hv-200.

【0074】[0074]

【発明の効果】この発明はMo又はMo系合金を700
℃〜1150℃の雰囲気内で0.2時間〜100時間処
理し、母材表面にMo2 N層0.5μm〜10μm設け
たので、耐食性を飛躍的に向上させると共に、硬度を著
しく向上し、耐食性能においてTaと比匹し、Taより
機械強度が大きく、Taより軽量で価格も低廉であるな
どの諸効果がある。
According to the present invention, Mo or a Mo-based alloy is
° C. and treated for 0.2 hour to 100 hours in an atmosphere of to 1150 ° C., since the base material surface provided Mo 2 N layer 0.5 ~ 10 m, with dramatically improve the corrosion resistance, significantly improved the hardness, Compared with Ta in terms of corrosion resistance performance, it has various effects such as higher mechanical strength than Ta, lighter weight than Ta, and lower price.

【図面の簡単な説明】[Brief description of the drawings]

【図1】純Moと、Mo−0.5Ti合金を1100℃
で16時間窒化した試料の表面のXRDパターンを示す
図。
FIG. 1 shows pure Mo and Mo-0.5Ti alloy at 1100 ° C.
The figure which shows the XRD pattern of the surface of the sample nitrided for 16 hours at FIG.

【図2】Mo−Ti合金を(a)600℃〜(f)11
00℃で、16時間N2 ガス窒化処理した試料表面にお
けるXRDパターンを示す図。
FIG. 2 shows a method of (a) 600 ° C. to (f) 11 using a Mo—Ti alloy.
At 00 ° C., shows an XRD pattern in the 16 hours N 2 gas nitriding treated sample surface.

【図3】(a)Mo−0.5Ti合金を1100℃で4
時間窒化処理した断面の金属組織の光学顕微鏡写眞。 (b)同じく16時間窒化処理した断面の金属組織の光
学顕微鏡写眞。
FIG. 3 (a) Mo-0.5Ti alloy was heated at 1100 ° C. for 4 hours.
Photomicrograph of metal structure of cross-section after time nitriding. (B) An optical microscope photograph of the metal structure of the cross section also subjected to nitriding treatment for 16 hours.

【図4】Mo−0.5Ti合金の表面窒化物層の厚さ
と、窒化時間との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the thickness of the surface nitride layer of the Mo-0.5Ti alloy and the nitriding time.

【図5】Mo−0.5Tiの窒化処理に際し、試料の厚
さが変化しない状態を示すグラフ。
FIG. 5 is a graph showing a state in which the thickness of a sample does not change during nitriding of Mo-0.5Ti.

【図6】純Mo(a)と、Mo−0.5Ti(b)との
試料を1100℃で16時間窒化処理した時の表面と内
部の硬さ分布を示すグラフ。
FIG. 6 is a graph showing surface and internal hardness distributions when a sample of pure Mo (a) and Mo-0.5Ti (b) is nitrided at 1100 ° C. for 16 hours.

【図7】純Mo、β−Mo2 N及びγ−Mo2 Nの試料
を1100℃で16時間窒化処理した時の深さd=0
(a)〜d=80(f)における結晶構造を示すグラ
フ。
FIG. 7 shows a depth d = 0 when a sample of pure Mo, β-Mo 2 N and γ-Mo 2 N is subjected to a nitriding treatment at 1100 ° C. for 16 hours.
(A)-The graph which shows the crystal structure in d = 80 (f).

【図8】X線回折から求めたMo窒化物の格子常数の深
さに伴う変化を示すグラフ。
FIG. 8 is a graph showing a change in lattice constant of Mo nitride with depth obtained by X-ray diffraction.

【図9】16時間窒化した純MoについてのX線回折の
結果から求めたMo窒化物の軸比(c/a)を示すグラ
フ。
FIG. 9 is a graph showing the axial ratio (c / a) of Mo nitride obtained from the result of X-ray diffraction of pure Mo nitrided for 16 hours.

【図10】(a)γ−Mo2 Nの結晶構造の模式図。 (b)β−Mo2 Nの結晶構造の模式図。10A is a schematic diagram of a crystal structure of γ-Mo 2 N. FIG. (B) Schematic diagram of the crystal structure of β-Mo 2 N.

