JPH11281636A - Thermally accelerating type anti-phase liquid chromatography method - Google Patents

Thermally accelerating type anti-phase liquid chromatography method

Info

Publication number
JPH11281636A
JPH11281636A JP10086399A JP8639998A JPH11281636A JP H11281636 A JPH11281636 A JP H11281636A JP 10086399 A JP10086399 A JP 10086399A JP 8639998 A JP8639998 A JP 8639998A JP H11281636 A JPH11281636 A JP H11281636A
Authority
JP
Japan
Prior art keywords
separated
water
separation column
liquid chromatography
stationary phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10086399A
Other languages
Japanese (ja)
Inventor
Fumiji Furuzuki
文志 古月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP10086399A priority Critical patent/JPH11281636A/en
Publication of JPH11281636A publication Critical patent/JPH11281636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable separation and analysis without using an organic solvent by heating a solid phase, developing distilled deionized water as an eluant, and separating and eluting hydrophobic organic compounds as an object to be separated. SOLUTION: A sample solution containing a plurality of substances to be separated is injected into one side of a separating column 4 filled with a solid phase from a sample introducing part 3, and distilled deionized water is supplied from an eluant tank 1 into a separating column 4 by a liquid delivering pump 2 and is developed. A drain valve 10 is closed, a water delivering valve 9 is opened, and a water tank 8 for heating is filled with water. Then the water delivering valve 9 is closed, heating to a set temperature is performed by an electric heating device 5 such as a heater. Substances separated and eluted by the separating column 4 are detected by a detector 6 and are recorded by a recording device 7. Therefore, it is possible to separate and elute hydrophobic organic compounds speedily and safely without using an organic solvent as a mobile phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、熱促進型
逆相液体クロマトグラフィ法に関するものである。さら
に詳しくは、この出願の発明は、核酸を構成する基礎化
合物である核塩基、ヌクレオシド、および、蛋白質を構
成する基礎化合物であるアミノ酸等疎水性有機化合物の
分離・溶出、および、精製に有用な熱促進型高性能逆相
液体クロマトグラフィ法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-promoted reversed-phase liquid chromatography method. More specifically, the invention of this application is useful for separation / elution of hydrophobic organic compounds such as nucleobases and nucleosides which are basic compounds constituting nucleic acids and amino acids which are basic compounds constituting proteins, and purification. The present invention relates to a heat-promoted high-performance reversed-phase liquid chromatography method.

【0002】[0002]

【従来の技術とその課題】従来より、固定相を充填した
分離カラムの一端に複数の分離対象物質を含む溶液を注
入し、その後溶離液を展開させて各々の分離対象物質の
保持時間の相違をもって分離・溶出する液体クロマトグ
ラフィ法が各様の目的と用途に広く使用されている。そ
して分離の対象とする物質の種類に応じて、固定相や溶
離液の選択が様々に工夫されてきている。
2. Description of the Related Art Conventionally, a solution containing a plurality of substances to be separated has been injected into one end of a separation column packed with a stationary phase, and then an eluent is developed to differentiate the retention time of each substance to be separated. Liquid chromatography, which separates and elutes with, is widely used for various purposes and applications. Various selections of the stationary phase and the eluent have been made in accordance with the type of the substance to be separated.

【0003】しかしながら、以上のような従来の液体ク
ロマトグラフィ法においては、いずれの場合にも、疎水
性の有機化合物を迅速に分離するためには、移動相とし
ての溶離液に有機溶媒を用いることが必要とされている
ため、これら有機溶媒の廃液処理が欠かせないものとな
っていた。有機溶媒の処理は、環境問題の観点から深刻
になりつつある現在、液体クロマトグラフィ法における
有機溶媒の使用にともなう問題を抜本的に解消するため
の方策が求められていた。
However, in the above conventional liquid chromatography methods, in any case, in order to rapidly separate a hydrophobic organic compound, an organic solvent is used as an eluent as a mobile phase. Because of the necessity, waste liquid treatment of these organic solvents has been indispensable. At present, the treatment of an organic solvent is becoming serious from the viewpoint of environmental problems. At present, there is a need for a method for drastically solving the problems associated with the use of an organic solvent in liquid chromatography.

