JPH11283830A - Magnetoresistance effect film - Google Patents

Magnetoresistance effect film

Info

Publication number
JPH11283830A
JPH11283830A JP8482898A JP8482898A JPH11283830A JP H11283830 A JPH11283830 A JP H11283830A JP 8482898 A JP8482898 A JP 8482898A JP 8482898 A JP8482898 A JP 8482898A JP H11283830 A JPH11283830 A JP H11283830A
Authority
JP
Japan
Prior art keywords
layer
film
magnetization
resistance
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8482898A
Other languages
Japanese (ja)
Inventor
Shin Noguchi
伸 野口
Shigekazu Suwabe
繁和 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8482898A priority Critical patent/JPH11283830A/en
Publication of JPH11283830A publication Critical patent/JPH11283830A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Abstract

PROBLEM TO BE SOLVED: To obtain a resistance varying rate, which can be larger than that of a GMR film, namely capable of reaching even 30%, by showing the behavior of magnetic resistance which differs from a normal GMR film, namely a reverse magnetoresistance effect. SOLUTION: A magnetoresistance effect film is obtained by laminating a multilayer film, which is provided with plural ferromagnetic body layers 12 and 14 which are laminated through a nonmagnetic film and an antiferromagnetic body layer 15 laminated adjacent to a ferromagnetic body layer on one side of a nonmagnetic layer 13 among these layers 12 and 14, adjacent to a semiconductor. It is preferable that one of B, Al and Sb is doped to an Si layer as this semiconductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高密度磁気記録の読
み出しヘッド、特に巨大磁気抵抗効果を用いた磁気抵抗
効果膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a read head for high density magnetic recording, and more particularly to a magnetoresistive film using a giant magnetoresistance effect.

【0002】[0002]

【従来の技術】高密度磁気記録の読み出しヘッドとして
は異方性磁気抵抗効果を用いたものが一般である。これ
はNiFe合金薄膜に縦方向と横方向とにバイアス磁界
を印加しておき、薄膜の縦方向から約45°の方向に磁
化を向けておき、磁気記録媒体からの信号磁界によって
その磁化方向を変化させると薄膜の電気抵抗が変化する
ので、それによって信号を検出している。このような異
方性磁気抵抗効果素子によれば、その抵抗変化率は高々
約3%である。
2. Description of the Related Art A read head for high-density magnetic recording generally uses an anisotropic magnetoresistance effect. In this method, a bias magnetic field is applied to a NiFe alloy thin film in the vertical and horizontal directions, magnetization is oriented in a direction of about 45 ° from the vertical direction of the thin film, and the magnetization direction is changed by a signal magnetic field from a magnetic recording medium. Since the electric resistance of the thin film changes when it is changed, a signal is detected based on the change. According to such an anisotropic magnetoresistive element, the rate of change in resistance is at most about 3%.

【0003】磁気記録をより高密度にすると単位ビット
当たりの磁気記録媒体の面積が小さくなり、信号磁界が
弱くなる。そこで抵抗変化率の大きな方式が検討されて
おり、巨大磁気抵抗効果(GMR)を用いた磁気抵抗効
果膜(以下「GMR膜」と参照することがある)によれ
ば、その抵抗変化率は約7〜8%と大きなものが得られ
ている。
As the magnetic recording density increases, the area of the magnetic recording medium per unit bit decreases, and the signal magnetic field weakens. Therefore, a method with a large resistance change rate is being studied. According to a magnetoresistive film using the giant magnetoresistance effect (GMR) (hereinafter sometimes referred to as “GMR film”), the resistance change rate is about As large as 7 to 8% are obtained.

【0004】GMR膜は一般にAl2 3 などの基板上
に、Al2 3 の絶縁膜を介して形成されており、その
構造は一般に、非磁性層で分離された複数の強磁性体層
が積層されている。複数の強磁性体層のうち非磁性層の
一方の側の強磁性体層は反強磁性体層と隣接しており、
その磁化方向が固定されている。この強磁性体層は固定
層と呼ばれている。複数の強磁性体層のうち非磁性層の
他方の側の強磁性体層の磁化方向は外部磁界、例えば磁
気記録膜の信号磁界によって磁化方向が変化する。この
強磁性体層は自由層と呼ばれている。自由層の磁化方向
と固定層の磁化方向とによってGMR膜の抵抗が変化す
る。すなわち、磁気記録膜の信号磁界によってGMR膜
の抵抗が変化するので、GMR膜の抵抗によって磁気記
録膜の信号を検出することができる。
A GMR film is generally formed on a substrate of Al 2 O 3 or the like via an insulating film of Al 2 O 3. The structure of the GMR film is generally a plurality of ferromagnetic layers separated by a non-magnetic layer. Are laminated. The ferromagnetic layer on one side of the nonmagnetic layer among the plurality of ferromagnetic layers is adjacent to the antiferromagnetic layer,
The magnetization direction is fixed. This ferromagnetic layer is called a fixed layer. The magnetization direction of the ferromagnetic layer on the other side of the nonmagnetic layer among the plurality of ferromagnetic layers changes depending on an external magnetic field, for example, a signal magnetic field of the magnetic recording film. This ferromagnetic layer is called a free layer. The resistance of the GMR film changes depending on the magnetization direction of the free layer and the magnetization direction of the fixed layer. That is, since the resistance of the GMR film changes according to the signal magnetic field of the magnetic recording film, the signal of the magnetic recording film can be detected by the resistance of the GMR film.

