JPH11285544A - Flying range modulator and charged particle ray theraputic instrument using the modulator - Google Patents

Flying range modulator and charged particle ray theraputic instrument using the modulator

Info

Publication number
JPH11285544A
JPH11285544A JP8856298A JP8856298A JPH11285544A JP H11285544 A JPH11285544 A JP H11285544A JP 8856298 A JP8856298 A JP 8856298A JP 8856298 A JP8856298 A JP 8856298A JP H11285544 A JPH11285544 A JP H11285544A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
range
scattering
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8856298A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kanematsu
伸幸 兼松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8856298A priority Critical patent/JPH11285544A/en
Publication of JPH11285544A publication Critical patent/JPH11285544A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the production of three-dimensionally flat dosage distribution, which has been difficult in a conventional charged particle ray irradiation device because the intensity of particles is modulated with the flying range demodulation of charged particles caused by the passage of the charged particles through a flying range modulator even if flatly adjusting the particle intensity of the charged particle in an optional irradiation field by a beam expander. SOLUTION: This flying modulator is provided with a flying range modulating body which the charged particle rays are inputted to and which adjusts the flying range of the charged particle rays and gives a prescribed scattering effect to the charging particle rays based on an inputting position where the charged particle rays were inputted, and provided with a scattering compensating body which the charged particle rays outputted from the flying range modulating body is inputted to and which uniformly adjusts the scattering effect given to the charged particle rays without regard to the inputting position to output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】入射された荷電粒子線の飛程
を変調する飛程変調装置、及びこの飛程変調装置を用い
て被照射体に荷電粒子線を照射する荷電粒子線照射装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a range modulator for modulating the range of an incident charged particle beam, and a charged particle beam irradiation apparatus for irradiating an object to be irradiated with a charged particle beam using the range modulator. It is.

【0002】[0002]

【従来の技術】荷電粒子線照射装置の例としては、図4
に示したものがある。この図4は、従来の荷電粒子線照
射装置の構成を示す構成図である。図4において、1は
荷電粒子ビームである。2はビーム拡大装置であり、荷
電粒子ビーム1が入射される。3は飛程変調装置であ
り、ビーム拡大装置2から射出された荷電粒子ビーム1
が入射される。
2. Description of the Related Art An example of a charged particle beam irradiation apparatus is shown in FIG.
There is what was shown in. FIG. 4 is a configuration diagram showing a configuration of a conventional charged particle beam irradiation apparatus. In FIG. 4, reference numeral 1 denotes a charged particle beam. Reference numeral 2 denotes a beam expanding device, and the charged particle beam 1 is incident thereon. Reference numeral 3 denotes a range modulation device, and the charged particle beam 1 emitted from the beam expansion device 2
Is incident.

【0003】4は飛程調整装置であり、飛程変調装置3
から射出された荷電粒子ビーム1が入射される。6は飛
程補償装置であり、飛程調整装置4から射出された荷電
粒子ビーム1が、照射野限定装置5を経て、入射され
る。7は被照射体である患者であり、飛程補償装置6か
ら射出された荷電粒子ビーム1が入射される。8は被照
射部である患部であり、患者7に入射された荷電粒子ビ
ーム1が照射される。
[0003] Reference numeral 4 denotes a range adjusting device.
The charged particle beam 1 emitted from the device is incident. Reference numeral 6 denotes a range compensating device, and the charged particle beam 1 emitted from the range adjusting device 4 enters through an irradiation field limiting device 5. Reference numeral 7 denotes a patient who is an irradiation target, and the charged particle beam 1 emitted from the range compensator 6 is incident thereon. Reference numeral 8 denotes an affected part, which is an irradiated part, to which the charged particle beam 1 incident on the patient 7 is irradiated.

【0004】次に、図4に示す従来の荷電粒子線照射装
置の動作について説明する。まず、照射機器から荷電粒
子線である荷電粒子ビーム1が射出される。なお、この
荷電粒子ビーム1は単一エネルギーのものである。そし
て、この荷電粒子ビーム1は、ビーム拡大装置2に入射
される。そして、この荷電粒子ビーム1は拡大され出力
される。次に、ビーム拡大装置2から出力された荷電粒
子ビーム1は、飛程変調装置3に入射される。この飛程
変調装置3は、入射された荷電粒子ビーム1を患部8の
厚さに則した体内飛程分布を有するように調整し出力す
る。なお、患部8の厚さは、患部8に関する図4中のz
軸方向の所定の幅を指す。
Next, the operation of the conventional charged particle beam irradiation apparatus shown in FIG. 4 will be described. First, a charged particle beam 1, which is a charged particle beam, is emitted from an irradiation device. The charged particle beam 1 has a single energy. Then, the charged particle beam 1 is incident on the beam expanding device 2. Then, the charged particle beam 1 is enlarged and output. Next, the charged particle beam 1 output from the beam expanding device 2 is incident on a range modulation device 3. The range modulation device 3 adjusts and outputs the incident charged particle beam 1 so as to have an in-vivo range distribution in accordance with the thickness of the affected part 8. Note that the thickness of the affected part 8 is z in FIG.
Refers to a predetermined width in the axial direction.

【0005】そして、飛程変調装置3から出力された荷
電粒子ビーム1は、飛程調整装置4に入射される。この
飛程調整装置4は、飛程調整装置3で調整された荷電粒
子ビーム1の体内飛程分布が、患部8全体の位置と適合
するように調整する。この飛程調整装置4の例としては
レンジシフタがある。そして、飛程調整装置3から出力
された荷電粒子ビーム1は、照射野限定装置5により、
その照射野が設定される。この照射野とは、患部8のx
−y二次元投影形状に合わせて設定されるものであり、
この照射野限定装置5の例としてはコリメータがある。
[0005] The charged particle beam 1 output from the range modulator 3 is incident on a range adjuster 4. The range adjustment device 4 adjusts the distribution of the charged particle beam 1 in the body adjusted by the range adjustment device 3 so as to match the position of the entire affected part 8. An example of the range adjustment device 4 is a range shifter. The charged particle beam 1 output from the range adjustment device 3 is irradiated by the irradiation field limiting device 5.
The irradiation field is set. This irradiation field is the x of the affected part 8
-Y is set according to the two-dimensional projection shape,
An example of the irradiation field limiting device 5 is a collimator.

【0006】照射野限定装置5を経た荷電粒子ビーム1
は、飛程補償装置6に入射される。この飛程補償装置6
は、患部8の三次元形状に合わせて荷電粒子ビーム1の
体内飛程分布を調整し、患部8以外への照射を抑制す
る。この飛程補償装置6の例としてはボーラスがある。
この飛程補償装置6を経て出力された荷電粒子ビーム1
は、患者7の患部8を照射する。なお、患者7の患部8
へ荷電粒子ビーム1を照射して患部8を治療する荷電粒
子線治療は、荷電粒子が物質中で減速する性質を生かし
たものである。荷電粒子線照射装置は、患部8の立体的
な形状に合わせて照射ビームを成形し照射する。
The charged particle beam 1 having passed through the irradiation field limiting device 5
Is incident on the range compensator 6. This range compensator 6
Adjusts the in-vivo range distribution of the charged particle beam 1 in accordance with the three-dimensional shape of the affected part 8 and suppresses irradiation to parts other than the affected part 8. A bolus is an example of the range compensator 6.
The charged particle beam 1 output through the range compensator 6
Irradiates the affected part 8 of the patient 7. In addition, affected part 8 of patient 7
The charged particle beam therapy for treating the diseased part 8 by irradiating the charged particle beam 1 to the body utilizes the property that charged particles decelerate in a substance. The charged particle beam irradiation device shapes and irradiates an irradiation beam according to the three-dimensional shape of the affected part 8.

【0007】次に、図5に示す従来の荷電粒子線照射装
置が有するビーム拡大装置2の構成及び動作について説
明する。この図5に示すビーム拡大装置2には、図5
(a)に示されたワブラー法を用いたビーム拡大装置2
と、図5(b)に示された二重散乱体法を用いたビーム拡
大装置2とが示されている。
Next, the configuration and operation of the beam expanding device 2 included in the conventional charged particle beam irradiation device shown in FIG. 5 will be described. The beam expanding device 2 shown in FIG.
Beam expansion device 2 using the Wobbler method shown in FIG.
5 and a beam expanding device 2 using the double scatterer method shown in FIG. 5B.

