JPH11285252A - Charger - Google Patents

Charger

Info

Publication number
JPH11285252A
JPH11285252A JP10099841A JP9984198A JPH11285252A JP H11285252 A JPH11285252 A JP H11285252A JP 10099841 A JP10099841 A JP 10099841A JP 9984198 A JP9984198 A JP 9984198A JP H11285252 A JPH11285252 A JP H11285252A
Authority
JP
Japan
Prior art keywords
voltage
switch
capacitor
power supply
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099841A
Other languages
Japanese (ja)
Inventor
Akinobu Matsumoto
顕信 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP10099841A priority Critical patent/JPH11285252A/en
Publication of JPH11285252A publication Critical patent/JPH11285252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable restraining the peak value of a charging current within a previously set value when the voltage of an AC input power source is changed, protecting elements constituting a charging circuit from overcurrents, and reduc ing the element capacity, without increasing overload capacity of the elements. SOLUTION: This charger comprises a rectifying circuit 2 the AC power source of which is its input a switch 4, a resistor 5 connected in parallel with the switch 4, and a smoothing circuit which closes the switch 4 when a DC voltage exceeds a specified value, and makes a current flow in a capacitor 6. The charger is provided with a computing element which operates the difference between the peak voltage of the AC input power source and a voltage applied to the capacitor, a previously set voltage setting apparatus, and a comparator 16 which compares both of them. The switch 4 is made to be shorted or opened by the output of the comparator 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はインバータ、コンバ
ータなどの電力変換器において、交流電源から整流して
直流電源を得て、その電源を平滑するためのコンデンサ
を充電する充電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for a power converter such as an inverter or a converter, which rectifies an AC power source to obtain a DC power source and charges a capacitor for smoothing the power source.

【0002】[0002]

【従来の技術】図3は従来の方法を示す説明図である。
図3において、交流入力電源1は整流器2に供給され、
この出力は直流電源に変換される。この直流を平滑する
ために一般にコンデンサ6が接続される。該コンデンサ
6は容量が大きいため、充電回路に直列に接続された抵
抗5により充電電流を制限し、整流器2、抵抗5と並列
接続されたスイッチ4、コンデンサ6を過電流から保護
する。コンデンサ6に充電され直流電圧が上昇したこと
を電圧検出回路15で検出し、抵抗5を電磁接触器また
は半導体スイッチ(以下スイッチ4とする)により短絡
する。短絡は、交流電源とコンデンサ印加電圧の電位差
と配線インピーダンスで決まる電流が、充電回路を構成
する機器を損傷しないと推定されるまでコンデンサの印
加電圧が上昇した時点で行う。また短絡したスイッチを
開放する場合は、スイッチを短絡した電位より低く設定
してヒステリシス特性をもたせ、スイッチのチャタリン
グを防止する。
2. Description of the Related Art FIG. 3 is an explanatory view showing a conventional method.
In FIG. 3, an AC input power supply 1 is supplied to a rectifier 2,
This output is converted to a DC power supply. Generally, a capacitor 6 is connected to smooth this DC. Since the capacitor 6 has a large capacity, the charging current is limited by the resistor 5 connected in series to the charging circuit, and the rectifier 2, the switch 4 connected in parallel with the resistor 5, and the capacitor 6 are protected from overcurrent. The voltage detection circuit 15 detects that the DC voltage has risen by charging the capacitor 6, and the resistor 5 is short-circuited by an electromagnetic contactor or a semiconductor switch (hereinafter referred to as a switch 4). The short circuit is performed when the voltage applied to the capacitor increases until it is estimated that the current determined by the potential difference between the AC power supply and the voltage applied to the capacitor and the wiring impedance does not damage the equipment constituting the charging circuit. When the short-circuited switch is opened, the switch is set lower than the short-circuited potential so as to have a hysteresis characteristic, thereby preventing the switch from chattering.