【0005】GMR膜では、外部磁界が反強磁性体層の
磁化方向に印加されて、自由層の磁化が固定層の磁化と
平行に並んでいると抵抗が小さい。この外部磁界が零と
なっている状態及び、弱い外部磁界が反強磁性体層の磁
化と反対方向に印加されている状態では、固定層の磁化
と自由層の磁化が反平行となっている。この状態では、
抵抗は磁化が平行のときに比して約7〜8%大きくな
る。反強磁性体層の磁化方向と反対方向に印加された外
部磁界が、反強磁性体層と強磁性体層との間の交換結合
磁界の大きさよりも大となると、固定層の磁化が反転し
て、固定層と自由層の磁化が互いに平行となる。平行と
なると反平行のときに比して抵抗が約7〜8%落ちる。
In the GMR film, the resistance is small when an external magnetic field is applied in the direction of magnetization of the antiferromagnetic layer and the magnetization of the free layer is arranged in parallel with the magnetization of the fixed layer. In a state where the external magnetic field is zero and a state where a weak external magnetic field is applied in a direction opposite to the magnetization of the antiferromagnetic layer, the magnetization of the fixed layer and the magnetization of the free layer are antiparallel. . In this state,
The resistance is about 7 to 8% greater than when the magnetization is parallel. When the external magnetic field applied in the direction opposite to the magnetization direction of the antiferromagnetic layer becomes larger than the magnitude of the exchange coupling magnetic field between the antiferromagnetic layer and the ferromagnetic layer, the magnetization of the fixed layer is reversed. As a result, the magnetizations of the fixed layer and the free layer become parallel to each other. When it is parallel, the resistance drops by about 7 to 8% compared to when it is antiparallel.

【0006】[0006]

【発明が解決しようとする課題】半導体上に形成した磁
気抵抗効果膜は、通常のGMRとは違った磁気抵抗の挙
動、すなわち通常とは逆の磁気抵抗効果を示すことを発
見し、それに基づき本発明に至ったものである。
SUMMARY OF THE INVENTION It has been discovered that a magnetoresistive film formed on a semiconductor exhibits a magnetoresistive behavior different from that of a normal GMR, that is, a magnetoresistive effect opposite to that of a normal GMR. This has led to the present invention.

【0007】本発明では、特異な磁気抵抗効果を示す磁
気抵抗効果膜を提供することを目的としている。更に、
本発明では、通常のGMR膜よりも大きな抵抗変化率を
持った磁気抵抗効果膜を提供することも目的としてお
り、本発明の磁気抵抗効果膜では非常に大きな抵抗変化
率、例えば30%にも達するような大きな抵抗変化率の
得られる可能性もあるものである。
[0007] It is an object of the present invention to provide a magnetoresistive film exhibiting a unique magnetoresistive effect. Furthermore,
It is another object of the present invention to provide a magnetoresistive film having a higher resistance change rate than a normal GMR film. The magnetoresistive film of the present invention has a very large resistance change rate, for example, as high as 30%. There is a possibility that a large resistance change rate that can be achieved may be obtained.

【0008】[0008]

【課題を解決するための手段】本発明の磁気抵抗効果膜
は、非磁性層を介して積層された複数の強磁性体層と、
これら複数の強磁性体層のうち非磁性層の一方の側にあ
る強磁性体層に隣接して積層した反強磁性体層とを有す
る多層膜が半導体と隣接して積層されていることを特徴
とする。
According to the present invention, there is provided a magnetoresistive film comprising: a plurality of ferromagnetic layers stacked via a nonmagnetic layer;
A multilayer film having an antiferromagnetic layer stacked adjacent to a ferromagnetic layer on one side of the nonmagnetic layer among the plurality of ferromagnetic layers is stacked adjacent to the semiconductor. Features.