【0008】まず、図5(a)のビーム拡大装置2の構
成について説明すると、9は対をなす電磁石からなる電
磁石対である。ビーム拡大装置2は、このような電磁石
対9を2組有し、荷電粒子ビーム1はこれら2つの電磁
石対9の間に順番に入射される。なお、これら2つの電
磁石対9は、互いにその磁場の方向が直交するように配
置される。これら2つの電磁石対9で形成された円偏向
磁場に荷電粒子ビーム1が入射されると、その荷電粒子
ビーム1はこの円偏向磁場に基づき回転する。
First, the configuration of the beam expanding device 2 shown in FIG. 5A will be described. Reference numeral 9 denotes an electromagnet pair including a pair of electromagnets. The beam expanding device 2 has two such pairs of electromagnets 9, and the charged particle beam 1 is sequentially incident between these two pairs of electromagnets 9. Note that these two electromagnet pairs 9 are arranged such that the directions of the magnetic fields are orthogonal to each other. When the charged particle beam 1 is incident on the circular deflection magnetic field formed by the two electromagnet pairs 9, the charged particle beam 1 rotates based on the circular deflection magnetic field.

【0009】10は第一の散乱体であり、電磁石対9に
より偏向された荷電粒子ビーム1が入射される。この第
一の散乱体10に入射された荷電粒子ビーム1は、ガウ
ス分布的な広がりを持つように散乱し、粒子強度が平坦
な照射野を形成する。なお、図5(a)において、図4
と同一又は相当の部分には、同一符号を付してその説明
を省略し、図4と相違する部分について説明した。
Reference numeral 10 denotes a first scatterer, on which the charged particle beam 1 deflected by the electromagnet pair 9 is incident. The charged particle beam 1 incident on the first scatterer 10 is scattered so as to have a Gaussian distribution and forms an irradiation field having a flat particle intensity. In FIG. 5A, FIG.
The same or corresponding portions as those described above are denoted by the same reference numerals, description thereof will be omitted, and portions different from FIG. 4 will be described.

【0010】次に、図5(b)のビーム拡大装置2の構
成について説明すると、11は第二の散乱体である。こ
の第二の散乱体11は第一及び第二の物質の2種類の物
質から構成されている。これら2種類の物質は、第一の
散乱体10に入射される荷電粒子ビーム1のビーム軸を
中心に同心円状に構成される。なお、第二の散乱体11
を構成する2つの物質のうち、第一の物質は同心円状の
第二の散乱体11の内側に設けられ、入射された荷電粒
子ビーム1を強く広範囲に散乱させる。一方、第二の物
質は第二の散乱体11の外側に設けられ、第一の物質に
比べ、入射された荷電粒子ビーム1をあまり散乱させな
い。
Next, the structure of the beam expanding device 2 shown in FIG. 5B will be described. Reference numeral 11 denotes a second scatterer. The second scatterer 11 is composed of two types of substances, a first substance and a second substance. These two types of substances are formed concentrically about the beam axis of the charged particle beam 1 incident on the first scatterer 10. The second scatterer 11
Of the two substances constituting the above, the first substance is provided inside the concentric second scatterer 11 and strongly scatters the incident charged particle beam 1 over a wide range. On the other hand, the second substance is provided outside the second scatterer 11, and does not scatter the incident charged particle beam 1 much as compared with the first substance.

【0011】なお、図5(b)において、図5(a)と
同一又は相当の部分には、同一符号を付してその説明を
省略し、図5(a)と相違する部分について説明した。
次に、この図5(b)に示すビーム拡大装置2での荷電
粒子ビーム1の流れについて説明すると、まず第一の散
乱体10に荷電粒子ビーム1が入射される。そして、こ
の第一の散乱体10により荷電粒子ビーム1が散乱する
と、この散乱した荷電粒子ビーム1は第二の散乱体11
に入射する。そして、第一の物質に入射された荷電粒子
ビーム1は強く広範囲に散乱する。一方、第二の物質に
入射した荷電粒子ビーム1は第一の物質に比べあまり散
乱させずに出力される。
In FIG. 5 (b), the same or corresponding parts as those in FIG. 5 (a) are denoted by the same reference numerals and the description thereof is omitted, and the parts different from FIG. 5 (a) are described. .
Next, the flow of the charged particle beam 1 in the beam expanding device 2 shown in FIG. 5B will be described. First, the charged particle beam 1 is incident on the first scatterer 10. When the charged particle beam 1 is scattered by the first scatterer 10, the scattered charged particle beam 1 is converted into a second scatterer 11.
Incident on. Then, the charged particle beam 1 incident on the first substance is scattered strongly and widely. On the other hand, the charged particle beam 1 incident on the second substance is output without being scattered much as compared with the first substance.

【0012】このように散乱させる度合いの異なる2つ
の物質を第二の散乱体11に設けるのは、第一の散乱体
10で荷電粒子ビーム1を散乱させても、その散乱具合
にばらつきがあるためである。この荷電粒子ビーム1を
なす荷電粒子の散乱具合のばらつきは、第一の散乱体1
0に入射される荷電粒子ビーム1のビーム軸を基準とし
ており、このビーム軸の延長線近傍、つまり第二の散乱
体11の中央部付近には多くの荷電粒子が散乱するが、
ビーム軸から離れたところ、つまり第二の散乱体11の
第二の物質の近辺にはあまり散乱しない。つまり、ビー
ム軸の延長線近傍では荷電粒子の粒子強度が高いのだ
が、ビーム軸から離れた位置では粒子強度が低いのであ
る。
The reason why two substances having different degrees of scattering are provided in the second scatterer 11 is that even if the charged particle beam 1 is scattered by the first scatterer 10, the degree of scattering varies. That's why. Variations in the degree of scattering of the charged particles forming the charged particle beam 1 are caused by the first scatterer 1
The beam axis of the charged particle beam 1 incident on 0 is used as a reference. Many charged particles are scattered in the vicinity of an extension of this beam axis, that is, in the vicinity of the center of the second scatterer 11,
There is not much scattering at a position away from the beam axis, that is, near the second substance of the second scatterer 11. In other words, the particle strength of the charged particles is high near the extension of the beam axis, but low at positions far from the beam axis.

【0013】このため、荷電粒子ビーム1は、第一の散
乱体10で散乱させられた後に、さらに第二の散乱体1
1の第一の物質により強く散乱させられ、一方第二の散
乱体11の第二の物質では弱く散乱させることにより、
荷電粒子の粒子強度が平坦となる照射野を形成する。
For this reason, the charged particle beam 1 is scattered by the first scatterer 10 and then further scattered by the second scatterer 1.
By being strongly scattered by the first material of the first scatterer while weakly scattered by the second material of the second scatterer 11,
An irradiation field where the particle strength of the charged particles becomes flat is formed.

【0014】次に、図5に示すようなビーム拡大装置2
から出力された荷電粒子ビーム1が入射される飛程変調
装置3について、その構成と動作を図6で説明する。な
お、図6(a)に示す飛程変調装置3はバーリッジフィ
ルター型の飛程変調装置3であり、図6(b)に示す飛
程変調装置3は回転円盤型であり、図6(c)に示す飛
程変調装置3は回転円筒型である。まず、図6(a)の
バーリッジフィルター型飛程変調装置において、12は
楔状のバーリッジ(以下、飛程変調体と称す)であり、
この飛程変調体12を複数並べることにより飛程変調装
置3が得られる。この飛程変調体12の厚さに基づき、
この飛程変調体12を通過する荷電粒子ビーム1の飛程
が変調される。
Next, a beam expanding device 2 as shown in FIG.
The configuration and operation of the range modulation device 3 on which the charged particle beam 1 output from is input will be described with reference to FIG. The range modulator 3 shown in FIG. 6A is a range filter 3 of a ridge filter type, and the range modulator 3 shown in FIG. 6B is a rotating disk type. The range modulation device 3 shown in c) is a rotary cylinder type. First, in the ridge filter type range modulator of FIG. 6A, reference numeral 12 denotes a wedge-shaped ridge (hereinafter, referred to as a range modulator).
The range modulator 3 is obtained by arranging a plurality of range modulators 12. Based on the thickness of the range modulator 12,
The range of the charged particle beam 1 passing through the range modulator 12 is modulated.

