JPH11282033A - Organic and inorganic composite material - Google Patents

Organic and inorganic composite material

Info

Publication number
JPH11282033A
JPH11282033A JP8388498A JP8388498A JPH11282033A JP H11282033 A JPH11282033 A JP H11282033A JP 8388498 A JP8388498 A JP 8388498A JP 8388498 A JP8388498 A JP 8388498A JP H11282033 A JPH11282033 A JP H11282033A
Authority
JP
Japan
Prior art keywords
organic
superlattice
semiconductor
inorganic
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8388498A
Other languages
Japanese (ja)
Other versions
JP2957986B1 (en
Inventor
Tomoyuki Hamada
智之 浜田
Yasuo Imanishi
泰雄 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8388498A priority Critical patent/JP2957986B1/en
Application granted granted Critical
Publication of JP2957986B1 publication Critical patent/JP2957986B1/en
Publication of JPH11282033A publication Critical patent/JPH11282033A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a superlattice material for an optoelectronic element having quantum wells which strongly confine electrons and holes by constituting org. insulating layers of a material comprising a specified compd. SOLUTION: In the org.-inog. composite material having a superlattice structure with joined layers of org. insulating layers and inorg. semiconductor layers, the org. insulating layers are formed by using a material selected from among compds. expressed by the formula. Namely, the org. insulating layers are formed by using a material selected from among maleic acid anhydride, biphenyl-1,2,4,5- benzotetracarboxylic acid dianhydride and naphthalin-1,4,5,8-tetracarboxylic acid dianhydride. for example, 1,2,4,5-benzotetracarboxylic acid dianhydride (pyromellitic acid anhydride) is used for the org. insulating layers, and GaAs is used for the inorg. semiconductor layers to constitute the org.-inog. composite superlattice. By this method, changes in the band gap on the heterointerface, namely ΔEV and ΔEC can be increased so that strong quantum confinement of electrons and holes is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザ、非
線形光学素子を初めとする光電子素子用超格子材料とし
ての有機無機複合材料に関する。
The present invention relates to an organic-inorganic composite material as a superlattice material for optoelectronic devices such as semiconductor lasers and nonlinear optical devices.

【0002】[0002]

【従来の技術】従来より、半導体超格子が光電子材料と
して広く用いられており、半導体レーザ、非線形光学素
子を作製する上で不可欠な材料となっている。半導体超
格子は、バンドギャップが異なる2種の半導体A、Bを
交互に積層することにより形成され、超格子構造に対応
して価電子帯上端および伝導帯下端のエネルギー順位が
変化する特徴を有する。
2. Description of the Related Art Conventionally, semiconductor superlattices have been widely used as optoelectronic materials and have become indispensable materials for producing semiconductor lasers and nonlinear optical elements. The semiconductor superlattice is formed by alternately laminating two kinds of semiconductors A and B having different band gaps, and has a feature that the energy order of the upper end of the valence band and the lower end of the conduction band change according to the superlattice structure. .

【0003】半導体超格子は、安藤恒也著「半導体ヘテ
ロ構造超格子」〔大槻義彦編「物理学最前線」第13
巻、共立出版、東京(1986年)〕に記載されている
ように、交互積層する半導体のバンドギャップのエネル
ギー的な位置関係により分類され、電子と正孔を同一の
半導体層に閉じ込める超格子をタイプI、電子と正孔が
それぞれ異なる半導体層に閉じ込める超格子をタイプII
と呼んで区別される。
Semiconductor superlattices are described in Tsuneya Ando, “Semiconductor heterostructure superlattice” [edited by Yoshihiko Otsuki, “Forefront of Physics,” 13
Vol., Kyoritsu Shuppan, Tokyo (1986)], a superlattice that is classified by the energy positional relationship of the band gap of semiconductors stacked alternately and confines electrons and holes in the same semiconductor layer. Type I, a type II superlattice that confines electrons and holes in different semiconductor layers
Are distinguished.

【0004】図1は、光電子材料として最もよく用いら
れているタイプIの超格子およびそのバンドギャップの
模式図である。半導体A層1と半導体B層2を交互積層
することにより、伝導体下端4および価電子帯上端5の
エネルギー順位が周期的に変化する。
FIG. 1 is a schematic diagram of a type I superlattice most frequently used as an optoelectronic material and its band gap. By alternately laminating the semiconductor A layer 1 and the semiconductor B layer 2, the energy order of the conductor lower end 4 and the valence band upper end 5 changes periodically.

【0005】図1の場合、伝導体の電子および価電子帯
の正孔は、共にA層からなる量子井戸層6に閉じ込めら
れ量子順位7、8が形成される。量子順位7、8は、超
格子ヘテロ界面でのΔEv、ΔEc、dAおよびdBにより
決まり、それらは超格子材料の電気的、光学的性質を決
定するので、半導体超格子ではEv、Ec、dAおよびdB
をパラメータとして適宜調節することにより、材料の光
学的性質および電気的性質を変えることができる。
In the case of FIG. 1, the electrons of the conductor and the holes of the valence band are both confined in the quantum well layer 6 composed of the A layer, and quantum ranks 7 and 8 are formed. Quantum rank 7 and 8, Delta] E v at the superlattice hetero interface, Delta] E c, determined by d A and d B, because they determine the electrical, optical properties of the superlattice material, E v in semiconductor superlattices , E c , d A and d B
By appropriately adjusting as a parameter, the optical and electrical properties of the material can be changed.

【0006】例えば、最も研究がなされているGaAs
/GaAlAs超格子では、dAおよびdBを変えること
により、電子および正孔の移動度、吸収・発光スペクト
ルを変化させることが可能である。
For example, the most studied GaAs
In the / GaAlAs superlattice, it is possible to change the mobility of electrons and holes and the absorption / emission spectrum by changing d A and d B.