【0004】ただ、有機溶媒を使用することなしに疎水
性の有機化合物を液体クロマトグラフィ法により効率的
に分離、溶出することは容易ではない。それというの
も、非有機系の水系溶媒では疎水性有機化合物の溶解度
が低く、固定相の疎水強度が大きく、疎水性有機化合物
との相互作用が強いために分離、溶出が容易ではないか
らであった。
[0004] However, it is not easy to efficiently separate and elute hydrophobic organic compounds by liquid chromatography without using an organic solvent. This is because non-organic aqueous solvents have low solubility of hydrophobic organic compounds, high stationary phase hydrophobicity, and strong interaction with hydrophobic organic compounds, making separation and elution difficult. there were.

【0005】そこで、この出願の発明は、従来の技術的
問題を解消し、核酸を構成する基礎化合物である核塩
基、ヌクレオシド、および、蛋白質を構成する基礎化合
物であるアミノ酸等の生命科学領域で最も重要な疎水性
有機化合物を有機溶媒を用いることなく分離・分析する
ことのできる、新しい液体クロマトグラフィ法を提供す
ることを課題としている。
Accordingly, the invention of this application solves the conventional technical problems and is applied to the life science fields such as nucleobases and nucleosides which are basic compounds constituting nucleic acids, and amino acids which are basic compounds constituting proteins. It is an object of the present invention to provide a new liquid chromatography method capable of separating and analyzing the most important hydrophobic organic compounds without using an organic solvent.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、固定相を充填した分離カ
ラムの一端に複数の分離対象物質を含む溶液を注入し、
その後溶離液を展開させて各々の分離対象物質の保持時
間の相違をもって分離・溶出する液体クロマトグラフィ
法において、固定相は、その疎水強度が温度上昇ととも
に低下するものとし、固定相を加熱するとともに溶離液
として蒸留脱イオン水を展開して分離対象物質としての
疎水性有機化合物を分離・溶出することを特徴とする熱
促進型逆相液体クロマトグラフィ法を提供する。
According to the invention of the present application, a solution containing a plurality of substances to be separated is injected into one end of a separation column packed with a stationary phase.
In the liquid chromatography method, in which the eluent is then developed and the separation and elution of each substance to be separated is performed with a difference in retention time, the hydrophobic phase of the stationary phase is assumed to decrease with increasing temperature. A heat-promoted reversed-phase liquid chromatography method characterized in that distilled deionized water is developed as a liquid to separate and elute a hydrophobic organic compound as a substance to be separated.

【0007】また、この出願の発明は、前記の液体クロ
マトグラフィ法のための分離カラムであって、疎水強度
が温度上昇とともに低下する物質を固定相として充填し
ていることを特徴とする液体クロマトグラフィ用分離カ
ラムも提供する。
Further, the invention of this application is a separation column for the liquid chromatography method, wherein a substance whose hydrophobic strength decreases with increasing temperature is packed as a stationary phase. A separation column is also provided.

【0008】[0008]

【発明の実施の形態】この出願の発明は、上記のとおり
の特徴を持つものであるが、以下にその実施の形態につ
いて説明する。添付した図面の図1は、この発明の熱促
進型高性能逆相液体クロマトグラフィ法のための装置構
成を例示した模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below. FIG. 1 of the accompanying drawings is a schematic view illustrating an apparatus configuration for a heat-promoted high-performance reversed-phase liquid chromatography method of the present invention.

【0009】たとえばこの図1に示したように、この発
明の方法では、固定相を充填した分離カラム(4)の一
端側に複数の分離対象物質を含む試料溶液を試料導入部
(3)から注入し、溶離液タンク(1)から送液ポンプ
(2)により蒸留脱イオン水を分離カラム(4)内に供
給し、展開する。この場合の溶離液としての蒸留脱イオ
ン水は、移動相として性格づけられるものであって、蒸
留と脱イオンとによって、いわゆる純水として定義され
るものまでも意味している。
For example, as shown in FIG. 1, according to the method of the present invention, a sample solution containing a plurality of substances to be separated is supplied from one end of a separation column (4) filled with a stationary phase to a sample introduction part (3). The mixture is injected, distilled and deionized water is supplied from the eluent tank (1) to the separation column (4) by the liquid sending pump (2), and is developed. Distilled deionized water as an eluent in this case is characterized as a mobile phase, and also refers to what is defined as so-called pure water by distillation and deionization.