【0015】次に、図6(b)に示す回転円盤型の飛程
変調装置3において、13は回転軸である。この回転円
盤型の飛程変調装置3は、回転軸13を中心として厚さ
の異なる飛程変調体12が並べられ形成される。この回
転円盤型の飛程変調装置3は、回転軸13を中心として
高速回転し、回転軸13に平行な方向から荷電粒子ビー
ム1が入射され、その飛程を時間的に変調させる。な
お、図6(b)において、図6(a)と同一又は相当の
部分には、同一符号を付してその説明を省略し、図6
(a)と相違する部分について説明した。
Next, in the rotary disk type range modulation device 3 shown in FIG. 6B, reference numeral 13 denotes a rotation axis. The rotating disk type range modulator 3 is formed by arranging range modulators 12 having different thicknesses around a rotation axis 13. The rotating disk type range modulation device 3 rotates at high speed around the rotation axis 13 and receives the charged particle beam 1 from a direction parallel to the rotation axis 13 to temporally modulate the range. In FIG. 6B, the same or corresponding parts as those in FIG. 6A are denoted by the same reference numerals, and the description thereof will be omitted.
The part different from (a) has been described.

【0016】さらに、図6(c)に示す回転円筒型の飛
程変調装置3においては、図6(b)と同一又は相当の
部分には、同一符号を付してその説明を省略した。この
回転円筒型の飛程変調装置3は、回転軸13に平行で、
その形状がほぼ円筒形になるように厚さの異なる飛程変
調体12が並べられ形成される。この回転円筒型飛程変
調装置は、回転軸13を中心として高速回転し、回転軸
13に垂直な方向や、ねじれの位置から荷電粒子ビーム
1が入射され、その飛程を時間的に変調させる。これら
の飛程変調体12により、荷電粒子ビーム1の飛程は変
調され、患部8の厚さに基づく体内飛程分布が形成され
る。なお、図7は、所定の照射条件下において、水中長
さ14cm程度の一定高線量領域をつくる飛程変調装置
3の特性を示す特性図である。
Further, in the rotary cylindrical range modulator 3 shown in FIG. 6C, the same or corresponding parts as those in FIG. 6B are denoted by the same reference numerals and description thereof is omitted. This rotary cylindrical range modulator 3 is parallel to the rotation axis 13,
The range modulators 12 having different thicknesses are arranged and formed so as to have a substantially cylindrical shape. This rotary cylindrical range modulator rotates at high speed around the rotation axis 13, and the charged particle beam 1 is incident from a direction perpendicular to the rotation axis 13 or from a twist position, and modulates the range over time. . The range of the charged particle beam 1 is modulated by these range modulators 12 to form a range distribution in the body based on the thickness of the affected part 8. FIG. 7 is a characteristic diagram showing characteristics of the range modulation device 3 that creates a constant high dose region with a length of about 14 cm in water under predetermined irradiation conditions.

【0017】[0017]

【発明が解決しようとする課題】上述したように、従来
の荷電粒子線照射装置では、任意の照射野における荷電
粒子の粒子強度をビーム拡大装置2により平坦に調整し
ても、荷電粒子が飛程変調装置3を通過することにより
その荷電粒子の飛程変調と共に粒子強度も変調され、三
次元的に平坦な線量分布を作ることが困難であった。本
発明は、このような問題点を解消するためになされたも
のであり、ビーム拡大装置2により平坦に調整された荷
電粒子の粒子強度を変調することなく荷電粒子の飛程変
調を行う飛程変調装置3を備える荷電粒子線照射装置を
得ることを目的とする。
As described above, in the conventional charged particle beam irradiation apparatus, even if the particle intensity of the charged particles in an arbitrary irradiation field is adjusted to be flat by the beam expanding device 2, the charged particles do not fly. When the charged particles pass through the modulator 3, the range of the charged particles and the particle intensity are also modulated, making it difficult to form a three-dimensionally flat dose distribution. The present invention has been made in order to solve such a problem, and a range in which the range of charged particles is modulated without modulating the particle intensity of the charged particles adjusted flat by the beam expanding device 2. An object is to obtain a charged particle beam irradiation device including the modulation device 3.

【0018】[0018]

【課題を解決するための手段】この発明にかかる飛程変
調装置は、荷電粒子線が入力され、荷電粒子線の飛程を
調整すると共に、荷電粒子線が入力された入力位置に基
づき荷電粒子線に所定の散乱効果を付与する飛程変調体
と、飛程変調体から出力された荷電粒子線が入力され、
荷電粒子線に付与された散乱効果を入力位置に拘わらず
一様に調整して出力する散乱補償体とを有するものであ
る。
A range modulation apparatus according to the present invention receives a charged particle beam, adjusts the range of the charged particle beam, and controls the range of the charged particle beam based on the input position where the charged particle beam is input. A range modulator that imparts a predetermined scattering effect to the line, and a charged particle beam output from the range modulator are input,
And a scattering compensator that uniformly adjusts and outputs the scattering effect imparted to the charged particle beam regardless of the input position.

【0019】また、この発明にかかる飛程変調装置は、
荷電粒子線が入力され、飛程変調体の任意の位置から出
力される荷電粒子線の散乱効果が一様となるように荷電
粒子線が入力された入力位置に基づく所定の散乱効果を
荷電粒子線に付与する散乱補償体と、散乱補償体から出
力された荷電粒子線が入力され、荷電粒子線の飛程を調
整すると共に、荷電粒子線が入力された入力位置に基づ
き荷電粒子線に所定の散乱効果を付与する飛程変調体と
を有するものである。
Further, the range modulation device according to the present invention comprises:
A charged particle beam is input, and a predetermined scattering effect based on the input position where the charged particle beam is input is set such that the scattering effect of the charged particle beam output from an arbitrary position of the range modulator is uniform. A scatter compensator to be applied to the beam and a charged particle beam output from the scatter compensator are input, and the range of the charged particle beam is adjusted, and the charged particle beam is determined based on the input position where the charged particle beam is input. And a range modulator that imparts a scattering effect.

【0020】さらに、この発明にかかる飛程変調装置
は、荷電粒子線が入力され、荷電粒子線が入力された入
力タイミングに基づき、荷電粒子線の飛程を調整すると
共に、荷電粒子線に所定の散乱効果を付与する飛程変調
体と、飛程変調体から出力された荷電粒子線が入力さ
れ、荷電粒子線に付与された散乱効果を入力タイミング
に拘わらず一様に調整して出力する散乱補償体とを有す
るものである。
Further, in the range modulation device according to the present invention, the charged particle beam is input, the range of the charged particle beam is adjusted based on the input timing of the input of the charged particle beam, and the predetermined range is applied to the charged particle beam. And a charged particle beam output from the range modulator, and uniformly adjusts and outputs the scattering effect imparted to the charged particle beam regardless of the input timing. A scattering compensator.

【0021】また、この発明にかかる飛程変調装置は、
荷電粒子線が入力され、飛程変調体から任意のタイミン
グで出力される荷電粒子線の散乱効果が一様となるよう
に荷電粒子線が入力された入力タイミングに基づく所定
の散乱効果を荷電粒子線に付与する散乱補償体と、散乱
補償体から出力された荷電粒子線が入力され、荷電粒子
線が入力された入力タイミングに基づき、荷電粒子線の
飛程を調整すると共に、荷電粒子線に所定の散乱効果を
付与する飛程変調体とを有するものである。
Further, the range modulation device according to the present invention comprises:
A charged particle beam is input, and a predetermined scattering effect based on the input timing at which the charged particle beam is input is set such that the scattering effect of the charged particle beam output at an arbitrary timing from the range modulator becomes uniform. The scattering compensator to be applied to the line and the charged particle beam output from the scattering compensator are input, and based on the input timing at which the charged particle beam is input, the range of the charged particle beam is adjusted and the charged particle beam is adjusted. And a range modulator for providing a predetermined scattering effect.