【0007】また、近年、有機材料と半導体材料をヘテ
ロ接合させた構造を有する有機無機複合超格子材料が提
案されている。例えば、特開平6−3712号公報で
は、エネルギーギャップが1.8〜2.8eVの有機半導
体層と、エネルギーギャップが3.0eV以上の無機半
導体材料を交互に積層した有機無機複合超格子が開示さ
れており、可視光照射により有機層内部のキャリア密度
を増大させる材料構成法が提案されている。
In recent years, an organic-inorganic composite superlattice material having a structure in which an organic material and a semiconductor material are heterojunction has been proposed. For example, JP-A-6-3712 discloses an organic-inorganic composite superlattice in which an organic semiconductor layer having an energy gap of 1.8 to 2.8 eV and an inorganic semiconductor material having an energy gap of 3.0 eV or more are alternately laminated. Thus, a material composition method for increasing the carrier density inside the organic layer by irradiating visible light has been proposed.

【0008】また、特開平2−201320号公報で
は、有機非線形光学材料を無機半導体と交互に積層する
ことにより、前記非線形光学材料を2次元化し、その非
線形性を増大させる方法が開示されている。
Japanese Patent Application Laid-Open No. Hei 2-201320 discloses a method in which an organic nonlinear optical material is alternately laminated with an inorganic semiconductor to make the nonlinear optical material two-dimensional and increase its nonlinearity. .

【0009】これらは、無機半導体材料をスペーサとす
ることにより有機半導体、有機非線形光学材料を2次元
化し、それらの機能向上を狙った材料であり、電子およ
び正孔の量子順位を、人為的にコントロールして物性を
制御する半導体超格子材料とは構想が異なる。
These are two-dimensional organic semiconductors and organic non-linear optical materials by using inorganic semiconductor materials as spacers to improve their functions. The quantum order of electrons and holes is artificially changed. The concept is different from that of a semiconductor superlattice material in which physical properties are controlled by controlling.

【0010】[0010]

【発明が解決しようとする課題】半導体超格子は、光電
子材料として極めて優れた材料であるが、半導体特有の
欠点も存在する。即ち、半導体材料は共有結合性結晶で
あるので、格子定数が大きく異なる半導体同士を交互に
積層させた場合、良好なヘテロ界面が形成できず超格子
化できないと云う制約がある。
Although the semiconductor superlattice is a very excellent material as an optoelectronic material, it also has disadvantages peculiar to semiconductors. In other words, since the semiconductor material is a covalent bond crystal, there is a restriction that when semiconductors having greatly different lattice constants are alternately stacked, a favorable heterointerface cannot be formed and a superlattice cannot be formed.

【0011】このため半導体超格子は、格子定数が類似
した半導体を交互に積層して形成されるのが通常である
が、格子定数は半導体のバンドギャップのエネルギー位
置に影響するので、半導体超格子ではヘテロ界面でのバ
ンドギャップの変化、即ち、図1におけるΔEv、ΔEc
を大きくすることができないと云う問題がある。
For this reason, the semiconductor superlattice is usually formed by alternately laminating semiconductors having similar lattice constants. However, since the lattice constant affects the energy position of the band gap of the semiconductor, the semiconductor superlattice is formed. Then, the band gap changes at the hetero interface, that is, ΔE v , ΔE c in FIG.
There is a problem that cannot be increased.

【0012】例えば、最も典型的なGaAs/GaAl
As超格子の場合、ヘテロ界面でのΔEvは約30me
V、ΔEcは250meV程度にすぎない。
For example, the most typical GaAs / GaAl
In the case of an As superlattice, ΔE v at the heterointerface is about 30 me.
V and ΔE c are only about 250 meV.

【0013】ヘテロ界面におけるΔEvおよびΔEcは、
それぞれ正孔および電子が量子井戸6に閉じ込めるポテ
ンシャル障壁であるので、半導体超格子は電子・正孔を
強く量子井戸に閉じ込めることができない。このため、
半導体超格子の物性制御はある範囲内に限られ、半導体
超格子は電子・正孔の強い量子閉じ込めにより非線形光
学効果を発現する量子光デバイス用材料としては不適切
である。
[0013] ΔE v and ΔE c at the hetero interface are
Since the holes and electrons are potential barriers for confining the quantum well 6 respectively, the semiconductor superlattice cannot strongly confine electrons and holes in the quantum well. For this reason,
The control of the physical properties of a semiconductor superlattice is limited to a certain range, and the semiconductor superlattice is unsuitable as a material for a quantum optical device that exhibits a nonlinear optical effect due to strong quantum confinement of electrons and holes.

【0014】本発明の目的は、電子および正孔を強く閉
じ込める量子井戸を有する超格子材料で構成された光電
子素子用超格子材料としての有機無機複合材料を提供す
ることにある。
An object of the present invention is to provide an organic-inorganic composite material as a superlattice material for an optoelectronic device, comprising a superlattice material having a quantum well for strongly confining electrons and holes.

【0015】[0015]

【課題を解決するための手段】半導体超格子の前記課題
は、バンドギャップが大きな有機絶縁材料と無機半導体
材料を交互積層して作製される本発明の有機無機複合材
料により解決される。
The above object of the semiconductor superlattice is solved by the organic-inorganic composite material of the present invention, which is produced by alternately laminating an organic insulating material and an inorganic semiconductor material having a large band gap.

【0016】有機絶縁材料と無機半導体材料をヘテロ接
合させた場合、両者は主としてファンデルワールス相互
作用により結合し、共有結合が生じない。このため、有
機絶縁材料と無機半導体材料のヘテロ界面には、半導体
超格子の場合のような格子定数に関する制限(格子整合
条件)が存在せず、構造およびバンドギャップが大きく
異なる材料を組み合わせてヘテロ界面を作製する。
When an organic insulating material and an inorganic semiconductor material are heterojuncted, they are bonded mainly by van der Waals interaction, and no covalent bond occurs. For this reason, the heterointerface between the organic insulating material and the inorganic semiconductor material does not have a limitation (lattice matching condition) regarding the lattice constant as in the case of the semiconductor superlattice, and heterostructures and materials having greatly different band gaps are combined. Create an interface.