【0009】本発明の磁気抵抗効果膜で、前記半導体
は、Si層からなり不純物がドープされていることが好
ましい。ここで不純物としては、B,Al,Sbのいず
れかであることが好ましい。このSi層の厚さが5〜1
00nmであることが好ましい。前記半導体の比抵抗が
0.5 × 10 -2Ωcm〜20× 10 -2Ωcmあることが望まし
い。
In the magnetoresistive film according to the present invention, the semiconductor is preferably made of a Si layer and doped with impurities. Here, the impurities are preferably any of B, Al, and Sb. The thickness of this Si layer is 5 to 1
It is preferably 00 nm. The specific resistance of the semiconductor is
It is desirable to have 0.5 × 10 −2 Ωcm to 20 × 10 −2 Ωcm.

【0010】本発明の磁気抵抗効果膜の抵抗変化率(Δ
ρ/ρ)が7%以上あることが好適である。
[0010] The resistance change rate (Δ
(ρ / ρ) is preferably 7% or more.

【0011】[0011]

【作用】本発明の磁気抵抗効果膜においては、外部磁界
が印加されていない状態では両強磁性体層の磁化方向が
互いに反平行になっている。小さな外部磁界が反強磁性
体層の磁化方向と反対方向に印加された状態では両強磁
性体層の磁化は互いに反平行に維持されている。
In the magnetoresistive film of the present invention, the magnetization directions of the two ferromagnetic layers are antiparallel to each other when no external magnetic field is applied. When a small external magnetic field is applied in a direction opposite to the magnetization direction of the antiferromagnetic layers, the magnetizations of both ferromagnetic layers are maintained antiparallel to each other.

【0012】前記の反強磁性体層の磁化方向と反対方向
に印加された磁界が、反強磁性体層と、それと隣接して
いる強磁性体層(固定層)との間の交換結合磁界Hex
の強さよりも大となると、固定層の磁化が反転して、両
強磁性体層の磁化が互いに平行となる。
A magnetic field applied in a direction opposite to the magnetization direction of the antiferromagnetic layer causes an exchange coupling magnetic field between the antiferromagnetic layer and an adjacent ferromagnetic layer (fixed layer). Hex
, The magnetization of the fixed layer is reversed, and the magnetizations of both ferromagnetic layers become parallel to each other.

【0013】本発明の磁気抵抗効果膜では、両強磁性体
層の磁化が互いに反平行になっていると、磁気抵抗効果
膜の抵抗が小さいが、両強磁性体層の磁化が互いに平行
になると、抵抗が大きくなる。この磁気抵抗効果の現象
は、一般のGMR膜に見られるものとは逆のものであ
る。
In the magnetoresistive film of the present invention, when the magnetizations of both ferromagnetic layers are antiparallel to each other, the resistance of the magnetoresistive film is small, but the magnetizations of both ferromagnetic layers are parallel to each other. Then, the resistance increases. This phenomenon of the magnetoresistance effect is opposite to that seen in a general GMR film.

【0014】[0014]

【発明の実施の形態】以下図面を参照しながら本発明を
詳細に説明する。図1は本発明の磁気抵抗効果膜の一実
施態様を示す断面図、図2は本発明の磁気抵抗効果膜の
他の実施態様を示す断面図である。図3は実施例の断面
図、図4は図3に示す本発明の磁気抵抗効果膜の抵抗変
化率と印加する磁界強度との関係を示すグラフ、図5は
本発明の磁気抵抗効果膜の抵抗変化率とSi層の厚さと
の関係を示すグラフ、図6は本発明の磁気抵抗効果膜の
抵抗変化率とSi層の比抵抗との関係を示すグラフであ
る。また、図7は一般の磁気抵抗効果膜(GMR膜)の
一例の断面図で、図8は図7に示す一般の磁気抵抗効果
膜(GMR膜)の抵抗変化率と印加する磁界強度との関
係を示すグラフである。これらの図面で同一部分は同じ
参照符号を用いて示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the magnetoresistive film of the present invention, and FIG. 2 is a sectional view showing another embodiment of the magnetoresistive film of the present invention. FIG. 3 is a cross-sectional view of the embodiment, FIG. 4 is a graph showing the relationship between the resistance change rate of the magnetoresistive film of the present invention shown in FIG. 3 and the intensity of the applied magnetic field, and FIG. FIG. 6 is a graph showing the relationship between the resistance change rate and the thickness of the Si layer, and FIG. 6 is a graph showing the relationship between the resistance change rate of the magnetoresistive film of the present invention and the specific resistance of the Si layer. FIG. 7 is a cross-sectional view of an example of a general magnetoresistive film (GMR film). FIG. 8 shows the relationship between the resistance change rate of the general magnetoresistive film (GMR film) shown in FIG. It is a graph which shows a relationship. In these drawings, the same parts are denoted by the same reference numerals.