【0022】さらに、この発明にかかる飛程変調装置
は、第一の散乱物質が並設された飛程変調体と、飛程変
調体の近傍でその相対的な位置が固定され、第一の散乱
物質よりも散乱効果の高い第二の散乱物質を用いて飛程
変調体の形状に基づく形状に成形し、飛程変調体を経て
任意の位置から入力された荷電粒子線の散乱効果を一様
に調整して出力する散乱補償体とを有するものである。
Further, in the range modulator according to the present invention, the range modulator in which the first scattering material is juxtaposed, and the relative position thereof is fixed near the range modulator, Using a second scattering substance having a higher scattering effect than the scattering substance, it is shaped into a shape based on the shape of the range modulator, and the scattering effect of the charged particle beam input from an arbitrary position via the range modulator is reduced. And a scattering compensator that adjusts the output as described above.

【0023】また、この発明にかかる飛程変調装置の飛
程変調体は、第一の散乱物質が楔型であるものである。
In the range modulator of the range modulator according to the present invention, the first scattering substance has a wedge shape.

【0024】さらに、この発明にかかる飛程変調装置
は、回転軸を中心に異なる厚さの第一の散乱物質が並設
して円盤状に形成され、回転軸を中心に回転する飛程変
調体と、飛程変調体の近傍に設けられ、飛程変調体とそ
の相対的な位置関係が固定されたまま回転軸を中心に回
転し、第一の散乱物質よりも散乱効果の高い第二の散乱
物質を用いて飛程変調体の形状に基づく形状に成形さ
れ、飛程変調体を経て任意の入力タイミングで入力され
た荷電粒子線の散乱効果を一様に調整して出力する散乱
補償体とを有するものである。
Further, in the range modulation apparatus according to the present invention, a range modulation device in which first scattering materials having different thicknesses are formed side by side around the rotation axis and formed in a disk shape and rotated about the rotation axis. Body, provided in the vicinity of the range modulator, the range modulator and its relative positional relationship are fixed and rotated about the rotation axis, the second scattering material is higher than the first scattering material Scattering compensation that is shaped using the scattering substance of the shape of the range modulator, and uniformly adjusts the scattering effect of the charged particle beam input at an arbitrary input timing via the range modulator to output. It has a body.

【0025】また、この発明にかかる飛程変調装置の飛
程変調体は、回転軸を中心に異なる厚さの第一の散乱物
質が並設され、円盤状若しくは円筒状に形成されたもの
である。
The range modulator of the range modulator according to the present invention is formed by arranging first scattering materials having different thicknesses around the rotation axis and forming a disk-shaped or cylindrical shape. is there.

【0026】この発明にかかる荷電粒子線治療装置は、
請求項1〜8のいずれかに記載の飛程変調装置を有する
ものである。
The charged particle beam therapy apparatus according to the present invention
A range modulator according to any one of claims 1 to 8.

【0027】[0027]

【発明の実施の形態】実施の形態1.本発明における荷
電粒子線照射装置の飛程変調装置の一実施形態を図1を
用いて説明する。図1は実施形態1の飛程変調装置3の
断面を示す断面図である。図1において、14は散乱補
償体である。この散乱補償体14により、飛程変調体1
2で生じた散乱効果を補償し、照射野における荷電粒子
の粒子強度を平坦に調整する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 One embodiment of a range modulation device of a charged particle beam irradiation device according to the present invention will be described with reference to FIG. FIG. 1 is a sectional view showing a section of a range modulation device 3 according to the first embodiment. In FIG. 1, reference numeral 14 denotes a scattering compensator. This scattering compensator 14 allows the range modulator 1
The scattering effect generated in step 2 is compensated, and the particle intensity of the charged particles in the irradiation field is adjusted to be flat.

【0028】つまり、この散乱補償体14及び飛程変調
体12の双方を通過した後の、荷電粒子の散乱効果が任
意の位置で一定になるように、これら散乱補償体14及
び飛程変調体12の厚さを互いに関連付けて調整するも
のである。一方、荷電粒子の飛程は、散乱補償体14及
び飛程変調体12を通過しても、飛程変調体12のみを
通過しても変化が無いように、散乱補償体14の厚さは
薄いものでなければならない。
In other words, the scattering compensator 14 and the range modulator 12 pass through both the scattering compensator 14 and the range modulator 12 so that the scattering effect of the charged particles becomes constant at an arbitrary position. 12 are adjusted in association with each other. On the other hand, the thickness of the scattering compensator 14 is set so that the range of the charged particles does not change even when the range passes through the scattering compensator 14 and the range modulator 12 or only through the range modulator 12. Must be thin.

【0029】このように、散乱補償体14は、飛程変調
体12による荷電粒子の散乱効果を補償しなければなら
ない一方、荷電粒子の飛程変調に影響を及ぼさないよう
にしなければならないことから、鉛等の高散乱物質であ
ることが望ましい。また、飛程変調体12は、荷電粒子
の飛程を変調しなければならない一方、荷電粒子の散乱
効果をできるだけ抑えなければならないことから、アル
ミニウム等の低散乱物質であることが望ましい。なお、
低散乱物質とは、散乱効果/エネルギー損失比の小さい
物質であり、具体的にはプラスチック、ベリリウム、ア
ルミニウム、グラファイト等の軽金属や有機化合物のよ
うな軽元素を主成分とする物質である。また、高散乱物
質とは、低散乱物質の逆の性質を有するものであり、
鉛、ウラン、タングステン等の物質である。
As described above, the scattering compensator 14 must compensate for the scattering effect of the charged particles by the range modulator 12 but must not affect the range modulation of the charged particles. It is desirable that the material be a highly scattering substance such as lead. Further, the range modulator 12 must modulate the range of the charged particles while suppressing the scattering effect of the charged particles as much as possible. Therefore, the range modulator 12 is desirably a low scattering material such as aluminum. In addition,
The low scattering substance is a substance having a small scattering effect / energy loss ratio, and specifically, a substance mainly containing a light element such as a plastic, beryllium, aluminum, graphite, or a light metal such as an organic compound. In addition, a high scattering substance has a property opposite to that of a low scattering substance,
It is a substance such as lead, uranium, and tungsten.

【0030】なお、図1に示す飛程変調体12ではその
形状が楔型であり、この楔型の飛程変調体12の頂に対
向する底面に、荷電粒子ビーム1のビーム軸が直交して
いる。しかし、この飛程変調体12の形状や設置位置に
は、制限はない。また、本実施形態の散乱補償体14
は、間隙をおいて並べられた楔型の飛程変調体12の配
置に対応して形成される。つまり、本実施形態の散乱補
償体14において、隣り合う飛程変調体12の間隙を通
過する荷電粒子ビーム1が入射する部分の厚さは最も厚
く、楔型の飛程変調体12の頂を通過する荷電粒子ビー
ム1が入射する部分の厚さは最も薄い。
The range modulator 12 shown in FIG. 1 is wedge-shaped, and the beam axis of the charged particle beam 1 is orthogonal to the bottom surface of the wedge-shaped range modulator 12 facing the top. ing. However, there is no limitation on the shape and installation position of the range modulator 12. Further, the scattering compensator 14 of the present embodiment
Are formed corresponding to the arrangement of the wedge-shaped range modulators 12 arranged at intervals. In other words, in the scattering compensator 14 of the present embodiment, the portion where the charged particle beam 1 passing through the gap between the adjacent range modulators 12 is the thickest, and the top of the wedge-shaped range modulator 12 is formed. The thickness of the portion where the passing charged particle beam 1 is incident is the thinnest.