【0017】上記を達成する本発明の要旨は、有機絶縁
層と無機半導体層が積層接合された超格子構造を有する
有機無機複合材料において、前記有機絶縁層を構成する
材料が、
The gist of the present invention to achieve the above is that in an organic-inorganic composite material having a superlattice structure in which an organic insulating layer and an inorganic semiconductor layer are laminated and joined, the material constituting the organic insulating layer is:

【0018】[0018]

【化2】 Embedded image

【0019】で示される無水マレイン酸〔化1〕、ビフ
ェニル〔化2〕、1,2,4,5−ベンゾテトラカルボン
酸二無水物〔化3〕、ナフタリン−1,4,5,8−テト
ラカルボン酸二無水物〔化4〕から選ばれることを特徴
とする有機無機複合材料にある。
Maleic anhydride [formula 1], biphenyl [formula 2], 1,2,4,5-benzotetracarboxylic dianhydride [formula 3], naphthalene-1,4,5,8- An organic-inorganic composite material characterized by being selected from tetracarboxylic dianhydride [Formula 4].

【0020】また、本発明の無機半導体層を構成する材
料としては、GaAsまたはZnSeが挙げられる。
As a material constituting the inorganic semiconductor layer of the present invention, GaAs or ZnSe can be used.

【0021】本発明では、上記の有機絶縁材料と無機半
導体材料のヘテロ界面の性質を利用することにより、従
来の半導体超格子では不可能であった電子・正孔の強い
量子閉じ込めを実現することができる。
In the present invention, by utilizing the property of the heterointerface between the organic insulating material and the inorganic semiconductor material, it is possible to realize strong quantum confinement of electrons and holes, which was impossible with a conventional semiconductor superlattice. Can be.

【0022】また、前記有機絶縁層と無機半導体層が3
層以上交互に積層され、かつ、有機絶縁層により電子お
よび正孔が無機半導体層内部に2次元的に閉じこめられ
るよう構成されている前記の有機無機複合材料にある。
Further, the organic insulating layer and the inorganic semiconductor layer are each composed of 3
The organic-inorganic composite material has a structure in which a plurality of layers are alternately stacked, and wherein the organic insulating layer is configured to two-dimensionally confine electrons and holes inside the inorganic semiconductor layer.

【0023】また、前記有機絶縁層と無機半導体層のヘ
テロ界面がファンデルワールス作用により接合されてい
る前記の有機無機複合材料にある。
Further, there is provided the organic-inorganic composite material, wherein the hetero interface between the organic insulating layer and the inorganic semiconductor layer is joined by van der Waals action.

【0024】さらにまた、有機絶縁層と無機半導体層の
ヘテロ界面接合の、伝導帯下端のエネルギー変化が1.
33〜4.07eV、価電子帯上端のエネルギー変化が
2.52〜5.94eVである前記の有機無機複合材料に
ある。
Further, the energy change at the lower end of the conduction band at the hetero interface junction between the organic insulating layer and the inorganic semiconductor layer is 1.
The organic-inorganic composite material has an energy change of 33 to 4.07 eV and an upper end of the valence band of 2.52 to 5.94 eV.

【0025】[0025]

【発明の実施の形態】図2は、各種半導体および有機化
合物の価電子帯上端のエネルギー順位(Ev)、伝導帯
下端エネルギー順位(Ec)および両者の差であるバン
ドギャップ(Eg)を示したものである。半導体のEv
cおよびEgは、前記の「半導体ヘテロ構造超格子」に
記載されている数値を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows the energy order (E v ) at the upper end of the valence band, the energy order (E c ) at the lower end of the conduction band, and the band gap (E g ) which is the difference between the two. It is shown. Semiconductor E v ,
For E c and E g , the numerical values described in the above “semiconductor heterostructure superlattice” were used.

【0026】有機化合物のEv,EcおよびEgは、分子
のEvおよびEcがそれぞれ分子のイオン化ポテンシャル
および電子親和力で近似できることを利用し、日本化学
会編「化学便覧基礎編」、丸善、東京(1993年)記
載の有機分子のイオン化ポテンシャルと電子親和力を用
いて求めた。
E v , E c, and E g of the organic compound are obtained by using the fact that E v and E c of the molecule can be approximated by the ionization potential and electron affinity of the molecule, respectively. It was determined using the ionization potential and electron affinity of organic molecules described in Maruzen, Tokyo (1993).

【0027】記述のように、従来型の半導体超格子を作
製するためには、格子定数が近い半導体材料同士を交互
に積層する必要がある。格子定数が近い半導体のΔEv
は最大1eV弱、ΔEcは最大数百eV程度であり、従
来の超格子では電子および正孔を量子井戸内部に強く閉
じ込めることができない。
As described above, in order to manufacture a conventional semiconductor superlattice, it is necessary to alternately laminate semiconductor materials having similar lattice constants. ΔE v for semiconductors with similar lattice constants
Is less than 1 eV at the maximum and ΔE c is about several hundreds of eV at the maximum. In the conventional superlattice, electrons and holes cannot be strongly confined inside the quantum well.

【0028】これに対し、有機化合物のEvは、−8.5
〜−12eV程度、Ecは−0.2〜−2.5eV程度で
あり、半導体と比較してより大きなEg(7〜9eV)
を有する。従って、無機半導体と有機化合物が交互に積
層された構造を有する本発明の有機無機複合材料によれ
ば、ヘテロ界面でのΔEvおよびΔEcを大きくすること
ができ、電子・正孔を量子井戸に強く閉じ込めることが
できる。
On the other hand, E v of the organic compound is -8.5.
About −12 eV and E c is about −0.2 to −2.5 eV, which is larger E g (7 to 9 eV) than the semiconductor.
Having. Therefore, according to the organic-inorganic composite material of the present invention having a structure in which an inorganic semiconductor and an organic compound are alternately stacked, ΔE v and ΔE c at the heterointerface can be increased, and electrons and holes can be formed in the quantum well. Can be strongly confined.

【0029】本発明の有機無機複合材料は、無機層と有
機層を交互に積層して超格子構造とすることにより構成
することもできる。この場合は、図1において半導体B
層2を有機絶縁材料とした構造となる。
The organic-inorganic composite material of the present invention can also be constituted by alternately laminating inorganic layers and organic layers to form a superlattice structure. In this case, the semiconductor B in FIG.
The layer 2 has a structure using an organic insulating material.