【図11】Mo−0.5Ti合金の16時間窒化した試
料の表面窒化物層内部(深さ60μm)に生成するβ相
の金属表面の透過電子顕微鏡写眞。
FIG. 11 is a transmission electron microscope photograph of a β-phase metal surface formed inside a surface nitride layer (depth: 60 μm) of a sample obtained by nitriding a Mo-0.5Ti alloy for 16 hours.

【図12】Moを1100℃で16時間窒化した際の電
子線回折を行ったβ−Mo2 Nの金属表面の透過電子顕
微鏡写眞。
FIG. 12 is a transmission electron micrograph of a metal surface of β-Mo 2 N subjected to electron diffraction when Mo was nitrided at 1100 ° C. for 16 hours.

【図13】(a)図12の試料の[100]入射の解析
図。 (b)図12の試料の[211]入射の解析図。
13 (a) is an analysis diagram of [100] incidence of the sample of FIG. (B) Analysis diagram of [211] incidence of the sample in FIG.

【図14】β相の積層の仕方が2種類あることを示す
図。
FIG. 14 is a diagram showing that there are two types of lamination methods of β phase.

【図15】(a)原子配列を模式的に表わした図。 (b)原子配列が鏡面対称であることを示す図。FIG. 15A is a diagram schematically showing an atomic arrangement. (B) A diagram showing that the atomic arrangement is mirror symmetric.

【図16】倍率55万倍で撮影したβ相の金属組織の高
分解能電子顕微鏡写眞。
FIG. 16 is a high-resolution electron microscope photograph of a β-phase metal structure photographed at a magnification of 550,000 times.

【図17】図16を引伸ばした逆フーリエ変換像で、金
属組織の高分解能電子顕微鏡写眞。
FIG. 17 is an inverse Fourier transform image obtained by enlarging FIG. 16 and shows a high-resolution electron microscope photograph of a metal structure.

【図18】(a)図16の写眞を引き伸ばした像の逆フ
ーリエ変換像で、金属組織の高分解能電子顕微鏡写眞。 (b)図15の(b)と同一図。
FIG. 18 (a) is an inverse Fourier transform image of a stretched image of FIG. 16, which is a high resolution electron microscope image of a metal structure. (B) The same figure as (b) of FIG.

【図19】腐食試験器具の概念図。FIG. 19 is a conceptual diagram of a corrosion test device.

【図20】各種金属の腐食度を示す図。FIG. 20 is a diagram showing the degree of corrosion of various metals.

【図21】Mo−0.5Ti合金をNH3 ガス内で95
0℃で9時間窒化処理した際の沸騰硫酸中における腐食
試験前後の表面の金属組織のSEM写眞であって、
(a)は硫酸濃度40%、(b)は60%、(c)は7
5%である。
FIG. 21 shows a Mo-0.5Ti alloy in an NH 3 gas at 95%.
It is a SEM photograph of the metal structure of the surface before and after the corrosion test in boiling sulfuric acid when nitriding treatment at 0 ° C. for 9 hours,
(A) is a sulfuric acid concentration of 40%, (b) is 60%, and (c) is 7%.
5%.

【図22】950℃、9時間窒化した試料の沸騰硫酸中
における腐食速度を示すグラフ。
FIG. 22 is a graph showing the corrosion rate of a sample nitrided at 950 ° C. for 9 hours in boiling sulfuric acid.

【図23】(a)10mm角試料で950℃、9時間窒
化した試料の腐食前の試料表面の金属組織の光学顕微鏡
写眞。 (b)窒化前に再結晶を行った短冊状試料表面の金属組
織の光学顕微鏡写眞。
FIG. 23 (a) is an optical microscope photograph of a metal structure on a sample surface before corrosion of a sample which was nitrided at 950 ° C. for 9 hours using a 10 mm square sample. (B) An optical microscope photograph of the metal structure on the surface of the strip-shaped sample recrystallized before nitriding.

【図24】Mo−0.5Ti合金をNH3 ガス中で95
0℃で9時間窒化処理した試料の腐食前(a)と75%
濃硫酸中で8日腐食試験を行った後(b)の金属組織の
光学顕微鏡写眞。
FIG. 24 shows a Mo-0.5Ti alloy in NH 3 gas at 95%.
75% before corrosion (a) of sample nitridated at 0 ° C for 9 hours
Optical micrograph of the metallographic structure after (b) corrosion test in concentrated sulfuric acid for 8 days.