【0031】このように、散乱補償体14の形状は飛程
変調体12の形状に則しており、逆に、この飛程変調体
12の形状に則しておれば散乱補償体14の形状は問わ
れない。本実施形態の飛程変調装置3は飛程変調体12
と散乱補償体14とを有する。そしてこれら飛程変調体
12及び散乱補償体14は近傍に設けられる。これは、
双方が離れて設けられると、一方の散乱をもう一方で補
償することが困難となるためである。なお、図1におい
て、図6に示す従来例と同一又は相当の部分には、同一
符号を付してその説明を省略し、図6と相違する部分に
ついて説明した。
As described above, the shape of the scattering compensator 14 conforms to the shape of the range modulator 12. Conversely, if the shape of the range compensator 12 conforms to the shape of the range Is not asked. The range modulator 3 according to the present embodiment includes a range modulator 12.
And a scattering compensator 14. The range modulator 12 and the scattering compensator 14 are provided in the vicinity. this is,
This is because, if both are provided apart from each other, it becomes difficult to compensate for the scattering of one of them. In FIG. 1, the same or corresponding parts as those in the conventional example shown in FIG. 6 are denoted by the same reference numerals, and the description thereof will be omitted, and the parts different from FIG. 6 will be described.

【0032】次に、上述した飛程変調装置3を構成する
飛程変調体12及び散乱補償体14の設計方法について
説明する。まず、飛程変調体12の材質である低散乱物
質に対して、1cmの厚さの水と同じエネルギー損失量
を与える低散乱物質の物質厚をWLとする。また、散乱
補償体14の材質である高散乱物質における同様の物質
厚をWHとする。また、任意の同じ散乱効果を与える低
散乱物質の物質厚をXLとし、高散乱物質の物質厚をX
Hとする。そして、本実施形態では、荷電粒子ビーム1
として運動エネルギー160MeVの陽子ビームを用
い、低散乱物質としてアルミニウム、高散乱物質として
鉛を用いたもので説明する。
Next, a method of designing the range modulator 12 and the scattering compensator 14 constituting the range modulator 3 will be described. First, let WL be the material thickness of the low scattering material that gives the same energy loss as 1 cm thick water to the low scattering material that is the material of the range modulator 12. Further, the same material thickness of the high scattering material which is the material of the scattering compensator 14 is denoted by WH. In addition, the material thickness of the low scattering material that gives the same scattering effect is XL, and the material thickness of the high scattering material is X
H. In the present embodiment, the charged particle beam 1
In the following description, a proton beam having a kinetic energy of 160 MeV is used, aluminum is used as a low scattering substance, and lead is used as a high scattering substance.

【0033】すると、各種物質厚は、文献によりXL=
8.9cm、XH=0.56cm、WL=0.472c
m、WH=0.174cmであることがわかる。なお、
この文献とは、R.B.バネット(R.M.Barnett)他著の
「レビュー オブ パーティクル プロパティーズ(Review
of Particle Properties)」(フィジカル レビュー(Phy
sical Review) D 54(1996) パート(Part)1)で
ある。なお、この文献によると、散乱効果は、近似で輻
射長を単位とする厚さの平方根に反比例することがわか
る。このため、同じ散乱効果を与える厚さとして輻射長
自身を用い、上述の各種物質厚を算出した。
Then, according to the literature, the thickness of various materials is XL =
8.9cm, XH = 0.56cm, WL = 0.472c
m, WH = 0.174 cm. In addition,
This document refers to R.S. B. Review of Particle Properties by RMBarnett et al.
of Particle Properties) ”(Physical Review (Phy
sical Review) D 54 (1996) Part 1). According to this document, it is understood that the scattering effect is approximately inversely proportional to the square root of the thickness in the unit of the radiation length. For this reason, the radiation length itself was used as the thickness that gives the same scattering effect, and the various material thicknesses described above were calculated.

【0034】また、前提条件として、飛程変調体12
(低散乱物質)の物質厚がゼロの時、荷電粒子ビーム1
は最小飛程位置に達するとする。また、散乱補償体14
(高散乱物質)の物質厚がゼロの時、荷電粒子ビーム1
は最大飛程位置に達するとする。なお、機械構造上、飛
程変調体12若しくは散乱補償体14の厚さをゼロにで
きない場合、この場合にはその飛程変調体12及び散乱
補償体14の厚さから最小厚を引いた残りの厚みに基づ
き下記の計算式が導出される。そして、この最小厚は、
飛程変調のコヒーレントなオフセット、すなわち単なる
飛程移動として全く別に扱われる。
As a precondition, the range modulator 12
When the material thickness of (low scattering material) is zero, charged particle beam 1
Reaches the minimum range position. Further, the scattering compensator 14
When the material thickness of (highly scattering material) is zero, charged particle beam 1
Reaches the maximum range position. When the thickness of the range modulator 12 or the scattering compensator 14 cannot be reduced to zero due to the mechanical structure, in this case, the thickness obtained by subtracting the minimum thickness from the thickness of the range modulator 12 or the scattering compensator 14 is obtained. The following calculation formula is derived based on the thickness of. And this minimum thickness is
It is treated completely differently as a coherent offset of range modulation, i.e. just a range movement.

【0035】これら最小飛程位置と最大飛程位置との間
の距離を飛程変調幅Sobpとする。また、荷電粒子の最小
飛程位置を基準とした最大飛程位置方向への移動量を相
対飛程移動量Rと称する。この相対飛程移動量Rは、荷
電粒子ビーム1が飛程変調体12に入射するその入射位
置により変化する。なお、これら飛程変調体12及び/
又は散乱補償体14を通過する荷電粒子ビーム1の散乱
効果は一定に調整される。
The distance between the minimum range position and the maximum range position is defined as the range modulation width Sobp. The amount of movement of the charged particles in the direction of the maximum range position based on the minimum range position is referred to as a relative range movement amount R. The relative range movement amount R changes depending on the incident position where the charged particle beam 1 is incident on the range modulator 12. Note that these range modulators 12 and / or
Alternatively, the scattering effect of the charged particle beam 1 passing through the scattering compensator 14 is adjusted to be constant.

【0036】以上のような定数及び前提条件を考慮し方
程式を組み立てると、低散乱物質の物質厚TLは以下の
ような式で求められる。 TL=XL*R/(XL/WL−XH/WH) また、相対飛程移動量Rに基づく高散乱物質の物質厚T
Hは以下のようになる。 TH=XH*(Sobp−R)/(XL/WL−XH/W
H)
When an equation is constructed in consideration of the above constants and preconditions, the material thickness TL of the low scattering substance can be obtained by the following equation. TL = XL * R / (XL / WL−XH / WH) Further, the material thickness T of the high scattering material based on the relative range movement amount R
H is as follows. TH = XH * (Sobp-R) / (XL / WL-XH / W
H)

【0037】例えば、飛程変調幅Sobp=10cmの場
合、荷電粒子ビーム1が最小飛程位置に達する時(相対
飛程移動量R=0cm)の、散乱補償体14である鉛の
最大厚THは0.36cmとなる。また、荷電粒子ビー
ム1が最大飛程位置に達する時(相対飛程移動量R=飛
程変調幅Sobp=10cm)の、飛程変調体12であるア
ルミの最大厚TLは5.7cmとなる。なお、飛程変調
のオフセット、この例では鉛0.36cm分の飛程移動
(水中で2.1cm)が生じるが、このオフセットにつ
いてはビームエネルギーの変更や飛程調整装置4の設定
等によって補償できる。
For example, when the range modulation width Sobp = 10 cm, when the charged particle beam 1 reaches the minimum range position (relative range movement amount R = 0 cm), the maximum thickness TH of the lead which is the scattering compensator 14 is TH. Is 0.36 cm. Further, when the charged particle beam 1 reaches the maximum range position (relative range movement amount R = range modulation width Sobp = 10 cm), the maximum thickness TL of the aluminum which is the range modulator 12 is 5.7 cm. . Note that an offset of the range modulation, in this example, a range movement of 0.36 cm of lead (2.1 cm in water) occurs, but this offset is compensated by changing the beam energy, setting the range adjustment device 4 and the like. it can.