【0010】また、この発明の方法では、分離カラム
(4)内の固定相を加熱することを特徴としている。こ
のための手順としては、たとえば図1においては、排水
弁(10)を閉じて、送水弁(9)を開け、加熱用水槽
(8)に水を満たした後、送水弁(9)を閉じて、ヒー
ター等の電気加熱装置(5)によって設定温度まで加熱
する。なお、反対に、分離カラム(4)を冷却する場合
には、送水弁(9)と排水弁(10)を開け、水道水を
流して冷却すればよい。分離カラム(4)によって分離
・溶出された物質は検出器(6)によって検出され、記
録器(7)にて記録されることになる。
The method of the present invention is characterized in that the stationary phase in the separation column (4) is heated. As a procedure for this, for example, in FIG. 1, the drain valve (10) is closed, the water supply valve (9) is opened, the heating water tank (8) is filled with water, and then the water supply valve (9) is closed. Then, it is heated to a set temperature by an electric heating device (5) such as a heater. Conversely, when cooling the separation column (4), the water supply valve (9) and the drain valve (10) are opened, and tap water is allowed to flow for cooling. The substance separated and eluted by the separation column (4) is detected by the detector (6) and recorded by the recorder (7).

【0011】固定相としては、疎水性を有し、かつ、そ
の疎水強度が熱により変動する物質を用いることにな
る。特に、加熱することにより急速に疎水強度を低下さ
せるものが固定相に用いられる。このような疎水強度が
熱により変動する固定相としては、特にその種類に制限
はない。たとえば、シリカゲルの支持担体の表面にオク
タデシルシランを修飾させたODS等が例示されるが、
市販されている固定相はこのような熱応答性を有してい
る。これらの熱応答性を有する固定相を充填した分離カ
ラムを加熱すると、固定相の疎水基(ODSの場合はそ
の疎水基はC18)の熱運動は激しくなり、その結果、分
離対象物質との疎水親和力が著しく弱くなる。
As the stationary phase, a substance which has hydrophobicity and whose hydrophobic strength fluctuates due to heat is used. In particular, those which rapidly decrease the hydrophobic strength by heating are used for the stationary phase. Such a stationary phase whose hydrophobic strength fluctuates due to heat is not particularly limited in its kind. For example, ODS in which octadecylsilane is modified on the surface of a silica gel support is exemplified.
Commercially available stationary phases have such a thermal response. When a separation column packed with such a thermoresponsive stationary phase is heated, the thermal motion of the hydrophobic group (in the case of ODS, the hydrophobic group is C 18 ) of the stationary phase becomes vigorous, and as a result, the thermal motion of the stationary phase with the substance to be separated is increased. The hydrophobic affinity becomes significantly weaker.

【0012】また、ODS等のような疎水性のみを有す
る固定相を用いた場合には、疎水性を示す物質のみを分
離するが、イオン交換能力を同時に有する疎水性固定相
を用いた場合には、疎水性および親水性(イオン)を同
時に分離することが可能である。このような機能の付加
も、この発明においては適宜に考慮されてよい。溶離液
としては、前記のとおりの蒸留脱イオン水(純水)を用
いるが、疎水性を有するほとんどの有機化合物は、水に
対する溶解度が水温の上昇とともに上昇する。つまり、
分離カラムを加熱することによって溶離液としての水の
温度が上昇し、分離対象物質に対する溶解度も上昇する
ため、分離対象物質の固定相から移動相(水)への拡散
が促進される。
Further, when a stationary phase having only hydrophobicity such as ODS is used, only substances exhibiting hydrophobicity are separated, but when a hydrophobic stationary phase having ion exchange capacity is used at the same time. Is capable of simultaneously separating hydrophobicity and hydrophilicity (ions). Such addition of a function may be appropriately considered in the present invention. As the eluent, distilled deionized water (pure water) as described above is used, but the solubility of most organic compounds having hydrophobicity increases with increasing water temperature. That is,
By heating the separation column, the temperature of water as an eluent increases, and the solubility of the separation target substance also increases, so that diffusion of the separation target substance from the stationary phase to the mobile phase (water) is promoted.