【0015】本発明の磁気抵抗効果膜は、その実施態様
を断面図で示す図1にあるように、絶縁性の基板10の
上に半導体層11、例えば不純物がドープされたSi
層、が付けられた上に形成されている。半導体層11の
上に、自由層となる強磁性体層12、非磁性層13、強
磁性体層14、反強磁性体層15の順に形成された積層
構造をしている。強磁性体層14は、隣接している反強
磁性体層15によってその磁化方向が固定されている固
定層である。図1で、半導体層11は基板10の上に形
成されているが、図2の他の実施態様においては、基板
10上に強磁性体層12から反強磁性体層15までの磁
気抵抗効果膜の積層構造を形成し、その上に半導体層1
1が形成されている。
The magnetoresistive film of the present invention has a semiconductor layer 11, for example, an impurity-doped Si layer on an insulating substrate 10, as shown in FIG.
Layer is formed on top of it. A ferromagnetic layer 12, which is a free layer, a nonmagnetic layer 13, a ferromagnetic layer 14, and an antiferromagnetic layer 15, are formed on the semiconductor layer 11 in this order. The ferromagnetic layer 14 is a fixed layer whose magnetization direction is fixed by an adjacent antiferromagnetic layer 15. In FIG. 1, the semiconductor layer 11 is formed on the substrate 10, but in another embodiment of FIG. 2, the magnetoresistance effect from the ferromagnetic layer 12 to the antiferromagnetic layer 15 is formed on the substrate 10. A laminated structure of a film is formed, and a semiconductor layer 1 is formed thereon.
1 is formed.

【0016】本発明の磁気抵抗効果膜の実施例を図3に
その断面図で示している。基板30としてガラス基板を
用い、その上に半導体としてSbをドープしたSi層3
1を50nmの厚さに形成している。その上に、Ta下
地層32を5nm、強磁性体層としてNi80Fe20(a
t.%)の自由層33を5nm及びCoFe層34を1
nm,Cu非磁性層35を2.3nm、強磁性体層とし
てCoFe固定層36を3nm,Ir20Mn80(at.
%)の反強磁性体層37を8nm形成し、その上にTa
保護層38を3nmの厚さに形成したものである。
FIG. 3 is a sectional view showing an embodiment of the magnetoresistive film of the present invention. A glass substrate is used as the substrate 30, and a Si layer 3 doped with Sb as a semiconductor is formed thereon.
1 is formed to a thickness of 50 nm. Thereon, a Ta underlayer 32 having a thickness of 5 nm and a Ni 80 Fe 20 (a
t. %) Of the free layer 33 and the CoFe layer 34 of 1 nm.
nm, the Cu nonmagnetic layer 35 is 2.3 nm, the CoFe fixed layer 36 as the ferromagnetic layer is 3 nm, and Ir 20 Mn 80 (at.
%) Of an antiferromagnetic layer 37 having a thickness of 8 nm, and a Ta
The protective layer 38 has a thickness of 3 nm.

【0017】この磁気抵抗効果膜の磁気抵抗効果を図4
にグラフで示している。このグラフでIr20Mn80反強
磁性体層37の磁化と反対方向を正としている。外部磁
界が零のときには、Ni80Fe20自由層33の磁化はC
oFe固定層36の磁化の方向と反対方向を向いてい
る。磁気抵抗効果膜にIr20Mn80反強磁性体層37の
磁化の方向と反対方向に小さな磁界を印加した状態で
は、やはりNi80Fe20自由層33の磁化はCoFe固
定層36の磁化と反平行に並んでいる。このような状態
では磁気抵抗効果膜の電気抵抗は小さな値になってい
る。この印加磁界を徐々に大きくしていって、Ir20
80反強磁性体層37とそれと隣接しているCoFe固
定層36との間の交換結合磁界Hexの大きさよりも大
きくなると、CoFe固定層36の磁化方向が逆転し
て、Ni80Fe20自由層33の磁化とCoFe固定層3
6の磁化が同じ方向に揃う。このとき磁気抵抗効果膜の
電気抵抗は急激に上昇する。
FIG. 4 shows the magnetoresistance effect of this magnetoresistance effect film.
Is shown in the graph. In this graph, the direction opposite to the magnetization of the Ir 20 Mn 80 antiferromagnetic layer 37 is positive. When the external magnetic field is zero, the magnetization of the Ni 80 Fe 20 free layer 33 is C
The direction of the magnetization of the oFe fixed layer 36 is opposite to the direction of magnetization. When a small magnetic field is applied to the magnetoresistive film in a direction opposite to the direction of magnetization of the Ir 20 Mn 80 antiferromagnetic layer 37, the magnetization of the Ni 80 Fe 20 free layer 33 is also opposite to the magnetization of the CoFe fixed layer 36. They are arranged in parallel. In such a state, the electric resistance of the magnetoresistive film has a small value. This applied magnetic field was gradually increased to Ir 20 M
When the exchange coupling magnetic field Hex between the n 80 antiferromagnetic layer 37 and the adjacent CoFe fixed layer 36 becomes larger than the magnitude of the exchange coupling magnetic field Hex, the magnetization direction of the CoFe fixed layer 36 is reversed and Ni 80 Fe 20 free Magnetization of layer 33 and CoFe fixed layer 3
6 are aligned in the same direction. At this time, the electric resistance of the magnetoresistive film rapidly increases.