【0038】このように、本実施形態の荷電粒子線照射
装置の散乱効果は、飛程変調装置3からも加えられるこ
とから、本実施形態の荷電粒子線照射装置は、従来の荷
電粒子線照射装置と異なり、ビーム拡大装置2及び飛程
変調装置3とを総合的に考慮して設定される。なお、本
実施形態の荷電粒子線照射装置は、荷電粒子線ビーム1
を患部8に照射して患部8を治療する荷電粒子線治療装
置に応用される。
As described above, since the scattering effect of the charged particle beam irradiation apparatus of the present embodiment is also added from the range modulation device 3, the charged particle beam irradiation apparatus of the present embodiment is different from the conventional charged particle beam irradiation apparatus. Unlike the apparatus, the setting is made in consideration of the beam expanding apparatus 2 and the range modulation apparatus 3 comprehensively. Note that the charged particle beam irradiation apparatus according to the present embodiment includes a charged particle beam 1
Is applied to the affected part 8 to treat the affected part 8.

【0039】このように、本実施形態の飛程変調装置3
は、入射される荷電粒子ビーム1を全て同様に散乱さ
せ、所定の照射領域での荷電粒子の粒子強度を平坦に均
等にすることができるため、所定の照射領域での荷電粒
子ビーム1の照射ムラを抑えることができる。また、こ
の本実施形態の飛程変調装置3を荷電粒子治療装置に用
いれば、所定の患部8を治療計画通りの一様線量で治療
することができ、治療効果を向上させることができる。
As described above, the range modulation device 3 of the present embodiment
Can scatter the incident charged particle beam 1 in the same manner, and make the particle intensity of the charged particle in the predetermined irradiation area flat and uniform, so that the irradiation of the charged particle beam 1 in the predetermined irradiation area Unevenness can be suppressed. In addition, if the range modulation device 3 of this embodiment is used for a charged particle therapy device, a predetermined diseased part 8 can be treated with a uniform dose according to a treatment plan, and the treatment effect can be improved.

【0040】さらに、本実施形態の飛程変調装置3は、
他の実施形態に示す飛程変調装置3よりも小型化でき
る。これは、他の実施形態の飛程変調装置3が回転駆動
するためであり、本実施形態の飛程変調装置3は、回転
駆動のために確保しなければならないスペースや、飛程
変調装置3を回転駆動させるための機構を備える必要が
無いためである。
Further, the range modulation device 3 of this embodiment is
The size can be reduced more than the range modulation device 3 shown in other embodiments. This is because the range modulator 3 according to the other embodiment is driven to rotate. The range modulator 3 according to the present embodiment includes a space that must be ensured for rotational drive and the range modulator 3. This is because there is no need to provide a mechanism for rotating the.

【0041】実施の形態2.本発明における飛程変調装
置3の他の実施形態を図2に示す。図2は実施形態2の
飛程変調装置3の断面を示す断面図である。なお、図2
において、図1に示す実施形態1と同一又は相当の部分
には、同一符号を付してその説明を省略する。なお、本
実施形態の飛程変調体12は、従来の回転円盤型飛程変
調装置3の飛程変調体12と同様である。
Embodiment 2 FIG. 2 shows another embodiment of the range modulation device 3 according to the present invention. FIG. 2 is a cross-sectional view illustrating a cross section of the range modulation device 3 according to the second embodiment. Note that FIG.
In FIG. 1, the same or corresponding parts as those in the first embodiment shown in FIG. The range modulator 12 of the present embodiment is the same as the range modulator 12 of the conventional rotating disk type range modulator 3.

【0042】また、散乱補償体14は飛程変調体12と
同じ回転軸13上に設けられる。この散乱補償体14
は、飛程変調体12と同じタイミングで回転し、その形
状や厚みは、飛程変調体12の形状や厚みに対応して形
成される。つまり、飛程変調体12と散乱補償体14と
の対応関係は回転時も維持される。また、これら飛程変
調体12及び散乱補償体14は一体成形してもよい。
The scattering compensator 14 is provided on the same rotation axis 13 as the range modulator 12. This scattering compensator 14
Rotates at the same timing as the range modulator 12, and its shape and thickness are formed corresponding to the shape and thickness of the range modulator 12. That is, the correspondence between the range modulator 12 and the scattering compensator 14 is maintained even during rotation. Further, the range modulator 12 and the scattering compensator 14 may be integrally formed.

【0043】このように、本実施形態の飛程変調装置3
は、入射される荷電粒子ビーム1を全て同様に散乱さ
せ、所定の照射領域での荷電粒子の粒子強度を平坦に均
等にすることができるため、所定の照射領域での荷電粒
子ビーム1の照射ムラを抑えることができる。また、こ
の本実施形態の飛程変調装置3を荷電粒子治療装置に用
いれば、所定の患部8を治療計画通りの一様線量で治療
することができ、治療効果を向上させることができる。
As described above, the range modulation device 3 of the present embodiment
Can scatter the incident charged particle beam 1 in the same manner, and make the particle intensity of the charged particle in the predetermined irradiation area flat and uniform, so that the irradiation of the charged particle beam 1 in the predetermined irradiation area Unevenness can be suppressed. In addition, if the range modulation device 3 of this embodiment is used for a charged particle therapy device, a predetermined diseased part 8 can be treated with a uniform dose according to a treatment plan, and the treatment effect can be improved.

【0044】実施の形態3.本発明における飛程変調装
置3の他の実施形態を図3に示す。図3は実施形態3の
飛程変調装置3の断面を示す断面図である。なお、図3
において、図1に示す実施形態1と同一又は相当の部分
には、同一符号を付してその説明を省略する。なお、本
実施形態の散乱補償体14は、飛程変調体12と一体成
形され、略円筒形に形成される。
Embodiment 3 FIG. FIG. 3 shows another embodiment of the range modulation device 3 according to the present invention. FIG. 3 is a cross-sectional view illustrating a cross section of the range modulation device 3 according to the third embodiment. Note that FIG.
In FIG. 1, the same or corresponding parts as those in the first embodiment shown in FIG. Note that the scattering compensator 14 of the present embodiment is formed integrally with the range modulator 12 and is formed in a substantially cylindrical shape.

【0045】そして、この散乱補償体14は、飛翔変調
体12と同じタイミングで回転し、その形状や厚みは、
飛翔変調体12の形状や厚みに対応して形成される。つ
まり、飛程変調体12と散乱補償体14との対応関係は
回転時も維持される。なお、本実施形態の飛程変調装置
も従来と同様に、略円筒形の回転軸13に対して垂直な
方向や、ねじれの位置から荷電粒子ビーム1が入射され
る。本実施形態の略円筒形の飛程変調装置3は、その外
周が滑らかに形成されているが、その内周を滑らかに形
成してもよい。
The scattering compensator 14 rotates at the same timing as the flight modulator 12, and its shape and thickness are
It is formed corresponding to the shape and thickness of the flight modulator 12. That is, the correspondence between the range modulator 12 and the scattering compensator 14 is maintained even during rotation. The charged particle beam 1 is also incident on the range modulation device of the present embodiment from a direction perpendicular to the substantially cylindrical rotating shaft 13 or from a twisted position, similarly to the related art. Although the substantially cylindrical range modulator 3 of the present embodiment has a smooth outer periphery, it may have a smooth inner periphery.

【0046】また、本実施形態の略円筒形の飛程変調装
置3は、その外周側に散乱補償体14を設け、一方内周
側に飛程変調体12を設けているが、内周側に散乱補償
体14を設け、外周側に飛程変調体12を設けてもよ
い。さらに、本実施形態の略円筒形の飛程変調装置3
は、散乱補償体14及び飛程変調体12が一体成形され
ているが、これらをそれぞれ略円筒形に形成し、同じ回
転軸13、及び同じタイミングで同期させて回転させて
もよい。
In the substantially cylindrical range modulator 3 of the present embodiment, the scattering compensator 14 is provided on the outer peripheral side, and the range modulator 12 is provided on the inner peripheral side. May be provided with a scattering compensator 14, and the range modulator 12 may be provided on the outer peripheral side. Further, the substantially cylindrical range modulator 3 of the present embodiment.
Although the scattering compensator 14 and the range modulator 12 are integrally formed, they may be formed in a substantially cylindrical shape, and may be synchronously rotated at the same rotation axis 13 and at the same timing.