【0003】図4は図3の作用を示す波形図である。図
4において、交流入力電源1を投入、スイッチ4を短絡
および該スイッチ短絡後、交流電源1が喪失し再び復帰
した場合のコンデンサ電圧、充電電流波形である。スイ
ッチ4を短絡電圧レベルVonおよび開放する電圧レベ
ルVoffは一般には電源電圧に依存させず、あらかじ
め設定されたレベルである。スイッチ4を短絡するレベ
ルは、前述の通り充電回路を構成する素子を過電流から
保護するために、できる限り電源電圧の飽和レベルに近
い電圧まで上昇させた方がよい。しかし、一般に電力変
換器などの産業に応用される装置は、定格電圧の+10
%、―10%の範囲で動作を保証しなけばならない。短
絡レベルは電源が最も低い場合を想定して設定する。
FIG. 4 is a waveform chart showing the operation of FIG. FIG. 4 shows the capacitor voltage and charging current waveforms when the AC input power supply 1 is turned on, the switch 4 is short-circuited, and the AC power supply 1 is lost and restored after the switch short-circuit. The short-circuit voltage level Von and the voltage level Voff at which the switch 4 is opened are generally levels set in advance without depending on the power supply voltage. As described above, the level at which the switch 4 is short-circuited should be raised to a voltage as close as possible to the saturation level of the power supply voltage in order to protect elements constituting the charging circuit from overcurrent. However, devices generally applied to industries such as power converters have a rated voltage of +10.
Operation must be guaranteed in the range of%, -10%. The short-circuit level is set assuming that the power supply is the lowest.

【0004】したがって、電源電圧が最も高い場合は短
絡レベルと電源レベルの電位差が非常に大きくなること
もあり、配線インピーダンス3が低い場合は過電流によ
り充電回路素子を損傷させることもある。また、短絡し
たスイッチ4を開放する電位はその装置の動作が保証さ
れるレベル以下に設定されなければならない。動作保証
レベルは最低定格電圧のー15%程度に設定される場合
が多く、開放レベルはさらに低く設定しなければならな
い。例えば、インバータの定格電圧が400Vから46
0Vの範囲である場合を例に試算してみる。最低電圧は
定格電圧400Vのー10%の360Vとなり、このと
きの直流電圧は無負荷のピーク充電を想定すると507
Vであり、短絡レベルは480〜490V程度に設定す
ると電位差は17〜27Vである。しかし、電源が46
0Vの+10%の506Vの場合の最大電圧は713V
になり、短絡時点の電位差は223V〜233Vに増加
する。さらに開放電圧レベルは400Vのー15%を動
作保証電圧を考慮したとすると479V以下に設定しな
ければならない。470vを開放電圧に設定した場合は
短絡時点の電位差は最大243Vになる。
[0004] Therefore, when the power supply voltage is the highest, the potential difference between the short-circuit level and the power supply level may be extremely large, and when the wiring impedance 3 is low, the overcurrent may damage the charging circuit element. Further, the potential for opening the short-circuited switch 4 must be set to a level below the level at which the operation of the device is guaranteed. The operation guarantee level is often set to about -15% of the minimum rated voltage, and the open level must be set lower. For example, if the rated voltage of the inverter is 400 V to 46
A trial calculation will be made by taking the case of the range of 0 V as an example. The minimum voltage is 360 V, which is -10% of the rated voltage of 400 V, and the DC voltage at this time is 507 assuming no-load peak charging.
V, and when the short-circuit level is set to about 480-490V, the potential difference is 17-27V. However, the power supply is 46
The maximum voltage at 506V which is + 10% of 0V is 713V
, And the potential difference at the time of the short circuit increases to 223 V to 233 V. Further, the open-circuit voltage level must be set to 479 V or less, considering -15% of 400 V in consideration of the operation guarantee voltage. When 470v is set to the open voltage, the potential difference at the time of short circuit becomes 243V at the maximum.

【0005】[0005]

【発明が解決しようとする課題】このように電源電圧が
最小と最大を比較すると、9〜14倍の電流の差異が生
じることになり、装置に損傷を与える場合も考えられ
る。また損傷しないように装置の過電流耐量を大きくす
る必要がある。特に、前記Voffレベル直前までコン
デンサ充電電圧が降下した時点で電源が停電復帰した場
合は、前記抵抗による電流制限がないので過電流によ
り、半導体を損傷する場合がある。本発明は上述した点
に鑑みて創案されたもので、その目的とするところは、
これらの欠点を解決する充電装置を提供することにあ
る。
As described above, when the power supply voltage is compared between the minimum and the maximum, a difference in current of 9 to 14 times occurs, which may possibly damage the device. Further, it is necessary to increase the overcurrent withstand capability of the device so as not to be damaged. In particular, if the power supply recovers from a power failure when the capacitor charging voltage drops to just before the Voff level, the semiconductor may be damaged due to overcurrent since there is no current limitation by the resistor. The present invention has been made in view of the above points, and its purpose is to
An object of the present invention is to provide a charging device that solves these drawbacks.