【0030】半導体超格子の場合、ΔEvおよびΔEc
比較的小さいので、電子および正孔が量子井戸の外側に
滲みだし、量子井戸が近接している場合、量子井戸の間
に相互作用が生じる場合がある。しかし、本発明は大き
なΔEvおよびΔEcを有するので、量子井戸間の相互作
用が生じない。従って、超格子構造化した場合でも、本
発明の量子井戸は互いに独立してある。
In the case of a semiconductor superlattice, since ΔE v and ΔE c are relatively small, electrons and holes seep out of the quantum well, and when the quantum well is in close proximity, interaction between the quantum wells occurs. May occur. However, the present invention has large ΔE v and ΔE c so that no interaction between quantum wells occurs. Therefore, even when a superlattice structure is formed, the quantum wells of the present invention are independent of each other.

【0031】本発明は、図3に示す様に半導体材料およ
び有機材料を用いて構成できる。有機材料としてはバン
ドギャップが大きく絶縁性の高い化合物であれば特に限
定されない。
The present invention can be constituted by using a semiconductor material and an organic material as shown in FIG. The organic material is not particularly limited as long as it is a compound having a large band gap and high insulating properties.

【0032】例えば、有機材料として、図2に示す様な
有機低分子材料の他に、有機高分子材料、LB(ラング
ミュア ブロジェット)膜等を用いることも可能である
が、分子線蒸着装置を用いて本発明を実施する場合に
は、化合物の蒸気圧が分子線蒸着に適していることが望
ましい。但し、本発明において、有機層は半導体層を相
互に隔離する絶縁スペーサ層であるので、特開平6−3
712号公報、特開平2−201320号公報の場合の
ように、有機半導体材料、有機機能性材料を用いること
はできない。
For example, as the organic material, an organic polymer material, an LB (Langmuir Blodget) film or the like can be used in addition to the organic low molecular material shown in FIG. When the present invention is carried out using the compound, it is desirable that the compound has a vapor pressure suitable for molecular beam deposition. However, in the present invention, the organic layer is an insulating spacer layer for isolating the semiconductor layers from each other.
Organic semiconductor materials and organic functional materials cannot be used as in the case of Japanese Patent Application Laid-Open No. 712 and Japanese Patent Application Laid-Open No. Hei 2-201320.

【0033】これは、有機半導体材料、有機機能性材料
のバンドギャップが有機絶縁材料と比較して小さいた
め、ヘテロ界面でのΔEvおよびΔEcが小さくなり、半
導体層の電子および正孔を強く半導体層に閉じ込めるこ
とができないからである。
This is because, since the band gap of the organic semiconductor material and the organic functional material is smaller than that of the organic insulating material, ΔE v and ΔE c at the hetero interface are reduced, and the electrons and holes of the semiconductor layer are strengthened. This is because they cannot be confined in the semiconductor layer.

【0034】本発明の有機無機複合材料および有機無機
複合超格子は、ヘテロ界面におけるバンドギャップの変
化、即ち、ΔEvおよびΔEcを半導体超格子と比較して
大きくでき、電子・正孔の強い量子閉じ込めを実現する
ことができる。
In the organic-inorganic composite material and the organic-inorganic composite superlattice of the present invention, the change in the band gap at the heterointerface, that is, ΔE v and ΔE c can be made larger than that of the semiconductor superlattice, and the electron / hole strength is high. Quantum confinement can be realized.

【0035】[0035]

【実施例】本発明を実施例に基づき説明する。なお、実
施例1は本発明の有機無機複合材料の基本構成例、実施
例2は超格子化した本発明の構成例を示し、実施例3、
4は実施例1の材料構成例、実施例5、6は実施例2の
材料構成例を示したものである。
EXAMPLES The present invention will be described based on examples. Example 1 shows a basic configuration example of the organic-inorganic composite material of the present invention, and Example 2 shows a configuration example of the present invention in which a superlattice was formed.
Reference numeral 4 denotes a material configuration example of Example 1, and Examples 5 and 6 show a material configuration example of Example 2.

【0036】〔実施例1〕図3は、本発明の有機無機複
合材料およびそのバンドギャップの模式図である。本実
施例では、有機絶縁層9に無水マレイン酸〔化1〕、無
機半導体層10にGaAsを用いて、本発明の有機無機
複合材料を構成した。
Example 1 FIG. 3 is a schematic view of the organic-inorganic composite material of the present invention and its band gap. In the present example, the organic-inorganic composite material of the present invention was constituted by using maleic anhydride [formula 1] for the organic insulating layer 9 and GaAs for the inorganic semiconductor layer 10.

【0037】GaAsおよび無水マレイン酸のバンドギ
ャップおよびその位置は、図2から分かるように、本実
施例によりタイプI型超格子の量子井戸を形成できる。
本実施例では、図中の無水マレイン酸からなる有機絶縁
層9の膜厚doおよびGaAsからなる無機半導体層1
0の膜厚dsは約10nmであり、GaAs層中に電子
および正孔が量子力学的に閉じ込められる構造とした。
As can be seen from FIG. 2, the band gap of GaAs and maleic anhydride can form a type I superlattice quantum well according to this embodiment.
In this embodiment, the thickness d o of the organic insulating layer 9 made of maleic anhydride and the inorganic semiconductor layer 1 made of GaAs
The film thickness d s of 0 is about 10 nm, and the structure is such that electrons and holes are confined quantum mechanically in the GaAs layer.

【0038】GaAsのEc、Evはそれぞれ約−4.0
7、−5.43eVであり、無水マレイン酸のEc、Ev
は、それぞれ約−1.44、−10.8eVであるので、
本実施例ではヘテロ界面でのΔEcが約2.63eV、Δ
vが約5.37eVとなる(図3)。
E c and E v of GaAs are each about -4.0.
7 is -5.43eV, E c, E v maleic anhydride
Are about -1.44 and -10.8 eV, respectively.
In this embodiment, ΔE c at the hetero interface is about 2.63 eV, Δ
E v is about 5.37EV (Figure 3).

【0039】一方、GaAs/GaAlAs超格子のΔ
c、ΔEvは、前記のように、それぞれ約30meV、
250meVである。
On the other hand, Δ of the GaAs / GaAlAs superlattice
E c and ΔE v are approximately 30 meV,
It is 250 meV.