【0013】以上のように、分離カラム(4)に熱を加
えることによって、固定相の疎水親和力を弱めるととも
に、移動相の溶解度を増大させることが可能であり、従
来有機溶媒を用いないと分離できなかった疎水性有機化
合物を、移動相として蒸留脱イオン水、たとえば純水を
用いることで、有機溶媒を使用しなくとも、迅速かつ完
全に分離・溶出することができる。
As described above, by applying heat to the separation column (4), the hydrophobic affinity of the stationary phase can be reduced and the solubility of the mobile phase can be increased. By using distilled deionized water, such as pure water, as the mobile phase, the hydrophobic organic compound that could not be obtained can be quickly and completely separated and eluted without using an organic solvent.

【0014】この発明は、上記の通りの構成によってこ
れまでにない新しい分離対象物質の分離・分析の実現を
可能にする熱促進型高性能逆相液体クロマトグラフィを
提供するものであるが、その構成および作用効果の特徴
について、さらに詳しく以下の実施例に沿って説明す
る。もちろんこの発明は以下の例によって限定されるも
のではない。
The present invention is to provide a heat-promoted high-performance reverse-phase liquid chromatography which enables the realization of a new and novel separation target substance by the above-mentioned structure. The features of the operation and effect will be described in more detail with reference to the following examples. Of course, the present invention is not limited by the following examples.

【0015】[0015]

【実施例】実施例1 この発明の方法を用いて、核塩基、ヌクレオシドの分離
を行った。図1に示したように、長さ250cm、内径
4.6mmの分離カラム(4)にはODSを充填し、分
離カラム(4)の温度は、電気加熱装置(5)によって
40℃まで加熱した。溶離液としては純水を用い、流速
は1.0ml/minとした。
EXAMPLE 1 Using the method of the present invention, nucleobases and nucleosides were separated. As shown in FIG. 1, a separation column (4) having a length of 250 cm and an inner diameter of 4.6 mm was filled with ODS, and the temperature of the separation column (4) was heated to 40 ° C. by an electric heating device (5). . Pure water was used as the eluent, and the flow rate was 1.0 ml / min.

【0016】試料としては、Adenine(A)、Adenosine(r
A) 、Deoxyadenosine(dA)、Guanine(G)、Guanosine(rG)
、Deoxyguanosine(dG)、Cytosine(C) 、Cytidine(r
C)、Deoxycytidine(dC) 、Thymine(T)、Thymidine(dT)
、Uracil(U) 、Uridine(rU) の混合水溶液を用いた。G
uanine の濃度は0.005mM、その他は0.02m
Mとした。
Adenine (A), Adenosine (r
A), Deoxyadenosine (dA), Guanine (G), Guanosine (rG)
, Deoxyguanosine (dG), Cytosine (C), Cytidine (r
C), Deoxycytidine (dC), Thymine (T), Thymidine (dT)
, Uracil (U) and Uridine (rU). G
The concentration of uanine is 0.005mM, others are 0.02m
M.

【0017】また、この方法によって分離された物質
は、UV(波長210nm)検出器(6)によって検出
した。その結果を図2に示した。効果的な分離、溶出が
行われることが確認された。実施例2 実施例1と同様に、この発明の方法を用いて、核塩基、
ヌクレオシドの分離を行った。
The substance separated by this method was detected by a UV (wavelength 210 nm) detector (6). The result is shown in FIG. It was confirmed that effective separation and elution were performed. Example 2 In the same manner as in Example 1, the nucleobase,
The nucleoside was separated.

【0018】図1に示したように、長さ250cm、内
径4.6mmの分離カラム(4)にはODSを充填し、
分離カラム(4)の温度は、電気加熱装置(5)によっ
て60℃まで加熱した。溶離液としては純水を用い、流
速は1.0ml/minとした。試料としては、実施例
1と同じ混合水溶液を用いた。
As shown in FIG. 1, a separation column (4) having a length of 250 cm and an inner diameter of 4.6 mm is filled with ODS.
The temperature of the separation column (4) was heated to 60 ° C. by the electric heating device (5). Pure water was used as the eluent, and the flow rate was 1.0 ml / min. The same mixed aqueous solution as in Example 1 was used as a sample.