【0047】つまり、飛程変調体12と散乱補償体14
との対応関係は回転時も維持されるものであり、これら
飛程変調体12及び散乱補償体14の形状や厚みは互い
に対応して形成される。なお、これら2つの略円筒形
は、飛程変調体12を回転軸13側に設けてもよいし、
散乱補償体14を回転軸13側に設けてもよい。
That is, the range modulator 12 and the scattering compensator 14
Is maintained even during rotation, and the shape and thickness of the range modulator 12 and the scattering compensator 14 are formed corresponding to each other. In addition, in these two substantially cylindrical shapes, the range modulator 12 may be provided on the rotating shaft 13 side,
The scattering compensator 14 may be provided on the rotating shaft 13 side.

【0048】このように、本実施形態の飛程変調装置3
は、入射される荷電粒子ビーム1を全て同様に散乱さ
せ、所定の照射領域での荷電粒子の粒子強度を平坦に均
等にすることができるため、所定の照射領域での荷電粒
子ビーム1の照射ムラを抑えることができる。また、こ
の本実施形態の飛程変調装置3を荷電粒子治療装置に用
いれば、所定の患部8を治療計画通りの一様線量で治療
することができ、治療効果を向上させることができる。
As described above, the range modulation device 3 of the present embodiment
Can scatter the incident charged particle beam 1 in the same manner, and make the particle intensity of the charged particle in the predetermined irradiation area flat and uniform, so that the irradiation of the charged particle beam 1 in the predetermined irradiation area Unevenness can be suppressed. In addition, if the range modulation device 3 of this embodiment is used for a charged particle therapy device, a predetermined diseased part 8 can be treated with a uniform dose according to a treatment plan, and the treatment effect can be improved.

【0049】[0049]

【発明の効果】この発明にかかる飛程変調装置は、荷電
粒子線が入力され、荷電粒子線の飛程を調整すると共
に、荷電粒子線が入力された入力位置に基づき荷電粒子
線に所定の散乱効果を付与する飛程変調体と、飛程変調
体から出力された荷電粒子線が入力され、荷電粒子線に
付与された散乱効果を入力位置に拘わらず一様に調整し
て出力する散乱補償体とを有するものであり、入射され
る荷電粒子線を全て同様に散乱させ、所定の照射領域で
の荷電粒子の粒子強度を平坦に均等にすることができる
ため、所定の照射領域での荷電粒子線の照射ムラを抑え
ることができる。
According to the range modulation apparatus of the present invention, a charged particle beam is input, the range of the charged particle beam is adjusted, and a predetermined value is applied to the charged particle beam based on the input position where the charged particle beam is input. A range modulator that provides a scattering effect and a charged particle beam output from the range modulator are input, and the scattering effect applied to the charged particle beam is adjusted uniformly regardless of the input position and output. And a compensator, which scatters all the incident charged particle beams in the same manner, and makes it possible to make the particle intensity of the charged particles in the predetermined irradiation region flat and uniform. Irradiation unevenness of the charged particle beam can be suppressed.

【0050】この発明にかかる荷電粒子線治療装置は、
請求項1〜8のいずれかに記載の飛程変調装置を有する
ものであり、入射される荷電粒子線を全て同様に散乱さ
せ、所定の照射領域での荷電粒子の粒子強度を平坦に均
等にすることができるため、所定の患部を治療計画通り
の一様線量で治療することができ、治療効果を向上させ
ることができる。
The charged particle beam therapy apparatus according to the present invention
It has the range modulation device according to any one of claims 1 to 8, and scatters all the charged particle beams incident thereon in the same manner, so that the particle intensity of the charged particles in a predetermined irradiation area is evenly and evenly. Therefore, a predetermined affected part can be treated with a uniform dose according to a treatment plan, and the treatment effect can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による実施形態1の荷電粒子線照射装
置が有する飛程変調装置3の断面を示す断面図である。
FIG. 1 is a cross-sectional view showing a cross section of a range modulation device 3 included in a charged particle beam irradiation apparatus according to a first embodiment of the present invention.

【図2】 本発明による実施形態2の荷電粒子線照射装
置が有する飛程変調装置3の断面を示す断面図である。
FIG. 2 is a cross-sectional view showing a cross section of a range modulation device 3 included in a charged particle beam irradiation apparatus according to a second embodiment of the present invention.

【図3】 本発明による実施形態3の荷電粒子線照射装
置が有する飛程変調装置3の断面を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a cross section of a range modulation device 3 included in a charged particle beam irradiation apparatus according to a third embodiment of the present invention.

【図4】 従来の荷電粒子線照射装置の構成を示す構成
図である。
FIG. 4 is a configuration diagram showing a configuration of a conventional charged particle beam irradiation apparatus.

【図5】 従来の荷電粒子線照射装置が有するビーム拡
大装置2の構成を示す構成図であり、(a)はワブラー法
を用いたビーム拡大装置2であり、(b)は二重散乱体法
を用いたビーム拡大装置2である。
5A and 5B are configuration diagrams showing a configuration of a beam expanding device 2 included in a conventional charged particle beam irradiation device. FIG. 5A is a beam expanding device 2 using a Wobbler method, and FIG. 5B is a double scatterer. This is a beam expansion device 2 using a method.

【図6】 従来の荷電粒子線照射装置が有する飛程変調
装置3の構成を示す構成図であり、(a)はバーリッジフ
ィルター型の飛程変調装置3であり、(b)は回転円盤型
の飛程変調装置3であり、(c)は回転円筒型の飛程変調
装置3である。
6A and 6B are configuration diagrams showing a configuration of a range modulation device 3 included in a conventional charged particle beam irradiation apparatus, wherein FIG. 6A is a range modulation device 3 of a ridge filter type, and FIG. (C) is a rotary cylindrical range modulator.

【図7】 所定の照射条件下における飛程変調装置3の
特性を示す特性図である。
FIG. 7 is a characteristic diagram showing characteristics of the range modulation device 3 under predetermined irradiation conditions.

【符号の説明】[Explanation of symbols]