【0040】このように、本実施例の有機無機複合材料
は、GaAs/GaAlAs超格子よりも大きなΔEc
およびΔEvを有し、相当するGaAs/GaAlAs
超格子よりも強く電子・正孔を量子井戸13に閉じ込め
ることが可能である。
As described above, the organic-inorganic composite material of this embodiment has a larger ΔE c than the GaAs / GaAlAs superlattice.
And ΔE v and the corresponding GaAs / GaAlAs
It is possible to confine electrons and holes in the quantum well 13 more strongly than in the superlattice.

【0041】〔実施例2〕図4は、本発明の有機無機複
合材料およびそのバンドギャップの模式図である。本実
施例の有機無機複合超格子は、図1に示した半導体超格
子と基本的に同じ構造を有し、有機絶縁層14と無機半
導体層15が交互に積層されている点が実施例1の半導
体超格子と異なる。
Example 2 FIG. 4 is a schematic view of the organic-inorganic composite material of the present invention and its band gap. The organic-inorganic hybrid superlattice of the present embodiment has basically the same structure as the semiconductor superlattice shown in FIG. 1, and is different from the first embodiment in that the organic insulating layers 14 and the inorganic semiconductor layers 15 are alternately laminated. Semiconductor superlattice.

【0042】本実施例の有機無機複合超格子は、有機無
機複合材料を複数個接合した構造を有し、半導体超格子
の多重量子井戸構造に対応する。本実施例では実施例1
同様、有機絶縁層14に無水マレイン酸、無機半導体層
15にGaAsを用いて本発明の有機無機複合超格子を
構成した。本実施例では、有機絶縁層14の膜厚do
よび無機半導体層10の膜厚dsは約10nmであり、
GaAs層中に電子および正孔が量子力学的に閉じ込め
られる構造とした。
The organic-inorganic composite superlattice of this embodiment has a structure in which a plurality of organic-inorganic composite materials are joined, and corresponds to the multiple quantum well structure of a semiconductor superlattice. In this embodiment, the first embodiment
Similarly, the organic-inorganic composite superlattice of the present invention was formed using maleic anhydride for the organic insulating layer 14 and GaAs for the inorganic semiconductor layer 15. In this embodiment, the thickness d o of the organic insulating layer 14 and the thickness d s of the inorganic semiconductor layer 10 are about 10 nm,
The structure is such that electrons and holes are confined quantum mechanically in the GaAs layer.

【0043】前記のように、半導体超格子の多重量子井
戸構造では、隣接する量子井戸同士が干渉し、相互作用
によりサブバンドと呼ばれる電子状態が出現する場合が
ある。これは、前記半導体超格子のΔEc、ΔEvが小さ
いため、量子井戸内に閉じ込められた電子・正孔の波動
関数が井戸の外側に滲みだし、隣接する量子井戸に束縛
される電子・正孔が相互作用することに起因する。
As described above, in a multiple quantum well structure of a semiconductor superlattice, adjacent quantum wells may interfere with each other, and an electronic state called a subband may appear due to interaction. This is because, since ΔE c and ΔE v of the semiconductor superlattice are small, the wave function of the electrons and holes confined in the quantum well oozes out of the well and the electrons and positive electrons bound to the adjacent quantum wells. Due to the interaction of the holes.

【0044】一方、本発明の有機無機複合超格子はΔE
c、ΔEvが大きく井戸からの電子・正孔の波動関数の滲
みだしは極めて少ない。従って本発明の有機無機複合超
格子では、有機絶縁層の膜厚が極端に薄くならない限
り、量子井戸はほぼ独立している。従って実施例1と同
様に、無水マレイン酸とGaAsを用いて構成される本
実施例のΔEc、ΔEvは、実施例1の場合と同じであ
り、それぞれ、2.63eV、約5.37eVである。
On the other hand, the organic-inorganic hybrid superlattice of the present invention has a ΔE
c , ΔE v is large, and the bleeding of the wave function of electrons and holes from the well is extremely small. Therefore, in the organic-inorganic hybrid superlattice of the present invention, the quantum wells are almost independent unless the thickness of the organic insulating layer becomes extremely thin. Therefore, similarly to the first embodiment, ΔE c and ΔE v of the present embodiment constituted by using maleic anhydride and GaAs are the same as those of the first embodiment, and are 2.63 eV and about 5.37 eV, respectively. It is.

【0045】このように、本実施例の有機無機複合超格
子は、GaAs/GaAlAs超格子よりも大きなΔE
c、ΔEvを有し、量子井戸18は相当するGaAs/G
aAlAs超格子よりも強く電子・正孔を量子井戸18
に閉じ込めることが可能である。
As described above, the organic-inorganic hybrid superlattice of this embodiment has a ΔE larger than that of the GaAs / GaAlAs superlattice.
c , ΔE v , and the quantum well 18 has a corresponding GaAs / G
Electrons and holes are made stronger in the quantum well 18 than in the aAlAs superlattice.
It is possible to confine it to.

【0046】〔実施例3〕実施例1と同様に、図3の有
機絶縁層9にビフェニル〔化2〕、無機半導体層10に
GaAsを用い、本発明の有機無機複合材料を構成し
た。
Example 3 In the same manner as in Example 1, an organic-inorganic composite material of the present invention was constituted by using biphenyl [formula 2] for the organic insulating layer 9 and GaAs for the inorganic semiconductor layer 10 in FIG.

【0047】図2を見て分かるように、本実施例により
タイプI型超格子の量子井戸を形成できる。GaAsの
c、Evはそれぞれ約−4.07eV、−5.43eVで
あり、ビフェニルのEc、Evは、それぞれ約−0.3e
V、−7.95eVであるので、本実施例ではヘテロ界
面でのΔEcが約3.77eV、ΔEvが約2.52eVと
なる(図3)。
As can be seen from FIG. 2, a quantum well of a type I superlattice can be formed by this embodiment. E c and E v of GaAs are about −4.07 eV and −5.43 eV, respectively, and E c and E v of biphenyl are about −0.3 eV, respectively.
V and −7.95 eV, ΔE c and ΔE v at the hetero interface are about 3.77 eV and about 2.52 eV, respectively, in the present embodiment (FIG. 3).