【0019】また、この方法によって分離された物質
は、UV(波長210nm)検出器(6)によって検出
した。その結果を図3に示した。実施例3 実施例1と同様に、この発明の方法を用いて、核塩基、
ヌクレオシドの分離を行った。
The substance separated by this method was detected by a UV (wavelength 210 nm) detector (6). The result is shown in FIG. Example 3 As in Example 1, the nucleobase,
The nucleoside was separated.

【0020】図1に示したように、長さ250cm、内
径4.6mmの分離カラム(4)にはODSを充填し、
分離カラム(4)の温度は、電気加熱装置(5)によっ
て、30℃で15分間加熱し、その後、65℃まで上昇
させる温度プログラム法を用いて加熱した。溶離液とし
ては純水を用い、流速は1.0ml/minとした。試
料としては、実施例1と同じ混合水溶液を用いた。
As shown in FIG. 1, a separation column (4) having a length of 250 cm and an inner diameter of 4.6 mm is filled with ODS.
The temperature of the separation column (4) was heated by an electric heating device (5) at 30 ° C. for 15 minutes, and then heated by a temperature program method of increasing to 65 ° C. Pure water was used as the eluent, and the flow rate was 1.0 ml / min. The same mixed aqueous solution as in Example 1 was used as a sample.

【0021】また、この方法によって分離された物質
は、UV(波長210nm)検出器(6)によって検出
した。その結果を図4に示した。実施例4 この発明の方法を用いて、アミノ酸の分離を行った。図
1に示したように、長さ250cm、内径4.6mmの
分離カラム(4)にはODSを充填し、分離カラム
(4)の温度は、電気加熱装置(5)によって30℃ま
で加熱した。溶離液としては純水を用い、流速は1.0
ml/minとした。
The substances separated by this method were detected by a UV (wavelength 210 nm) detector (6). The result is shown in FIG. Example 4 Amino acids were separated using the method of the present invention. As shown in FIG. 1, a separation column (4) having a length of 250 cm and an inner diameter of 4.6 mm was filled with ODS, and the temperature of the separation column (4) was heated to 30 ° C. by an electric heating device (5). . Pure water was used as the eluent, and the flow rate was 1.0
ml / min.

【0022】試料としては、β−3,4−Dihydroxyphe
nylalanine、Phneylalanine 、5−Hydroxytryptophan
、Tryptophanの混合水溶液、濃度は各0.1nMとし
た。また、この方法によって分離された物質は、UV
(波長210nm)検出器(6)によって検出した。そ
の結果を図5に示した。実施例5 さらに、この発明の熱促進型高性能逆相液体クロマトグ
ラフィにおける分離対象物質の溶出時間と分離カラムの
温度との関係を検討し、図6に示した結果を得た。
As a sample, β-3,4-dihydroxyphe
nylalanine, Phneylalanine, 5-Hydroxytryptophan
, Tryptophan, and the concentration of each were 0.1 nM. The substance separated by this method is UV
(Wavelength 210 nm) Detected by the detector (6). The results are shown in FIG. Example 5 Further, the relationship between the elution time of the substance to be separated and the temperature of the separation column in the heat-promoted high-performance reversed-phase liquid chromatography of the present invention was examined, and the results shown in FIG. 6 were obtained.

【0023】k:Cpacity Factor,k=(tR −to
/to ;tR は溶出時間、to は分離カラムを素通りす
る時間、Tは絶対温度(K)である。
K: Cpacity Factor, k = (t R −t o )
/ T o; t R is retention time, the t o time to pass through the separation column, T is an absolute temperature (K).

【0024】[0024]

【発明の効果】以上詳しく説明したように、この発明に
よって、従来有機溶媒を用いないと分離できなかった疎
水性有機化合物を、移動相として純水を用いることで、
有機溶媒を使用しなくとも、迅速かつ完全に分離・溶出
することができる。また、この発明によって、核酸を構
成する基礎化合物である核塩基、ヌクレオシド、およ
び、蛋白質を構成する基礎化合物であるアミノ酸等の生
命科学領域で最も重要な疎水性有機化合物を有機溶媒を
用いることなく分離・分析できる。
As described in detail above, according to the present invention, a hydrophobic organic compound which could not be separated without using an organic solvent in the past can be replaced with pure water as a mobile phase.
It can be separated and eluted quickly and completely without using an organic solvent. Further, according to the present invention, the most important hydrophobic organic compounds in the life sciences domain such as nucleobases, nucleosides and amino acids which are basic compounds constituting nucleic acids constituting nucleic acids without using an organic solvent. Can be separated and analyzed.