【0018】次に印加磁界を徐々に小さくしていって、
交換結合磁界Hexの大きさよりも小さくなったとき、
CoFe固定層36の磁化の方向が逆転して元に戻り、
Ni 80Fe20自由層33の磁化とCoFe固定層36の
磁化が反平行になる。このとき磁気抵抗効果膜の電気抵
抗は急激に下がる。図に示すように、外部磁界を大きく
していったときと、小さくしていったときとの抵抗変化
率にはヒステリシスが認められたが図には示していな
い。
Next, by gradually reducing the applied magnetic field,
When it becomes smaller than the magnitude of the exchange coupling magnetic field Hex,
The magnetization direction of the CoFe pinned layer 36 reverses and returns to its original state,
Ni 80Fe20The magnetization of the free layer 33 and the magnetization of the CoFe pinned layer 36
The magnetization becomes antiparallel. At this time, the electrical resistance of the magnetoresistive film is
The resistance drops sharply. As shown in the figure,
The change in resistance between when it was done and when it was made smaller
Hysteresis was observed in the rates but not shown in the figure.
No.

【0019】更に外部磁界を小さくしていって、外部磁
界の強度が零から反対方向すなわちCoFe固定層36
の磁化と同じ方向に向くと、Ni80Fe20自由層33の
磁化は容易に反転するので、CoFe固定層36の磁化
とNi80Fe20自由層33の磁化は平行となって、図に
示すように、抵抗は急激に上がる。
The external magnetic field is further reduced so that the intensity of the external magnetic field is in the opposite direction from zero, ie, in the CoFe fixed layer 36.
The magnetization of the Ni 80 Fe 20 free layer 33 is easily inverted if the magnetization is directed in the same direction as the magnetization of the Ni 80 Fe 20 free layer 33, so that the magnetization of the CoFe fixed layer 36 and the magnetization of the Ni 80 Fe 20 free layer 33 are parallel to each other. As such, the resistance rises sharply.

【0020】比較のために、一般の構造のGMR膜を図
7に示している。このGMR膜と図3の本発明の磁気抵
抗効果膜との違いは、本発明のものでは磁気抵抗効果膜
のTa下地層の下にSbドープしたSi層31があるの
に比して、一般のGMR膜ではSi層31がないことで
ある。この一般のGMR膜の場合の磁気抵抗変化率(Δ
ρ/ρ)と印加する磁界強度との関係を図8に示してい
る。この図においても、Ir20Mn80反強磁性体層37
の磁化と反対方向を正として示している。
For comparison, a GMR film having a general structure is shown in FIG. The difference between this GMR film and the magnetoresistive effect film of the present invention shown in FIG. 3 is that the present invention has a general difference from the Sb-doped Si layer 31 under the Ta underlayer of the magnetoresistive effect film. Is that there is no Si layer 31 in the GMR film. The magnetoresistance change rate (Δ
FIG. 8 shows the relationship between (ρ / ρ) and the applied magnetic field strength. Also in this figure, the Ir 20 Mn 80 antiferromagnetic layer 37
The direction opposite to the magnetization is shown as positive.