【0048】このように、本実施例の有機無機複合材料
は、GaAs/GaAlAs半導体超格子よりも大きな
ΔEcおよびΔEvを有し、相当するGaAs/GaAl
As半導体超格子よりも強く電子・正孔を量子井戸13
に閉じ込めることが可能である。
As described above, the organic-inorganic composite material of this embodiment has ΔE c and ΔE v larger than those of the GaAs / GaAlAs semiconductor superlattice, and the corresponding GaAs / GaAl
Electrons and holes are made stronger in the quantum well 13 than in the As semiconductor superlattice.
It is possible to confine it to.

【0049】〔実施例4〕実施例1と同様に、有機絶縁
層9に無水マレイン酸〔化1〕、無機半導体層10にZ
nSeを用い、本発明の有機無機複合材料を構成した。
Example 4 As in Example 1, maleic anhydride [formula 1] was formed on the organic insulating layer 9 and Z was formed on the inorganic semiconductor layer 10.
The organic-inorganic composite material of the present invention was formed using nSe.

【0050】図2を見て分かるように、本実施例により
タイプI型超格子の量子井戸を形成できる。ZnSeの
c、Evはそれぞれ約−4.14eV、−6.64eVで
あり、無水マレイン酸のEc、Evは、それぞれ約−1.
44eV、−10.8eVであるので、本実施例ではヘ
テロ界面でのΔEcが約2.7eV、ΔEvが約4.16e
Vとなる(図3)。
As can be seen from FIG. 2, a quantum well of a type I superlattice can be formed by this embodiment. E c of ZnSe, E v about each -4.14EV, a -6.64eV, E c, E v of maleic anhydride were approximately -1.
Since it is 44 eV and -10.8 eV, in this embodiment, ΔE c at the hetero interface is about 2.7 eV and ΔE v is about 4.16 e.
V (FIG. 3).

【0051】このように、本実施例の有機無機複合材料
は、大きなGaAs/GaAlAs半導体超格子と比較
して、大きなΔEcおよびΔEvを有し、相当するGaA
s/GaAlAs半導体超格子よりも強く電子・正孔を
量子井戸13に閉じ込めることが可能である。
As described above, the organic-inorganic composite material of this embodiment has larger ΔE c and ΔE v than the large GaAs / GaAlAs semiconductor superlattice, and
It is possible to confine electrons and holes in the quantum well 13 more strongly than in the s / GaAlAs semiconductor superlattice.

【0052】〔実施例5〕実施例2と同様に、図4の有
機絶縁層14に〔化3〕の1,2,4,5−ベンゾテトラ
カルボン酸二無水物(ピロメリト酸無水物)、無機半導
体層15にGaAsを用い、本発明の有機無機複合超格
子を構成した。
Example 5 In the same manner as in Example 2, 1,2,4,5-benzotetracarboxylic dianhydride (pyromellitic anhydride) of [Chemical Formula 3] was added to the organic insulating layer 14 of FIG. The organic-inorganic hybrid superlattice of the present invention was formed by using GaAs for the inorganic semiconductor layer 15.

【0053】1,2,4,5−ベンゾテトラカルボン酸二
無水物分子のEc、Evを算出するため、同分子の分子構
造を分子力場計算により求め、その電子状態を半経験的
分子軌道法により算出した。
In order to calculate E c and E v of the 1,2,4,5-benzotetracarboxylic dianhydride molecule, the molecular structure of the molecule was determined by molecular force field calculation, and the electronic state was determined semi-empirically. It was calculated by the molecular orbital method.

【0054】分子軌道計算の結果、得られる最高被占軌
道(HOMO)および最低空軌道(LUMO)は、それ
ぞれ近似的に分子のEc、Evを与えることが知られてい
る。本実施例では、Biosym Technologies Inc.製分
子設計ソフトウエアであるInsight/Discover 2.9
によりCVFF分子力場を用いて分子力学計算を行い、
半経験的分子軌道計算プログラムMOPAC Ver 6.
0のMINDO3法を用いて上記無水物分子のEc、Ev
を算出した。
It is known that the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) obtained as a result of the molecular orbital calculation approximately give the molecules E c and E v , respectively. In this embodiment, the molecular design software “Insight / Discover 2.9” manufactured by Biosym Technologies Inc. is used.
Performs molecular mechanics calculations using the CVFF molecular force field,
Semi-empirical molecular orbital calculation program MOPAC Ver 6.
E c of the anhydride molecules using MINDO3 method 0, E v
Was calculated.

【0055】計算の結果、上記無水物分子〔化3〕のE
cは約−2.74eV、Evは約−11.22eVであっ
た。
As a result of the calculation, the E of the above anhydride molecule [formula 3]
c is about -2.74eV, E v was about -11.22eV.

【0056】GaAsのEc、Evはそれぞれ約−4.0
7eV、−5.43eVであるので、本実施例の有機無
機複合超格子のヘテロ界面でのΔEcは約1.33eV、
ΔEvは約5.94eVである(図4)。
E c and E v of GaAs are respectively about -4.0.
7 eV and −5.43 eV, ΔE c at the hetero interface of the organic-inorganic hybrid superlattice of this example is about 1.33 eV,
ΔE v is about 5.94 eV (FIG. 4).

【0057】このように、本実施例の有機無機複合超格
子は、GaAs/GaAlAs半導体超格子と比較して
大きなΔEcおよびΔEvを有し、相当するGaAs/G
aAlAs半導体超格子よりも強く電子・正孔を量子井
戸18に閉じ込めることが可能である。
As described above, the organic-inorganic hybrid superlattice of this embodiment has a large ΔE c and ΔE v as compared with the GaAs / GaAlAs semiconductor superlattice, and the corresponding GaAs / G
Electrons and holes can be more strongly confined in the quantum well 18 than in the aAlAs semiconductor superlattice.

【0058】〔実施例6〕実施例2と同様に、図4の有
機絶縁層14に〔化4〕のナフタリン−1,4,5,8−
テトラカルボン酸二無水物、無機半導体層15にZnS
eを用い、本発明の有機無機複合超格子を構成した。
[Embodiment 6] As in Embodiment 2, the organic insulating layer 14 of FIG. 4 was coated with naphthalene-1,4,5,8-
Tetracarboxylic dianhydride, ZnS for inorganic semiconductor layer 15
The organic-inorganic hybrid superlattice of the present invention was constructed using e.