【0025】そして、この発明によって、有機溶媒を使
用する場合にはその廃液処理が大きな問題になっていた
が、このような不都合のほとんどない、新しい液体クロ
マトグラフィが実現されることになる。
According to the present invention, when an organic solvent is used, waste liquid treatment has become a serious problem, but a new liquid chromatography which has almost no such disadvantages will be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の熱促進型高性能逆相液体クロマトグ
ラフィの模式図である。
FIG. 1 is a schematic view of a heat-promoted high-performance reversed-phase liquid chromatography of the present invention.

【図2】実施例1の検出結果を示した図である。FIG. 2 is a diagram showing a detection result of the first embodiment.

【図3】実施例2の検出結果を示した図である。FIG. 3 is a diagram showing a detection result of Example 2.

【図4】実施例3の検出結果を示した図である。FIG. 4 is a diagram showing a detection result of Example 3.

【図5】実施例4の検出結果を示した図である。FIG. 5 is a diagram showing a detection result of Example 4.

【図6】熱促進型高性能逆相液体クロマトグラフィにお
ける分離対象物質の溶出時間と分離カラムの温度との関
係を示した図である。
FIG. 6 is a diagram showing the relationship between the elution time of a substance to be separated and the temperature of a separation column in heat-assisted high-performance reversed-phase liquid chromatography.

【符号の説明】[Explanation of symbols]

1 溶離液タンク 2 送液タンク 3 試料導入部 4 分離カラム 5 電気加熱装置 6 検出器 7 記録器 8 加熱用水槽 9 送水弁 10 排水弁 DESCRIPTION OF SYMBOLS 1 Eluent tank 2 Liquid sending tank 3 Sample introduction part 4 Separation column 5 Electric heating device 6 Detector 7 Recorder 8 Heating water tank 9 Water supply valve 10 Drainage valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 30/88 G01N 30/88 E // C07H 1/06 C07H 1/06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI G01N 30/88 G01N 30/88 E // C07H 1/06 C07H 1/06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固定相を充填した分離カラムの一端に複
数の分離対象物質を含む溶液を注入し、その後溶離液を
展開させて各々の分離対象物質の保持時間の相違をもっ
て分離・溶出する液体クロマトグラフィ法において、固
定相は、その疎水強度が温度上昇とともに低下するもの
とし、固定相を加熱するとともに溶離液として蒸留脱イ
オン水を展開して分離対象物質としての疎水性有機化合
物を分離・溶出することを特徴とする熱促進型逆相液体
クロマトグラフィ法。
A liquid that separates and elutes by injecting a solution containing a plurality of substances to be separated into one end of a separation column packed with a stationary phase, and then developing an eluent to maintain retention times of the respective substances to be separated. In the chromatographic method, the hydrophobic strength of the stationary phase decreases as the temperature rises, and the stationary phase is heated, and distilled deionized water is developed as an eluent to separate and elute the hydrophobic organic compound as the substance to be separated. A heat-enhanced reversed-phase liquid chromatography method.
【請求項2】 請求項1の方法のための分離カラムであ
って、疎水強度が温度上昇とともに低下する物質を固定
相として充填していることを特徴とする液体クロマトグ
ラフィ用分離カラム。
2. A separation column for the method according to claim 1, wherein the separation column is packed with a substance whose hydrophobic strength decreases with increasing temperature as a stationary phase.
JP10086399A 1998-03-31 1998-03-31 Thermally accelerating type anti-phase liquid chromatography method Pending JPH11281636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086399A JPH11281636A (en) 1998-03-31 1998-03-31 Thermally accelerating type anti-phase liquid chromatography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086399A JPH11281636A (en) 1998-03-31 1998-03-31 Thermally accelerating type anti-phase liquid chromatography method

Publications (1)

Publication Number Publication Date
JPH11281636A true JPH11281636A (en) 1999-10-15