【0006】[0006]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、 1)請求項1において、交流電源を入力とする整流回路
と、スイッチと、該スイッチと並列に接続された抵抗
と、直流電圧が所定の電圧を越えた時点で前記スイッチ
を導通させてコンデンサに電流を流す平滑回路からなる
充電装置であって、交流入力電源のピーク値とコンデン
サ印加電圧の差を演算する演算器と、あらかじめ設定さ
れた電圧設定器と、これら両者を比較する比較器とを備
え、該比較器の出力によって前記スイッチを短絡または
開放させるよう構成したことを特徴とする充電装置であ
る。
Means for achieving the object are as follows: 1) A rectifier circuit having an AC power supply as an input, a switch, and a resistor connected in parallel with the switch. And a smoothing circuit that conducts the current to the capacitor by turning on the switch when the DC voltage exceeds a predetermined voltage, and calculates a difference between the peak value of the AC input power supply and the voltage applied to the capacitor. And a comparator for comparing the two with each other, wherein the switch is short-circuited or opened by the output of the comparator.

【0007】2)請求項2において、前記コンデンサの
充電時定数に比較して十分無視できるほど充電時間が経
過し、該コンデンサの電圧上昇が交流入力電圧相当に達
した時点では直流電圧を平均処理を行い、処理をされた
電圧から交流入力電圧を推定することにより得られた電
圧を、前記交流入力電源のピーク電圧に置き換えるよう
構成した請求項1記載の充電装置である。
2) In claim 2, the charging time elapses so as to be negligible compared to the charging time constant of the capacitor, and the DC voltage is averaged when the voltage rise of the capacitor reaches the equivalent of the AC input voltage. The charging device according to claim 1, wherein a voltage obtained by estimating an AC input voltage from the processed voltage is replaced with a peak voltage of the AC input power supply.

【0008】すなわち、充電回路の短絡または開放する
直流電圧レベルを、交流入力電源の電圧の大きさにより
変動させるものである。これにより交流入力電源レベル
と直流電圧との電位差を一定に保ち、スイッチが短絡さ
れた時点の最大充電電流を充電回路を構成する機器を過
電流から保護する。前述のように、本発明は交流電源電
圧を測定または推定する必要がある。その手段は 1)直接交流電圧を測定し,充電完了時点で直流電圧を
もとめる。 2)充電完了時点から十分時間が経過して後、スイッチ
を開放した場合は開放直前の平均値とする。
That is, the DC voltage level at which the charging circuit is short-circuited or opened is varied according to the magnitude of the voltage of the AC input power supply. As a result, the potential difference between the AC input power supply level and the DC voltage is kept constant, and the maximum charging current at the time when the switch is short-circuited protects the equipment constituting the charging circuit from overcurrent. As mentioned above, the present invention requires measuring or estimating the AC power supply voltage. The measures are as follows: 1) Measure the AC voltage directly, and obtain the DC voltage when charging is completed. 2) If the switch is opened after a sufficient time has passed since the completion of charging, the average value immediately before opening is used.

【0009】前述の交流入力電源1のピーク電圧を検出
または推定する手段についてそれぞれ説明する。交流電
圧を整流した直流電圧Vdcpは無負荷の場合は交流電
圧のピーク電圧Vacに等しくなり(1)式で表され
る。 Vdcp=√2*Vac--------------------------(1) したがって交流入力電源を測定することにより求められ
る。コンデンサに十分充電されている場合は、直流電圧
Vdcと交流入力電源のピーク電圧はほぼ等しい。した
がってコンデンサ印加電圧Vdcを平均してもとめるだ
けでよい。
Means for detecting or estimating the peak voltage of the AC input power supply 1 will be described. The DC voltage Vdcp obtained by rectifying the AC voltage becomes equal to the peak voltage Vac of the AC voltage when there is no load, and is expressed by the equation (1). Vdcp = √2 * Vac --------------- (1) Therefore, it can be obtained by measuring the AC input power supply. When the capacitor is sufficiently charged, the DC voltage Vdc and the peak voltage of the AC input power supply are substantially equal. Therefore, it is only necessary to average the capacitor applied voltage Vdc.