【0059】実施例5と同様に、分子力学法および分子
動力学法を用いて上記無水物分子のEcおよびEvを算出
した。その結果、同無水物分子のEcは約−2.77e
V、Evは−10.23eVであった。
[0059] Similarly to Example 5, were calculated E c and E v of the anhydride molecules using molecular mechanics and molecular dynamics method. As a result, E c of the anhydride molecule about -2.77e
V, E v was -10.23eV.

【0060】ZnSeのEc、Evはそれぞれ約−4.1
4eV、−6.64eVであるので、本実施例の有機無
機複合超格子のΔEcおよびΔEv(図4)は、それぞれ
約1.37eV、3.59eVである。
E c and E v of ZnSe are each about -4.1.
Since they are 4 eV and −6.64 eV, ΔE c and ΔE v (FIG. 4) of the organic-inorganic hybrid superlattice of this example are about 1.37 eV and 3.59 eV, respectively.

【0061】このように、本実施例の有機無機複合超格
子は、GaAs/GaAlAs半導体超格子と比較して
大きなΔEcおよびΔEvを有し、相当するGaAs/G
aAlAs半導体超格子よりも強く電子・正孔を量子井
戸18に閉じ込めることが可能である。
As described above, the organic-inorganic hybrid superlattice of this embodiment has a large ΔE c and ΔE v as compared with the GaAs / GaAlAs semiconductor superlattice, and the corresponding GaAs / G
Electrons and holes can be more strongly confined in the quantum well 18 than in the aAlAs semiconductor superlattice.

【0062】[0062]

【発明の効果】本発明の有機無機複合材料および有機無
機複合超格子は、ヘテロ接合界面でのΔEcおよびΔEv
を半導体超格子の場合と比較して大きくすることがで
き、相当する構造の半導体超格子と比較して、電子およ
び正孔をより強く量子井戸に閉じ込めることができる。
The organic-inorganic composite material and the organic-inorganic composite superlattice of the present invention have ΔE c and ΔE v at the heterojunction interface.
Can be made larger than in the case of a semiconductor superlattice, and electrons and holes can be more strongly confined in the quantum well than in a semiconductor superlattice of a corresponding structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体超格子の構造とバンド構造の模式図。FIG. 1 is a schematic view of a structure of a semiconductor superlattice and a band structure.

【図2】半導体材料および有機絶縁材料のバンドギャッ
プのエネルギーレベル図。
FIG. 2 is an energy level diagram of a band gap of a semiconductor material and an organic insulating material.

【図3】本発明の有機無機複合材料の構造とバンド構造
の模式図。
FIG. 3 is a schematic view of the structure and band structure of the organic-inorganic composite material of the present invention.

【図4】超格子構造を有する本発明の有機無機複合材料
の構造とバンド構造の模式図。
FIG. 4 is a schematic view of the structure and band structure of the organic-inorganic composite material of the present invention having a superlattice structure.

【符号の説明】[Explanation of symbols]

1…半導体A層、2…半導体B層、3…ヘテロ界面、
4,11,16…伝導帯下端、5,12,17…価電子
帯上端、6,13,18…量子井戸、7…電子のエネル
ギー順位、8…正孔のエネルギー順位、9,14…有機
絶縁層、10,15…無機半導体層。
1 ... Semiconductor A layer, 2 ... Semiconductor B layer, 3 ... Hetero interface,
4, 11, 16: conduction band bottom, 5, 12, 17 ... valence band top, 6, 13, 18 ... quantum well, 7 ... electron energy rank, 8 ... hole energy rank, 9, 14 ... organic Insulating layer, 10, 15 ... Inorganic semiconductor layer.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月16日[Submission date] April 16, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項5[Correction target item name] Claim 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】さらにまた、有機絶縁層と無機半導体層の
ヘテロ界面接合の、伝導帯下端のエネルギー変化が1.
33〜3.77eV、価電子帯上端のエネルギー変化が
2.52〜5.94eVである前記の有機無機複合材料に
ある。
Further, the energy change at the lower end of the conduction band at the hetero interface junction between the organic insulating layer and the inorganic semiconductor layer is 1.
The organic-inorganic composite material has an energy change of 33 to 3.77 eV and an upper end of the valence band of 2.52 to 5.94 eV.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】例えば、有機材料として、図2に示す様な
有機低分子材料の他に、有機高分子材料、LB(ラング
ミュア ブロジェット)膜等を用いることも可能である
が、分子線蒸着装置〔The 8th International Confe
rence on UnconventionalPhotoactive Systemes(U
PS−8),ABSTRACTS PARTICIPA
NTS LIST.I−10(1997年8月):Org
nic/InorgnicHeterostructures of Phthalocyani
ne and Cadmium Selenide by Molecular Bea
m Deposition.〕を用いて本発明を実施する場合に
は、化合物の蒸気圧が分子線蒸着に適していることが望
ましい。但し、本発明において、有機層は半導体層を相
互に隔離する絶縁スペーサ層であるので、特開平6−3
712号公報、特開平2−201320号公報の場合の
ように、有機半導体材料、有機機能性材料を用いること
はできない。
[0032] For example, as an organic material, in addition to the organic low-molecular material such as shown in FIG. 2, an organic polymer material, LB although it is also possible to use (Langmuir Blodgett) film or the like, molecular beam deposition apparatus [ The 8th International Confe
rence on Unconventional Photoactive Systemes (U
PS-8), ABSTRACTS PARTICIPA
NTS LIST. I-10 (August 1997): Org
nic / Inorgnic Heterostructures of Phthalocyani
ne and Cadmium Selenide by Molecular Bea
m Deposition. When the present invention is carried out using the above formula, it is desirable that the compound has a vapor pressure suitable for molecular beam deposition. However, in the present invention, the organic layer is an insulating spacer layer for isolating the semiconductor layers from each other.
Organic semiconductor materials and organic functional materials cannot be used as in the case of Japanese Patent Application Laid-Open No. 712 and Japanese Patent Application Laid-Open No. Hei 2-201320.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機絶縁層と無機半導体層が積層接合さ
れた超格子構造を有する有機無機複合材料において、前
記有機絶縁層を構成する材料が、 【化1】 で示される無水マレイン酸〔化1〕、ビフェニル〔化
2〕、1,2,4,5−ベンゾテトラカルボン酸二無水物
〔化3〕、ナフタリン−1,4,5,8−テトラカルボン
酸二無水物〔化4〕から選ばれることを特徴とする有機
無機複合材料。
1. An organic-inorganic composite material having a superlattice structure in which an organic insulating layer and an inorganic semiconductor layer are laminated and joined, wherein the material constituting the organic insulating layer is: Maleic anhydride [chemical formula 1], biphenyl [chemical formula 2], 1,2,4,5-benzotetracarboxylic dianhydride [chemical formula 3], naphthalene-1,4,5,8-tetracarboxylic acid An organic-inorganic composite material selected from dianhydrides [Chemical Formula 4].
【請求項2】 前記無機半導体層を構成する材料が、G
aAsまたはZnSeである請求項1に記載の有機無機
複合材料。
2. The material for forming the inorganic semiconductor layer is G
The organic-inorganic composite material according to claim 1, which is aAs or ZnSe.
【請求項3】 前記有機絶縁層と無機半導体層が3層以
上交互に積層され、かつ、有機絶縁層により電子および
正孔が無機半導体層内部に2次元的に閉じこめられるよ
う構成されている請求項1または2に記載の有機無機複
合材料。
3. The organic insulating layer and the inorganic semiconductor layer are alternately stacked in three or more layers, and electrons and holes are two-dimensionally confined inside the inorganic semiconductor layer by the organic insulating layer. Item 3. The organic-inorganic composite material according to item 1 or 2.
【請求項4】 前記有機絶縁層と無機半導体層のヘテロ
界面がファンデルワールス作用により接合されている請
求項1,2または3に記載の有機無機複合材料。
4. The organic-inorganic composite material according to claim 1, wherein the heterointerface between the organic insulating layer and the inorganic semiconductor layer is joined by van der Waals action.
【請求項5】 有機絶縁層と無機半導体層のヘテロ界面
接合の、伝導帯下端のエネルギー変化が1.33〜4.0
7eV、価電子帯上端のエネルギー変化が2.52〜5.
94eVである請求項4に記載の有機無機複合材料。
5. The energy change at the lower end of the conduction band at the hetero interface junction between the organic insulating layer and the inorganic semiconductor layer is 1.33 to 4.0.
7 eV, the energy change at the upper end of the valence band is 2.52 to 5.
The organic-inorganic composite material according to claim 4, which is 94 eV.
JP8388498A 1998-03-30 1998-03-30 Organic-inorganic composite materials Expired - Fee Related JP2957986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8388498A JP2957986B1 (en) 1998-03-30 1998-03-30 Organic-inorganic composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8388498A JP2957986B1 (en) 1998-03-30 1998-03-30 Organic-inorganic composite materials