【0021】図7及び図8を参照して、GMR膜にCo
Fe固定層36の磁化と同じ方向に外部磁界を印加した
とき、Ni80Fe20自由層33の磁化がCoFe固定層
36の磁化と同じ方向に並んでいる。この状態を図8で
はΔρ/ρ=0としている。GMR膜に印加する外部磁
界が零の状態及びIr20Mn80反強磁性体層37の磁化
と反対方向に小さな磁界を印加した状態では、Ni80
20自由層33の磁化はCoFe固定層36の磁化と反
平行に並んで、GMR膜の電気抵抗は急激に上がる。こ
の印加磁界を徐々に大きくしていって、Ir20Mn80
強磁性体層37とそれと隣接しているCoFe固定層3
6との間の交換結合磁界Hexの大きさよりも大きくな
ると、CoFe固定層36の磁化方向が逆転して、Ni
80Fe自由層33の磁化とCoFe固定層36の磁化が
同じ方向に揃う。このとき磁気抵抗効果膜の電気抵抗は
急激に下がる。印加磁界の大きさが交換結合磁界Hex
の大きさの前後において、印加磁界の増減によって抵抗
変化率と外部磁界の大きさとの関係にヒステリシスが現
われる(図示せず)。図7のGMR膜においては抵抗変
化率の大きさは図8にあるように約6.8%であった。
これに比して図3に示す本発明の磁気抵抗効果膜におい
ては抵抗変化率は磁界を正方向に印加することによって
急激に下がり、図4に示すように約14%にもなってい
る。
Referring to FIGS. 7 and 8, the GMR film is made of Co.
When an external magnetic field is applied in the same direction as the magnetization of the Fe fixed layer 36, the magnetization of the Ni 80 Fe 20 free layer 33 is aligned in the same direction as the magnetization of the CoFe fixed layer 36. This state is set to Δρ / ρ = 0 in FIG. In a state where the external magnetic field applied to the GMR film is zero and a state where a small magnetic field is applied in the opposite direction to the magnetization of the Ir 20 Mn 80 antiferromagnetic layer 37, Ni 80 F
magnetization of e 20 free layer 33 is arranged in parallel reaction to the magnetization of the CoFe pinned layer 36, the electrical resistance of the GMR film rises rapidly. By gradually increasing the applied magnetic field, the Ir 20 Mn 80 antiferromagnetic layer 37 and the CoFe fixed layer 3
6, the magnetization direction of the CoFe fixed layer 36 is reversed, and the exchange coupling magnetic field Hex becomes larger.
The magnetization of the 80 Fe free layer 33 and the magnetization of the CoFe fixed layer 36 are aligned in the same direction. At this time, the electric resistance of the magnetoresistive film rapidly decreases. The magnitude of the applied magnetic field is the exchange coupling magnetic field Hex
Before and after the magnitude of the hysteresis, hysteresis appears in the relationship between the resistance change rate and the magnitude of the external magnetic field due to the increase and decrease of the applied magnetic field (not shown). In the GMR film of FIG. 7, the magnitude of the rate of change in resistance was about 6.8% as shown in FIG.
On the other hand, in the magnetoresistive film of the present invention shown in FIG. 3, the resistance change rate is sharply reduced by applying the magnetic field in the positive direction, and as shown in FIG.

【0022】磁気抵抗効果膜に電流、例えばセンス電流
を10mA流して抵抗変化率を測定するが、半導体に隣
接して磁気抵抗効果膜を付けているので、半導体の比抵
抗が小さいときや、あるいは半導体の厚みが厚くなる
と、半導体層を流れる電流が多くなるので、磁気抵抗効
果膜の抵抗変化率が大きくなっても検出感度が悪くなっ
てしまう恐れがある。
A current, for example, a sense current of 10 mA is applied to the magnetoresistive film to measure the resistance change rate. Since the magnetoresistive film is provided adjacent to the semiconductor, when the specific resistance of the semiconductor is small, or As the thickness of the semiconductor increases, the current flowing through the semiconductor layer increases, so that even if the resistance change rate of the magnetoresistive film increases, the detection sensitivity may be deteriorated.

【0023】図3に示す本発明の実施例の磁気抵抗効果
膜で比抵抗が1.4 × 10 -2ΩcmのSi層(Sbドープ)
として、その厚さを変えたときの磁気抵抗効果膜の抵抗
変化率(%)を測定し、その結果を図5に示している。
この図からわかるように、7%以上の抵抗変化率Δρ/
ρは5〜100nmで得られていることが明らかであ
る。
An Si layer (Sb-doped) having a specific resistance of 1.4 × 10 -2 Ωcm in the magnetoresistive film of the embodiment of the present invention shown in FIG.
The resistance change rate (%) of the magnetoresistive film when the thickness was changed was measured, and the result is shown in FIG.
As can be seen from this figure, the resistance change rate Δρ /
It is clear that ρ is obtained between 5 and 100 nm.

【0024】次に、図3に示す実施例の磁気抵抗効果膜
でSi層(Sbドープ)のSbドープ量を変化させて、
0.2 × 10 -2Ωcmから40× 10 -2Ωcmまで比抵抗を変え
た半導体層を50nmの厚さにして、そのときに抵抗変
化率を測定した。その結果を図6に示している。この図
からわかるように7%以上の抵抗変化率Δρ/ρは0.5
× 10 -2Ωcm〜20× 10 -2Ωcmのときに得られることが
明らかである。
Next, the Sb doping amount of the Si layer (Sb doping) in the magnetoresistive film of the embodiment shown in FIG.
The semiconductor layer whose specific resistance was changed from 0.2 × 10 −2 Ωcm to 40 × 10 −2 Ωcm was set to a thickness of 50 nm, and the resistance change rate was measured at that time. The result is shown in FIG. As can be seen from this figure, the resistance change rate Δρ / ρ of 7% or more is 0.5
× It is clear that obtained when the 10 -2 Ωcm~20 × 10 -2 Ωcm.