【図25】(a)再結晶材を950℃で1時間窒化した
試料の表面の金属組織の光学顕微鏡写眞。 (b)再結晶材を950℃で30分間窒化した試料の表
面の金属組織の光学顕微鏡写眞。
FIG. 25 (a) is an optical microscope photograph of the metal structure on the surface of a sample obtained by nitriding the recrystallized material at 950 ° C. for 1 hour. (B) An optical microscope photograph of the metal structure on the surface of the sample obtained by nitriding the recrystallized material at 950 ° C. for 30 minutes.

【図26】(a)9時間窒化材。 (b)1時間窒化材。 (c)30分間窒化材。上記の表面のXRDパターンを
示すグラフ。
FIG. 26A shows a nitrided material for 9 hours. (B) 1 hour nitriding material. (C) a nitride material for 30 minutes. 4 is a graph showing an XRD pattern of the above surface.

【図27】純Moの窒化、未窒化における腐食速度を示
すグラフ。
FIG. 27 is a graph showing the corrosion rates of pure Mo when nitrided and unnitrided.

【図28】75%沸騰硫酸中で5日間腐食試験を行っ
た、30分間窒化材の試料表面の金属組織の光学顕微鏡
写眞。
FIG. 28 is an optical microscope photograph of a metal structure on a sample surface of a nitride material for 30 minutes in a corrosion test performed in 75% boiling sulfuric acid for 5 days.

【図29】純Moを800℃で48時間N2 ガス中で窒
化処理した試料表面におけるXRDパターンを示す図。
FIG. 29 is a view showing an XRD pattern on the surface of a sample obtained by nitriding pure Mo in a N 2 gas at 800 ° C. for 48 hours.

【図30】各種高融点金属の沸騰硝酸中での腐食速度を
示すグラフ。
FIG. 30 is a graph showing corrosion rates of various refractory metals in boiling nitric acid.

【図31】純Mo(a)と、9時間窒化処理を行ったM
2 N(b)との硝酸に対する腐食試験グラフ。
FIG. 31 shows pure Mo (a) and M subjected to nitriding treatment for 9 hours.
Graph of a corrosion test for nitric acid with o 2 N (b).

【図32】Mo2 N(9時間窒化物)の50%硝酸中に
おける腐食前(a)と、腐食前(b)の金属表面のSE
M写眞。
FIG. 32: SE of metal surface before corrosion (a) and before corrosion (b) in 50% nitric acid of Mo 2 N (9 hours nitride)
M Shashin.

【図33】75%沸騰硫酸中での腐食速度を示すグラ
フ。
FIG. 33 is a graph showing the corrosion rate in 75% boiling sulfuric acid.

【図34】35%沸騰硫酸中での腐食速度を示すグラ
フ。
FIG. 34 is a graph showing the corrosion rate in 35% boiling sulfuric acid.

【図35】20%水酸化ナトリウム中での腐食速度を示
すグラフ。
FIG. 35 is a graph showing the corrosion rate in 20% sodium hydroxide.

【図36】純Mo(a)と、Mo−0.5Ti合金
(b)の金属組織の光学顕微鏡写眞。
FIG. 36 is an optical microscope photograph of the metal structures of pure Mo (a) and Mo-0.5Ti alloy (b).

【図37】窒化した純Mo(a)、Mo−0.5Ti合
金(b)、Mo−1.0Ti合金(c)の硬さ分布を示
す図。
FIG. 37 is a diagram showing the hardness distribution of nitrided pure Mo (a), Mo-0.5Ti alloy (b), and Mo-1.0Ti alloy (c).

【図38】窒化した純Mo−0.5Ti合金(a)と、
Mo−1.0Ti合金(b)の硬さが最大となる深さで
の金属組織の透過電子顕微鏡写眞。
FIG. 38 shows a nitrided pure Mo-0.5Ti alloy (a);
A transmission electron microscope photograph of the metal structure at a depth at which the hardness of the Mo-1.0Ti alloy (b) is maximized.