Publications (2)

Publication Number Publication Date
JP2957986B1 JP2957986B1 (en) 1999-10-06
JPH11282033A true JPH11282033A (en) 1999-10-15

Family

ID=13815097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8388498A Expired - Fee Related JP2957986B1 (en) 1998-03-30 1998-03-30 Organic-inorganic composite materials

Country Status (1)

Country Link
JP (1) JP2957986B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078219A (en) * 2011-09-30 2013-04-25 Mitsumi Electric Co Ltd Actuator and optical scanner device
JP2017527118A (en) * 2014-08-28 2017-09-14 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Two-dimensional layered material quantum well junction device, multiple quantum well device, and method of manufacturing quantum well device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078219A (en) * 2011-09-30 2013-04-25 Mitsumi Electric Co Ltd Actuator and optical scanner device
JP2017527118A (en) * 2014-08-28 2017-09-14 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Two-dimensional layered material quantum well junction device, multiple quantum well device, and method of manufacturing quantum well device

Also Published As

Publication number Publication date
JP2957986B1 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
Chen et al. Merits and challenges of Ruddlesden–Popper soft halide perovskites in electro‐optics and optoelectronics
Ji et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes
KR101625224B1 (en) Device including semiconductor nanocrystals and a layer including a doped oraganic material and methods
KR100642431B1 (en) Quantum Dot Light Emitting Diode Comprising Inorganic Electron Transport Layer
KR101728575B1 (en) Device including quantum dots
Zhu et al. Large organic cations in quasi-2D perovskites for high-performance light-emitting diodes
Yamijala et al. Structural stability, electronic, magnetic, and optical properties of rectangular graphene and boron nitride quantum dots: Effects of size, substitution, and electric field
KR101200623B1 (en) Organic injection laser
JPS61248480A (en) Field effect transistor
Sharma et al. Highly enhanced many-body interactions in anisotropic 2D semiconductors
JPWO2005079119A1 (en) Light emitting transistor
Sharma et al. Structure optimization and investigation of electrical and optical characteristics of Alq3/TAZ: Ir (ppy) 3-BCP/HMTPD OLED
JP5202944B2 (en) Method for improving maximum modulation rate of light emitting device, light emitting device having improved maximum modulation rate, and quantum well structure thereof
KR100665698B1 (en) Quantom Dot Light-Emitting Diode Combined With Polymer
Alvarado-Leanos et al. Lasing in two-dimensional tin perovskites
US8048703B2 (en) Light emitting devices with inhomogeneous quantum well active regions
JP2957986B1 (en) Organic-inorganic composite materials
Xu et al. Suppression of Photoinduced Phase Segregation in Mixed-Halide Perovskite Nanocrystals for Stable Light-Emitting Diodes
US7160822B2 (en) Method of forming quantum dots for extended wavelength operation
JPH0554279B2 (en)
JP5457392B2 (en) Semiconductor laser
WO2007026767A1 (en) Light-emitting element and method for fabricating same
Said et al. The band lineups at highly strained ZnS/CdS and ZnSe/ZnTe interfaces: effects of the quadratic deformation potentials and the relaxation of the semicore d-electrons
JP2013093425A (en) Quantum semiconductor device and method for manufacturing the same
KR100240641B1 (en) Semiconductor laser

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100723

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110723

LAPS Cancellation because of no payment of annual fees