【0010】開放直前の直流電圧のサンプル値がそれぞ
れVdc1、Vdc2…Vdcnとすれば Vdc0=(vdc1+vdc2+ −−−・vdcn)/n--------- (2) で平均値を求め、交流入力電源1のピーク電圧を推定す
ることができる。前述の(1)、(2)式で得られた交
流入力電源1のピーク電圧値またはその推定値と充電途
中のコンデンサ印加電圧の差(以下△Vとする)が求ま
る。充電電流Icは(3)式で求まる。インピーダンス
Zは配線、整流ダイオード、電源などのインピーダンス
を合わせたものである。 Ic=△V/Z----------------------- (3) この充電電流Icが前述の装置、素子に損傷を与えない
ように△Vを決めればよいことは明らかである。以下、
本発明の一実施例を図面に基づいて詳述する。
Assuming that the DC voltage sample values immediately before the opening are Vdc1, Vdc2,..., Vdcn, the average value is obtained as follows: Vdc0 = (vdc1 + vdc2 + ---. Vdcn) / n , The peak voltage of the AC input power supply 1 can be estimated. The difference (hereinafter referred to as ΔV) between the peak voltage value of the AC input power supply 1 obtained by the above-described equations (1) and (2) or the estimated value thereof and the voltage applied to the capacitor during charging is obtained. The charging current Ic is obtained by equation (3). The impedance Z is a combination of impedances of a wiring, a rectifier diode, a power supply, and the like. Ic = {V / Z ----------------- (3) Prevent the charging current Ic from damaging the above-described device and element. It is clear that V should be determined. Less than,
An embodiment of the present invention will be described in detail with reference to the drawings.

【0011】[0011]

【発明の実施の形態】図1は本発明の一実施例を示すイ
ンバータ主回路とコンデンサ充電制御ブロック図であ
る。図1において、1は交流入力電源、2は整流器、4
はスイッチ、5は抵抗、6は平滑コンデンサ、7は放電
抵抗、8はインバータ回路、9は負荷である。3は入力
電源とコンデンサの間に存在するインピーダンスであ
る。コンデンサ6は交流入力電源1から抵抗5をを通る
経路で充電され、コンデンサに印加される電圧は時間経
過とともに上昇する。交流入力電源1のピーク電圧Vp
を電圧検出回路21によって、直流電圧検出回路15に
よりコンデンサ印加電圧Vdcを測定し、VpとVdc
の差△Vを得ることができる。設定器14の値Vsと該
△Vを比較器16により比較し、△VがVsより小さく
なった場合に比較器16の出力により、駆動回路18を
経てスイッチ4を短絡する。比較器の出力がスイッチ4
を解放に移行するにはヒステリシス回路17の作用によ
り、スイッチ4の短絡時の△Vの値より大きくなるよう
にして、スイッチ動作のチャタリングを防止する。
FIG. 1 is a block diagram showing an inverter main circuit and a capacitor charging control according to an embodiment of the present invention. In FIG. 1, 1 is an AC input power supply, 2 is a rectifier, 4
Is a switch, 5 is a resistor, 6 is a smoothing capacitor, 7 is a discharge resistor, 8 is an inverter circuit, and 9 is a load. 3 is an impedance existing between the input power supply and the capacitor. The capacitor 6 is charged in a path from the AC input power supply 1 through the resistor 5, and the voltage applied to the capacitor rises with time. Peak voltage Vp of AC input power supply 1
Is measured by the voltage detection circuit 21 and the DC voltage detection circuit 15 to measure the capacitor applied voltage Vdc.
Can be obtained. The value Vs of the setting device 14 is compared with the ΔV by the comparator 16. When the ΔV becomes smaller than Vs, the switch 4 is short-circuited by the output of the comparator 16 via the drive circuit 18. The output of the comparator is switch 4
In order to shift to the release, the hysteresis circuit 17 operates to make the value larger than the value of ΔV when the switch 4 is short-circuited, thereby preventing the chattering of the switch operation.