【図39】窒化層内に分散した析出物のHR−TEM像
(a)及び逆フーリエ変換(IFFT)像(b)を示す
金属組織の透過電子顕微鏡写眞。
FIG. 39 is a transmission electron microscope photograph of a metal structure showing an HR-TEM image (a) and an inverse Fourier transform (IFFT) image (b) of a precipitate dispersed in a nitride layer.

【図40】TiN粒子が母相Mo面上に析出する場合の
格子定数から、最もミスフィットが少なくなる方位関係
を示す図。
FIG. 40 is a view showing an azimuth relationship in which misfit is minimized from a lattice constant when TiN particles are precipitated on a mother phase Mo surface.

【図41】Mo−1.0Ti合金の試料表面からの深さ
dがそれぞれd=130μm(a)、d=225μm
(b)、d=300μm(c)におけるTEM観察の金
属組織の写眞。
FIG. 41 shows that the depth d from the sample surface of the Mo-1.0 Ti alloy is d = 130 μm (a) and d = 225 μm, respectively.
(B), Photograph of metal structure observed by TEM at d = 300 μm (c).

【図42】図41の写眞から測定したTiN析出物粒子
の分布密度Nと硬さの上昇量(△Hv)との関係を示す
グラフ。
42 is a graph showing the relationship between the distribution density N of TiN precipitate particles measured from the photograph of FIG. 41 and the increase in hardness (ΔHv).

【表5】 [Table 5]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mo合金の表面に厚さ0.5μm〜10
μmのMo2 N層を設けたことを特徴とする高耐食性M
o系複合材料。
The thickness of the Mo alloy is 0.5 μm to 10 μm.
High corrosion resistance M characterized by providing a Mo 2 N layer of μm
o-based composite materials.
【請求項2】 Mo2 N層は、β−Mo2 N層としたこ
とを特徴とする請求項1記載の高耐食性Mo系複合材
料。
2. The high corrosion resistant Mo-based composite material according to claim 1, wherein the Mo 2 N layer is a β-Mo 2 N layer.
【請求項3】 Mo系合金をN2 ガス又はNH3 ガスの
存在下での700℃〜1150℃の雰囲気内で0.2時
間〜100時間窒化処理することを特徴とした高耐食性
Mo系複合材料の製造方法。
3. A highly corrosion-resistant Mo-based composite characterized by subjecting a Mo-based alloy to nitriding treatment in an atmosphere of 700 ° C. to 1150 ° C. for 0.2 to 100 hours in the presence of N 2 gas or NH 3 gas. Material manufacturing method.
【請求項4】 Mo系合金をN2 ガス又はNH3 ガスの
存在下で700℃〜1150℃の雰囲気内で窒化処理
し、厚さ0.5μm以上でクラックを生じない厚さのM
2 N層を設けることを特徴とした高耐食性Mo系複合
材料の製造方法。
4. A Mo-based alloy is nitrided in an atmosphere of 700 ° C. to 1150 ° C. in the presence of N 2 gas or NH 3 gas, and has a thickness of 0.5 μm or more and which does not cause cracks.
A method for producing a highly corrosion-resistant Mo-based composite material, comprising providing an o 2 N layer.
【請求項5】 クラックを生じない厚さを10μm未満
とすることを特徴とした請求項4記載の高耐食性Mo系
複合材料の製造方法。
5. The method for producing a highly corrosion-resistant Mo-based composite material according to claim 4, wherein the thickness not causing cracks is less than 10 μm.
JP10588798A 1998-04-01 1998-04-01 High corrosion resistance molybdenum-based composite material and its production Pending JPH11286770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10588798A JPH11286770A (en) 1998-04-01 1998-04-01 High corrosion resistance molybdenum-based composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588798A JPH11286770A (en) 1998-04-01 1998-04-01 High corrosion resistance molybdenum-based composite material and its production

Publications (1)

Publication Number Publication Date
JPH11286770A true JPH11286770A (en) 1999-10-19

Family

ID=14419444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588798A Pending JPH11286770A (en) 1998-04-01 1998-04-01 High corrosion resistance molybdenum-based composite material and its production

Country Status (1)