【0025】図5、図6においては抵抗変化率Δρ/ρ
が7%以上になるように上限と下限を設定しているが、
Si層の抵抗を更に大きくして分流損をなくせば更に大
きな抵抗変化率が得られると考えられる。しかし、比抵
抗を大きくしていくと、Si層が半導体でなく絶縁体と
なっていく。絶縁体の性質が強くなってくると抵抗変化
率が徐々に小さくなってきて、ひいては一般のGMR膜
のように抵抗変化率が正になってしまう。そのためにS
i層の厚さの下限及び比抵抗の上限があると考えられ
る。
5 and 6, the rate of change of resistance Δρ / ρ
Is set to be 7% or more,
It is considered that a higher resistance change rate can be obtained by further increasing the resistance of the Si layer to eliminate the shunt loss. However, as the specific resistance increases, the Si layer becomes an insulator instead of a semiconductor. As the properties of the insulator become stronger, the rate of change in resistance gradually decreases, and consequently the rate of change in resistance becomes positive as in a general GMR film. For that, S
It is considered that there is a lower limit of the thickness of the i-layer and an upper limit of the specific resistance.

【0026】以上の説明において、半導体としてはSb
をドープしたSi層について説明したが、使用すること
のできるSi層としてはSbに代えてB,Alのいずれ
かをドープしたものが使用できることが実験によって明
らかとなっている。
In the above description, the semiconductor is Sb
Although the description has been given of the Si layer doped with, it has been clarified by experiments that the Si layer which can be used can be a layer doped with either B or Al instead of Sb.

【0027】また、反強磁性体層としてIr20Mn80
使用したが、Fe50Mn50やその他のものでも同様に本
発明の効果がえられる。
Although Ir 20 Mn 80 is used as the antiferromagnetic layer, the effects of the present invention can be similarly obtained with Fe 50 Mn 50 and others.

【0028】[0028]

【発明の効果】以上説明したように半導体膜に隣接して
形成した本発明の磁気抵抗効果膜は、通常のGMR膜と
は違った磁気抵抗の挙動、すなわち逆の磁気抵抗効果を
示し、その抵抗変化率は通常のGMR膜のものに比して
大きく、30%にも達する抵抗変化率が得られる可能性
があり、より感度の高い読み出しヘッドが得られ、より
高い磁気記録密度が達成できる可能性に貢献できるもの
である。
As described above, the magnetoresistive film of the present invention formed adjacent to a semiconductor film exhibits a magnetoresistive behavior different from that of a normal GMR film, that is, a reverse magnetoresistive effect. The resistance change rate is larger than that of a normal GMR film, and there is a possibility that a resistance change rate as high as 30% can be obtained, a more sensitive read head can be obtained, and a higher magnetic recording density can be achieved. It can contribute to its potential.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果膜の一実施態様を示す断
面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a magnetoresistive film of the present invention.

【図2】本発明の磁気抵抗効果膜の他の実施態様を示す
断面図である。
FIG. 2 is a sectional view showing another embodiment of the magnetoresistive film of the present invention.

【図3】本発明の磁気抵抗効果膜の実施例の断面図であ
る。
FIG. 3 is a sectional view of an embodiment of a magnetoresistive film of the present invention.

【図4】図3に示す本発明の磁気抵抗効果膜の抵抗変化
率と印加する磁界強度との関係を示すグラフである。
4 is a graph showing a relationship between a resistance change rate of the magnetoresistive film of the present invention shown in FIG. 3 and an applied magnetic field intensity.

【図5】本発明の磁気抵抗効果膜の抵抗変化率とSi層
の厚さとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the resistance change rate of the magnetoresistive film of the present invention and the thickness of the Si layer.

【図6】本発明の磁気抵抗効果膜の抵抗変化率とSi層
の比抵抗との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a resistance change rate of a magnetoresistive film of the present invention and a specific resistance of a Si layer.

【図7】一般の磁気抵抗効果膜(GMR膜)の一例の断
面図である。
FIG. 7 is a cross-sectional view of an example of a general magneto-resistance effect film (GMR film).

【図8】図7に示す一般の磁気抵抗効果膜(GMR膜)
の抵抗変化率と印加する磁界強度との関係を示すグラフ
である。
8 is a general magnetoresistive film (GMR film) shown in FIG. 7;
5 is a graph showing the relationship between the rate of change in resistance and the applied magnetic field strength.