【0012】図2は充電後に交流入力電源1が喪失した
場合のスイッチ4を開放すべき電圧レベルを決定する本
発明の他の実施例を示すブロック図であり、図中、図1
と同符号のものは同じ機能を有する部分である。図2に
おいて、直流電圧Vdcは平均化処理器11により運
転、停止に係わらず常に平均値を記憶しておく。またV
dcは交流入力電源1が喪失したことを判定できる交流
電源喪失判定器12に入力しておく。交流電源喪失判定
器12で交流入力電源1が喪失したことを判定した場合
は該平均化処理器11で平均化された電圧を記憶し、喪
失直前の電圧Vdc0と喪失後の電圧Vdcの差△Vを
電圧偏差検出回路20で求める。電源が復帰した場合は
その時点の△Vを比較器16で設定器14の値Vsと比
較し、ΔVがヒステリシス幅Vhsよりも大きければス
イッチ4を開放する。小さい場合はスイッチを開放しな
い。交流電源喪失判定器12は、図4に示すように、電
源が喪失した場合にはVdcの減少率が喪失前に比較し
て明らかに大きくなるので検出は容易にできる。例えば
Vdcを一定時間毎にサンプルして前後の差から減少率
の変化を判定可能である。
FIG. 2 is a block diagram showing another embodiment of the present invention for determining a voltage level at which the switch 4 should be opened when the AC input power supply 1 is lost after charging.
Those having the same reference numerals as have the same functions. In FIG. 2, the average value of the DC voltage Vdc is always stored by the averaging processor 11 irrespective of operation or stop. Also V
dc is input to an AC power loss determiner 12 which can determine that the AC input power 1 has been lost. When it is determined by the AC power loss determiner 12 that the AC input power supply 1 has been lost, the voltage averaged by the averaging processor 11 is stored, and the difference between the voltage Vdc0 immediately before the loss and the voltage Vdc after the loss is obtained. V is obtained by the voltage deviation detection circuit 20. When the power is restored, the comparator 16 compares the current ΔV with the value Vs of the setter 14, and if ΔV is larger than the hysteresis width Vhs, the switch 4 is opened. If smaller, do not open the switch. As shown in FIG. 4, the AC power loss determiner 12 can easily detect the loss of power because the rate of decrease of Vdc becomes significantly larger than before the loss. For example, Vdc can be sampled at regular intervals to determine the change in the reduction rate from the difference between before and after.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、交
流入力電源の大きさが変わっても充電電流のピーク値を
あらかじめ設定した値に抑制することができ、充電回路
を構成する素子を過電流から保護できる。またこれによ
り該素子の過負荷耐量を大きくする必要がなく、素子容
量を節減できる。
As described above, according to the present invention, the peak value of the charging current can be suppressed to a predetermined value even if the magnitude of the AC input power source changes, and the elements constituting the charging circuit can be reduced. Can protect against overcurrent. This also eliminates the need to increase the overload capability of the element, and can reduce the element capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すインバータ主回路とコ
ンデンサ充電制御ブロック図である。
FIG. 1 is a block diagram of an inverter main circuit and a capacitor charging control showing an embodiment of the present invention.

【図2】本発明の他の一実施例を示す充電後に交流入力
電源が喪失した場合のスイッチを開放すべき電圧レベル
を決定するブロック図である。
FIG. 2 is a block diagram showing another embodiment of the present invention for determining a voltage level at which a switch should be opened when AC input power is lost after charging.

【図3】従来の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the related art.

【図4】交流入力電源が投入およびスイッチを短絡後、
交流電源が喪失し再び復帰した場合のコンデンサ電圧、
充電電流波形図である。
FIG. 4 after the AC input power is turned on and the switch is short-circuited
Capacitor voltage when AC power is lost and returned again,
It is a charging current waveform diagram.

【符号の説明】[Explanation of symbols]