Family

ID=13885804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086399A Pending JPH11281636A (en) 1998-03-31 1998-03-31 Thermally accelerating type anti-phase liquid chromatography method

Country Status (1)

Country Link
JP (1) JPH11281636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091323A1 (en) * 2006-02-09 2007-08-16 Shimadzu Corporation Method and apparatus for analysis by liquid chromatography
CN109959732A (en) * 2017-12-26 2019-07-02 内蒙古京新药业有限公司 The separation method of Kangfuxin Liquid finger-print and its effective constituents A

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091323A1 (en) * 2006-02-09 2007-08-16 Shimadzu Corporation Method and apparatus for analysis by liquid chromatography
JPWO2007091323A1 (en) * 2006-02-09 2009-06-25 株式会社島津製作所 Analysis method and apparatus by liquid chromatography
JP4569633B2 (en) * 2006-02-09 2010-10-27 株式会社島津製作所 Analysis method and apparatus by liquid chromatography
US8104330B2 (en) 2006-02-09 2012-01-31 Shimadzu Corporation Method and apparatus for analysis by liquid chromatography
CN109959732A (en) * 2017-12-26 2019-07-02 内蒙古京新药业有限公司 The separation method of Kangfuxin Liquid finger-print and its effective constituents A

Similar Documents

Publication Publication Date Title
Hjerten et al. Micropreparative version of high-performance electrophoresis: The electrophoretic counterpart of narrow-bore high-performance liquid chromatography
Xing et al. Liquid chromatographic analysis of nucleosides and their mono‐, di‐and triphosphates using porous graphitic carbon stationary phase coupled with electrospray mass spectrometry
Gong et al. Analysis of oligonucleotides by hydrophilic interaction liquid chromatography coupled to negative ion electrospray ionization mass spectrometry
Ashraf-Khorassani et al. Screening strategies for achiral supercritical fluid chromatography employing hydrophilic interaction liquid chromatography-like parameters
Li et al. Impurity profiling of siRNA by two-dimensional liquid chromatography-mass spectrometry with quinine carbamate anion-exchanger and ion-pair reversed-phase chromatography
Huber et al. Rapid analysis of biopolymers on modified non-porous polystyrene-divinylbenzene particles
Zakaria et al. Mechanisms of retention in reversed-phase liquid chromatographic separation of ribonucleotides and ribonucleosides and their bases
Roussis et al. Separation of phosphorothioate oligonucleotide impurities by WAX HPLC under high organic content elution conditions
Mesplet et al. Simultaneous quantitation of nucleoside HIV-1 reverse transcriptase inhibitors by short-end injection capillary electrochromatography on a β-cyclodextrin-bonded silica stationary phase
JPH11281636A (en) Thermally accelerating type anti-phase liquid chromatography method
Puignou et al. Determination of heterocyclic aromatic amines by capillary zone electrophoresis in a meat extract
Berdasco et al. Quantification of global DNA methylation by capillary electrophoresis and mass spectrometry
Andrus et al. Analysis and purification of synthetic nucleic acids using HPLC
US6486309B1 (en) Method of detecting sequence variations in macromolecules by thermal gradiant
Kasicka et al. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes
Kašička et al. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes: Application to analysis and preparation of fragments of insulin
Eastwood et al. Development of a nucleotide sugar purification method using a mixed mode column & mass spectrometry detection
Vosáhlová et al. Impact of Ion-Pairing Systems Choice on Diastereomeric Selectivity of Phosphorothioated Oligonucleotides in Reversed-Phase Liquid Chromatography
Premstaller et al. Multiplex analysis of single-nucleotide extension products on a 16-capillary, denaturing, high-performance liquid chromatography array
Rustandi Hydrophobic interaction chromatography to analyze glycoproteins
Freitag Displacement chromatography for biopolymer separation
Jenö et al. Electroelution of proteins from polyacrylamide gels
Bartlett Current state of hydrophilic interaction liquid chromatography of oligonucleotides
Mao et al. The thermally tuned tandem column approach to optimizing selectivity in HPLC.
Rojahn et al. A Study on Optimum Method Conditions for Denaturated and Non-Denaturated siRNA by Ion Pair Reversed-Phase Liquid Chromatography

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627