1 荷電粒子ビーム、2 ビーム拡大装置、3 飛程変
調装置、4 飛程調整装置、5 照射野限定装置、6
飛程補償装置、7 患者、8 患部、9 電磁石対、1
0 第一の散乱体、11 第二の散乱体、12 飛程変
調体、13 回転軸、14 散乱補償体。
1 charged particle beam, 2 beam expansion device, 3 range modulation device, 4 range adjustment device, 5 irradiation field limiting device, 6
Range compensator, 7 patients, 8 affected area, 9 electromagnet pairs, 1
0 first scatterer, 11 second scatterer, 12 range modulator, 13 rotation axis, 14 scattering compensator.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子線が入力され、上記荷電粒子線の
飛程を調整すると共に、上記荷電粒子線が入力された入
力位置に基づき上記荷電粒子線に所定の散乱効果を付与
する飛程変調体と、 上記飛程変調体から出力された上記荷電粒子線が入力さ
れ、上記荷電粒子線に付与された散乱効果を入力位置に
拘わらず一様に調整して出力する散乱補償体とを有する
ことを特徴とする飛程変調装置。
1. A range in which a charged particle beam is inputted, a range of the charged particle beam is adjusted, and a predetermined scattering effect is imparted to the charged particle beam based on an input position where the charged particle beam is inputted. A modulator and a scattering compensator to which the charged particle beam output from the range modulator is input, and that the scattering effect imparted to the charged particle beam is uniformly adjusted and output regardless of the input position. A range modulation device, comprising:
【請求項2】荷電粒子線が入力され、飛程変調体の任意
の位置から出力される荷電粒子線の散乱効果が一様とな
るように上記荷電粒子線が入力された入力位置に基づく
所定の散乱効果を上記荷電粒子線に付与する散乱補償体
と、 上記散乱補償体から出力された上記荷電粒子線が入力さ
れ、上記荷電粒子線の飛程を調整すると共に、上記荷電
粒子線が入力された入力位置に基づき上記荷電粒子線に
所定の散乱効果を付与する上記飛程変調体とを有するこ
とを特徴とする飛程変調装置。
2. A method according to claim 1, wherein the charged particle beam is inputted and a predetermined value based on the input position where the charged particle beam is inputted so that the scattering effect of the charged particle beam outputted from an arbitrary position of the range modulator is uniform. A scattering compensator that imparts the scattering effect of the charged particle beam to the charged particle beam, the charged particle beam output from the scattering compensator is input, and the range of the charged particle beam is adjusted, and the charged particle beam is input. A range modulator that imparts a predetermined scattering effect to the charged particle beam based on the input position obtained.
【請求項3】荷電粒子線が入力され、上記荷電粒子線が
入力された入力タイミングに基づき、上記荷電粒子線の
飛程を調整すると共に、上記荷電粒子線に所定の散乱効
果を付与する飛程変調体と、 上記飛程変調体から出力された上記荷電粒子線が入力さ
れ、上記荷電粒子線に付与された散乱効果を入力タイミ
ングに拘わらず一様に調整して出力する散乱補償体とを
有することを特徴とする飛程変調装置。
3. A charged particle beam is inputted, a range of the charged particle beam is adjusted based on an input timing of the input of the charged particle beam, and a flying distance for giving a predetermined scattering effect to the charged particle beam is provided. And a scattering compensator to which the charged particle beam output from the range modulator is input, and that the scattering effect imparted to the charged particle beam is uniformly adjusted and output regardless of the input timing. A range modulation device comprising:
【請求項4】荷電粒子線が入力され、飛程変調体から任
意のタイミングで出力される荷電粒子線の散乱効果が一
様となるように上記荷電粒子線が入力された入力タイミ
ングに基づく所定の散乱効果を上記荷電粒子線に付与す
る散乱補償体と、 上記散乱補償体から出力された上記荷電粒子線が入力さ
れ、上記荷電粒子線が入力された入力タイミングに基づ
き、上記荷電粒子線の飛程を調整すると共に、上記荷電
粒子線に所定の散乱効果を付与する上記飛程変調体とを
有することを特徴とする飛程変調装置。
4. A predetermined method based on the input timing at which the charged particle beam is input so that the scattering effect of the charged particle beam output at an arbitrary timing from the range modulator is uniform. A scattering compensator that imparts the scattering effect of the charged particle beam to the charged particle beam, and the charged particle beam output from the scattering compensator is input, based on the input timing at which the charged particle beam is input, A range modulator that adjusts a range and imparts a predetermined scattering effect to the charged particle beam.
【請求項5】第一の散乱物質が並設された飛程変調体
と、 上記飛程変調体の近傍でその相対的な位置が固定され、
上記第一の散乱物質よりも散乱効果の高い第二の散乱物
質を用いて上記飛程変調体の形状に基づく形状に成形
し、上記飛程変調体を経て任意の位置から入力された荷
電粒子線の散乱効果を一様に調整して出力する散乱補償
体とを有することを特徴とする飛程変調装置。
5. A range modulator in which a first scattering substance is juxtaposed, and a relative position is fixed near the range modulator,
Formed into a shape based on the shape of the range modulator using a second scattering material having a higher scattering effect than the first scattering material, and charged particles input from an arbitrary position via the range modulator A range compensator comprising: a scattering compensator for uniformly adjusting and outputting a line scattering effect.
【請求項6】飛程変調体は、第一の散乱物質が楔型であ
ることを特徴とする請求項5に記載の飛程変調装置。
6. The range modulator according to claim 5, wherein the range modulator has a wedge-shaped first scattering material.
【請求項7】回転軸を中心に異なる厚さの第一の散乱物
質が並設して円盤状に形成され、上記回転軸を中心に回
転する飛程変調体と、 上記飛程変調体の近傍に設けられ、上記飛程変調体とそ
の相対的な位置関係が固定されたまま上記回転軸を中心
に回転し、上記第一の散乱物質よりも散乱効果の高い第
二の散乱物質を用いて上記飛程変調体の形状に基づく形
状に成形され、上記飛程変調体を経て任意の入力タイミ
ングで入力された荷電粒子線の散乱効果を一様に調整し
て出力する散乱補償体とを有することを特徴とする飛程
変調装置。
7. A range modulator in which first scattering substances having different thicknesses are arranged side by side around a rotation axis and are formed in a disk shape, and the range modulator rotates about the rotation axis. Provided in the vicinity, the range modulator and its relative positional relationship are fixed and rotated about the rotation axis, using a second scattering material having a higher scattering effect than the first scattering material. And a scattering compensator that is formed into a shape based on the shape of the range modulator and uniformly adjusts and outputs the scattering effect of the charged particle beam input at an arbitrary input timing via the range modulator. A range modulation device, comprising:
【請求項8】飛程変調体は、回転軸を中心に異なる厚さ
の第一の散乱物質が並設され、円盤状若しくは円筒状に
形成されたことを特徴とする請求項7に記載の飛程変調
装置。
8. The range modulator according to claim 7, wherein first scattering substances having different thicknesses are arranged side by side around the rotation axis, and are formed in a disk shape or a cylindrical shape. Range modulation device.
【請求項9】請求項1〜8のいずれかに記載の飛程変調
装置を有することを特徴とする荷電粒子線治療装置。
9. A charged particle beam therapy device comprising the range modulation device according to claim 1. Description:
JP8856298A 1998-04-01 1998-04-01 Flying range modulator and charged particle ray theraputic instrument using the modulator Pending JPH11285544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8856298A JPH11285544A (en) 1998-04-01 1998-04-01 Flying range modulator and charged particle ray theraputic instrument using the modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8856298A JPH11285544A (en) 1998-04-01 1998-04-01 Flying range modulator and charged particle ray theraputic instrument using the modulator

Publications (1)

Publication Number Publication Date
JPH11285544A true JPH11285544A (en) 1999-10-19

Family

ID=13946319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8856298A Pending JPH11285544A (en) 1998-04-01 1998-04-01 Flying range modulator and charged particle ray theraputic instrument using the modulator

Country Status (1)

Country Link
JP (1) JPH11285544A (en)

Similar Documents

Publication Publication Date Title
EP1641534B1 (en) Multi-leaf collimator
Pedroni et al. The PSI Gantry 2: a second generation proton scanning gantry
US6449336B2 (en) Multi-source intensity-modulated radiation beam delivery system and method
Ling et al. Commissioning and quality assurance of RapidArc radiotherapy delivery system
US20060226372A1 (en) Charged particle beam extraction system and method
US8154001B2 (en) Ion radiation therapy system with variable beam resolution
TWI404549B (en) Bolus,bolus manufacturing method,particle beam therapy system,and treatment planning apparatus
US5216255A (en) Beam profile generator for photon radiation
US20030086530A1 (en) Methods and apparatus for planning and delivering intensity modulated radiation fields with a rotating multileaf collimator
Mori et al. Systematic evaluation of four‐dimensional hybrid depth scanning for carbon‐ion lung therapy
JPH11142600A (en) Charged particle beam irradiation device and irradiation method
JP2007222433A (en) Charged particle beam irradiation system and charged particle beam emission method
CN103794261A (en) Particle beam irradiation apparatus and particle beam therapy system
US20210031053A1 (en) Radiation treatment head and radiation treatment device
Schätti et al. First experimental results of motion mitigation by continuous line scanning of protons
WO2017080118A1 (en) Particle irradiation device and particle therapy system comprising device
Xia et al. Delivery systems of intensity-modulated radiotherapy using conventional multileaf collimators
JPH0467875A (en) Radiation irradiating field limiting device
JP2000214298A (en) Charged particle beam irradiator, energy compensator used for such device, and method for irradiating object with charged particle beam
Yonai et al. Evaluation of beam wobbling methods for heavy‐ion radiotherapy
Anferov Scan pattern optimization for uniform proton beam scanning
Zenklusen et al. Preliminary investigations for the option to use fast uniform scanning with compensators on a gantry designed for IMPT
JP7467203B2 (en) Radiation therapy system and method for operating a radiation therapy device
JPH11285544A (en) Flying range modulator and charged particle ray theraputic instrument using the modulator
JP2011212395A (en) Treatment planning instrument and corpuscular beam therapeutic instrument using treatment planning instrument

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A02