【符号の説明】[Explanation of symbols]

10、30 基板 11 半導体層 12、14 強磁性体層 13 非磁性層 15 反強磁性体層 31 Si層 32 Ta下地層 33 Ni80Fe20自由層 34 CoFe層 35 Cu非磁性層 36 CoFe固定層 37 Ir20Mn80反強磁性体層 38 Ta保護層10,30 substrate 11 semiconductor layer 12, 14 ferromagnetic substance layers 13 nonmagnetic layer 15 antiferromagnetic layer 31 Si layer 32 Ta underlayer 33 Ni 80 Fe 20 free layer 34 CoFe layer 35 Cu nonmagnetic layer 36 CoFe pinned layer 37 Ir 20 Mn 80 antiferromagnetic layer 38 Ta protective layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性層を介して積層された複数の強磁
性体層と、前記複数の強磁性体層のうち非磁性層の一方
の側にある強磁性体層に隣接して積層した反強磁性体層
とを有する多層膜が半導体と隣接して積層されているこ
とを特徴とする磁気抵抗効果膜。
1. A plurality of ferromagnetic layers laminated via a nonmagnetic layer, and a plurality of ferromagnetic layers laminated adjacent to a ferromagnetic layer on one side of the nonmagnetic layer among the plurality of ferromagnetic layers. A multilayer film having an antiferromagnetic layer is laminated adjacent to a semiconductor.
【請求項2】 前記半導体は、Si層からなり不純物が
ドープされていることを特徴とする請求項1記載の磁気
抵抗効果膜。
2. The magnetoresistive film according to claim 1, wherein said semiconductor is made of a Si layer and is doped with an impurity.
【請求項3】 前記不純物がB,Al,Sbのいずれか
であることを特徴とする請求項2記載の磁気抵抗効果
膜。
3. The magnetoresistive film according to claim 2, wherein said impurity is one of B, Al, and Sb.
【請求項4】 前記Si層の厚さが5〜100nmであ
ることを特徴とする請求項2あるいは3記載の磁気抵抗
効果膜。
4. The magnetoresistive film according to claim 2, wherein said Si layer has a thickness of 5 to 100 nm.
【請求項5】 前記半導体の比抵抗が0.5 × 10 -2Ωcm
〜20× 10 -2Ωcmあることを特徴とする請求項1〜4い
ずれか記載の磁気抵抗効果膜。
5. The semiconductor according to claim 1, wherein said semiconductor has a specific resistance of 0.5 × 10 -2 Ωcm.
5. The magnetoresistive film according to claim 1, wherein said magnetoresistive film has a thickness of about 20 * 10 <-2 > [Omega] cm.
JP8482898A 1998-03-31 1998-03-31 Magnetoresistance effect film Withdrawn JPH11283830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8482898A JPH11283830A (en) 1998-03-31 1998-03-31 Magnetoresistance effect film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8482898A JPH11283830A (en) 1998-03-31 1998-03-31 Magnetoresistance effect film

Publications (1)

Publication Number Publication Date
JPH11283830A true JPH11283830A (en) 1999-10-15

Family

ID=13841639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8482898A Withdrawn JPH11283830A (en) 1998-03-31 1998-03-31 Magnetoresistance effect film

Country Status (1)

Country Link
JP (1) JPH11283830A (en)

Similar Documents

Publication Publication Date Title
US7046490B1 (en) Spin valve magnetoresistance sensor and thin film magnetic head
US7336451B2 (en) Magnetic sensing element containing half-metallic alloy
JP5191652B2 (en) MAGNETIC SENSING DEVICE INCLUDING A SENSENHANCING LAYER
JP2000251223A (en) Spin valve magnetoresistance sensor and thin-film magnetic head
US7280323B2 (en) Magnetoresistance effect element and magnetic head
JP2006303159A (en) Spin injection magnetic domain moving element and device using this
JP2005286340A (en) Magnetoresistance effect element and its forming method
JP2005539376A (en) Amorphous alloys for magnetic devices
JP2000091667A (en) Spin valve magnetoresistance sensor and thin-film magnetic head
JP2002359412A (en) Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory
JP2007531177A (en) Synthetic free layer to stabilize magnetoresistive head
JPH1041132A (en) Magnetic resistance effect film
US7141314B2 (en) CPP GMR and magnetostriction improvement by laminating Co90Fe10 free layer with thin Fe50Co50 layers
JPH10198927A (en) Magnetoresistance effect film and its production
JP2005019990A (en) Magnetic device having improved antiferromagnetic coupling film
US20080247097A1 (en) Magnetoresistance effect element and magnetic head
KR100269988B1 (en) Spin valve type thin film element
JPH10188235A (en) Magneto-resistive film and its production
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP2001007420A (en) Magnetic resistance effect film and magnetic read sensor using this
JP4038839B2 (en) Magnetoresistive element and manufacturing method thereof
RU2316783C2 (en) Magneto-resistive layered system and sensitive element on basis of such a layered system
JP2001076479A (en) Magnetic memory element
JP2005051251A (en) Magnetic detection element
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040205

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20040223

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A761 Written withdrawal of application

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A761