1 交流電源 2 整流器 3 配線インピーダンス 4 スイッチ 5,7 抵抗 6 コンデンサ 8 インバータ回路 9 負荷 11 平均処理器 12 交流電源喪失判定装置 13 平均電圧記憶回路 14 設定器 15,21 電圧検出回路 16 比較器 17 ヒステリシス回路 18 スイッチ駆動回路 20 電圧偏差検出回路 DESCRIPTION OF SYMBOLS 1 AC power supply 2 Rectifier 3 Wiring impedance 4 Switch 5, 7 Resistance 6 Capacitor 8 Inverter circuit 9 Load 11 Average processor 12 AC power supply loss judgment device 13 Average voltage storage circuit 14 Setting device 15, 21 Voltage detection circuit 16 Comparator 17 Hysteresis Circuit 18 Switch drive circuit 20 Voltage deviation detection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 交流電源を入力とする整流回路と、スイ
ッチと、該スイッチと並列に接続された抵抗と、直流電
圧が所定の電圧を越えた時点で前記スイッチを導通させ
てコンデンサに電流を流す平滑回路からなる充電装置に
おいて、交流入力電源のピーク値とコンデンサ印加電圧
の差を演算する演算器と、あらかじめ設定された電圧設
定器と、これら両者を比較する比較器とを備え、該比較
器の出力によって前記スイッチを短絡または開放させる
よう構成したことを特徴とする充電装置。
A rectifier circuit having an AC power supply as an input, a switch, a resistor connected in parallel with the switch, and a switch which is turned on when a DC voltage exceeds a predetermined voltage to supply a current to a capacitor. A charging device including a flowing smoothing circuit includes a calculator for calculating a difference between a peak value of an AC input power supply and a voltage applied to a capacitor, a voltage setter set in advance, and a comparator for comparing these two. A charging device characterized in that the switch is short-circuited or opened by an output of a charger.
【請求項2】 前記コンデンサの充電時定数に比較して
十分無視できるほど充電時間が経過し、該コンデンサの
電圧上昇が交流入力電圧相当に達した時点では直流電圧
を平均処理を行い、処理をされた電圧から交流入力電圧
を推定することにより得られた電圧を、前記交流入力電
源のピーク電圧に置き換えるよう構成した請求項1記載
の充電装置。
2. The charging time elapses so as to be sufficiently negligible compared to the charging time constant of the capacitor, and when the voltage rise of the capacitor reaches the equivalent of the AC input voltage, the DC voltage is averaged, and the processing is performed. The charging device according to claim 1, wherein a voltage obtained by estimating an AC input voltage from the obtained voltage is replaced with a peak voltage of the AC input power supply.
JP10099841A 1998-03-30 1998-03-30 Charger Pending JPH11285252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099841A JPH11285252A (en) 1998-03-30 1998-03-30 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099841A JPH11285252A (en) 1998-03-30 1998-03-30 Charger

Publications (1)

Publication Number Publication Date
JPH11285252A true JPH11285252A (en) 1999-10-15

Family

ID=14258038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099841A Pending JPH11285252A (en) 1998-03-30 1998-03-30 Charger

Country Status (1)

Country Link
JP (1) JPH11285252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322651C (en) * 2002-04-22 2007-06-20 艾默生网络能源有限公司 Plug-and-play charger and its charge control method
JP2018015865A (en) * 2016-07-29 2018-02-01 株式会社マキタ Electric work machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322651C (en) * 2002-04-22 2007-06-20 艾默生网络能源有限公司 Plug-and-play charger and its charge control method
JP2018015865A (en) * 2016-07-29 2018-02-01 株式会社マキタ Electric work machine
CN107666238A (en) * 2016-07-29 2018-02-06 株式会社牧田 Electric working machine
US10658951B2 (en) 2016-07-29 2020-05-19 Makita Corporation Electric working machine and method for smoothing AC power supplied thereto
CN107666238B (en) * 2016-07-29 2021-06-25 株式会社牧田 Electric working machine
US11509129B2 (en) 2016-07-29 2022-11-22 Makita Corporation Electric working machine and method for smoothing AC power supplied thereto

Similar Documents

Publication Publication Date Title
KR100886041B1 (en) Charge and discharge controller
US5430636A (en) Inverter apparatus and inverter controlling method having fault protection
TWI699068B (en) Overcurrent protection in a battery charger
US5457377A (en) Method of monitoring the internal impedance of an accumulator battery in an uninterruptible power supply, and an uninterruptible power supply
US6601002B1 (en) Arrangements to detect and respond to disturbances in electrical power systems
CN109425776B (en) Battery current measurement
US8736215B2 (en) Motor drive device having function of varying DC link low-voltage alarm detection level
JP3655077B2 (en) Power supply
KR20200109129A (en) Apparatus And Method For Detecting Fault Of Pre-Charging Relay Of Inverter
US5506743A (en) Solid state overload relay with phase unbalance protection having RMS current approximation
JPH0880055A (en) Inverter device
KR20030080540A (en) Circuit Breaker for Detecting Overload
JPH1014097A (en) Capacitor capacitance determining device for power converter
US4825328A (en) Three phase electrical load protection device
JPH11285252A (en) Charger
JPH05215800A (en) Method for diagnosing deterioration of capacitor
CN111208360A (en) Detection circuit, system and consumer
JP2003032801A (en) Current-measuring device for motor-driven vehicle
KR102019243B1 (en) Capacitor state detection circuit and method using charging and discharging of precharge circuit
JP3849298B2 (en) Voltage type inverter
CN212031603U (en) Detection circuit, protection system and consumer
JP2812345B2 (en) Capacitor charging circuit
JPH09121473A (en) Ac power supply device
JP2016025779A (en) Motor drive device
GB2095058A (en) Voltage supplies or relays