Country Link
JP (1) JPH11286770A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083157A1 (en) 2002-03-29 2003-10-09 Japan Science And Technology Agency NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
JP2006203104A (en) * 2005-01-24 2006-08-03 Mitsubishi Electric Corp Semiconductor laser device and method for manufacturing the same
EP3316826A4 (en) * 2015-07-02 2019-04-03 Mirus LLC Molybdenum alloys for medical devices
CN110257758A (en) * 2019-07-18 2019-09-20 江苏理工学院 A kind of high-entropy alloy gradient composites and preparation method thereof based on reaction in-situ
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
US11779685B2 (en) 2014-06-24 2023-10-10 Mirus Llc Metal alloys for medical devices

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083157A1 (en) 2002-03-29 2003-10-09 Japan Science And Technology Agency NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
EP1491651A1 (en) * 2002-03-29 2004-12-29 Japan Science and Technology Agency NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
EP1491651A4 (en) * 2002-03-29 2008-08-27 Japan Science & Tech Agency NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
JP2006203104A (en) * 2005-01-24 2006-08-03 Mitsubishi Electric Corp Semiconductor laser device and method for manufacturing the same
JP4703198B2 (en) * 2005-01-24 2011-06-15 三菱電機株式会社 Semiconductor laser device and manufacturing method thereof
US11779685B2 (en) 2014-06-24 2023-10-10 Mirus Llc Metal alloys for medical devices
EP3316826A4 (en) * 2015-07-02 2019-04-03 Mirus LLC Molybdenum alloys for medical devices
US10682437B2 (en) 2015-07-02 2020-06-16 Mirus Llc Molybdenum alloys for medical devices
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
CN110257758A (en) * 2019-07-18 2019-09-20 江苏理工学院 A kind of high-entropy alloy gradient composites and preparation method thereof based on reaction in-situ

Similar Documents

Publication Publication Date Title
Koch Nanocrystalline high-entropy alloys
EP3705590B1 (en) Alloy material, product using said alloy material, and fluid machine having said product
Hoerling et al. Thermal stability, microstructure and mechanical properties of Ti1− xZrxN thin films
CN105671404B (en) A kind of TiZrHfNb base high-entropy alloys of the common alloying of nitrogen oxygen and preparation method thereof
Kuzminova et al. The effect of the parameters of the powder bed fusion process on the microstructure and mechanical properties of CrFeCoNi medium-entropy alloys
WO2013183546A1 (en) Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING SAME
JPS5896845A (en) Nickel base superalloy sheet and manufacture
Liu et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment
Shen et al. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing
Auger et al. Microstructural and mechanical characterisation of Fe-14Cr-0.22 Hf alloy fabricated by spark plasma sintering
JPH11286770A (en) High corrosion resistance molybdenum-based composite material and its production
CN103459631B (en) Mo
Pushilina et al. Heat treatment of the Ti-6Al-4V alloy manufactured by electron beam melting
KR20210054971A (en) Commercially pure titanium having high strength and high ductility and method of manufacturing the same
KR20100134619A (en) Forged beryllium-copper bulk material
WO2001018276A1 (en) High melting point metal based alloy material having high toughness and strength
KR102668835B1 (en) Ti-Ni-Ag shape memory alloy wire and method of manufacturing the same
JP4255877B2 (en) High-strength and high recrystallization temperature refractory metal alloy material and its manufacturing method
KR20090079056A (en) Method of manufacturing non-oriented electrical steel sheets and non-oriented electrical steel sheets manufactured by using the same
Li Surface Hardening of Austenitic Fe-Cr-Ni Alloys for Accident-Tolerant Nuclear Fuel Cladding
Naujoks et al. Experimental and Theoretical Investigation on Phase Formation and Mechanical Properties in Cr–Co–Ni Alloys Processed Using a Novel Thin-Film Quenching Technique
Wu et al. Transforming microstructures and mechanical properties of (CoCrNi) 93-xAl7Ndx medium entropy alloy films by annealing
Qi et al. Microstructure and properties of a multilayered laser cladding Al0. 2NbTiV0. 1W0. 5Zr0. 3 high-entropy alloy coating on a zirconium alloy
Dutkiewicz et al. Microstructure and mechanical properties of LENS manufactured NiTi shape memory alloy after ageing and during in-situ SEM tensile test
Campari et al. Microstructural Study of CrNiCoFeMn High Entropy Alloy Obtained by Selective Laser Melting. Materials 2022, 15, 5544

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041208

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060313

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A02