JPH11281490A - Pyroelectric type radiation temperature detector - Google Patents

Pyroelectric type radiation temperature detector

Info

Publication number
JPH11281490A
JPH11281490A JP10083790A JP8379098A JPH11281490A JP H11281490 A JPH11281490 A JP H11281490A JP 10083790 A JP10083790 A JP 10083790A JP 8379098 A JP8379098 A JP 8379098A JP H11281490 A JPH11281490 A JP H11281490A
Authority
JP
Japan
Prior art keywords
pyroelectric
temperature
temperature detector
current
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083790A
Other languages
Japanese (ja)
Inventor
Junya Kobayashi
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10083790A priority Critical patent/JPH11281490A/en
Publication of JPH11281490A publication Critical patent/JPH11281490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energy-saving and economical pyroelectric type radiation temperature detector despite of a simple structure. SOLUTION: A pyroelectric type radiation temperature detector is so constituted that a drive means 4 applying voltage such as a chopping wave, a rectangular wave, and a sine wave on a pyroelectric element 1 which receives radiation from an object to be measured is provided and a ferroelectrics polarized inversion current generated in the pyroelectric element 1 driven thereby is monitored so that an output 9 matching the temperature can be provided. This constitution can dispense with a mechanical chopper, a chopper drive part and the like added to a pyroelectric detector and necessitate no extreme high resistance which is hard to get and has high dispersion. Low-Curie-point pyroelectric materials such as DLATGS, TGS, and LATGS are preferable as pyroelectric materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射温度計、耳式
放射温度計等に用いられる焦電型放射温度検出器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric radiation temperature detector used for a radiation thermometer, an ear radiation thermometer and the like.

【0002】[0002]

【従来の技術】焦電型センサは、材料が安く低価格な赤
外線検出器として知られている。焦電型検出器による一
般的な対象物の温度検出方法は、対象物からの赤外線放
射を受けると結晶表面に溜まった電荷(自発分極)の変
化によって焦電電流が発生することを利用する。焦電電
流が流れて放電が終わると、結晶表面の電荷は中和し、
平衡状態となるため、温度を検出するには常に焦電電流
を発生させるためにセンサ前段にチョッパを設けて赤外
線を断続する方法がとられる。
2. Description of the Related Art Pyroelectric sensors are known as infrared detectors which are inexpensive and inexpensive. A general method of detecting the temperature of an object using a pyroelectric detector utilizes the fact that a pyroelectric current is generated due to a change in electric charge (spontaneous polarization) accumulated on the crystal surface when receiving infrared radiation from the object. When the pyroelectric current flows and the discharge ends, the charge on the crystal surface is neutralized,
In order to detect the temperature, a chopper is provided in front of the sensor so that a pyroelectric current is always generated in order to detect the temperature.

【0003】図6は、従来の焦電型センサの構成例を示
し、61は焦電体であり、測定対象物からの赤外線Lを
駆動回路63により駆動される光束チョッパ62により
所定の周期で断続し、焦電体61に投射する。R1は焦
電信号取り出し用の抵抗であり、焦電体61の内部抵抗
が高いため、抵抗値R1=10G−100GΩ程度の超
高抵抗を使用する必要がある。64は入力インピーダン
スの大きい電界効果トランジスタ(FET)である。F
ET64の出力は10kΩ程度の入力抵抗R2をおいて
増幅器65により増幅され枠66に示すような出力が得
られる。これを整流器67により整流して検出出力68
を得る。
FIG. 6 shows an example of the configuration of a conventional pyroelectric sensor. Reference numeral 61 denotes a pyroelectric body, which emits infrared light L from an object to be measured at a predetermined period by a light beam chopper 62 driven by a drive circuit 63. The light is intermittently projected onto the pyroelectric body 61. R1 is a resistor for taking out a pyroelectric signal, and since the internal resistance of the pyroelectric body 61 is high, it is necessary to use an ultra-high resistance of about R1 = 10G-100GΩ. Reference numeral 64 denotes a field effect transistor (FET) having a large input impedance. F
The output of the ET 64 is amplified by the amplifier 65 with an input resistance R2 of about 10 kΩ, and an output as shown in a frame 66 is obtained. This is rectified by a rectifier 67 and a detection output 68
Get.

【0004】[0004]

【発明が解決しようとする課題】上記の構成の焦電型セ
ンサにおいては、機械的チョッパやチョッパ駆動部等を
焦電検出器に付加しなければならず、検出器の構造が複
雑になる。またそれにかかる消費電力も大きい。また、
外気温度によってチョッパの温度補正が必要となるた
め、補正回路を設けなければならない等の諸問題があっ
た。
In the pyroelectric sensor having the above structure, a mechanical chopper, a chopper driving unit, and the like must be added to the pyroelectric detector, and the structure of the detector becomes complicated. Also, the power consumption involved is large. Also,
Since the temperature of the chopper needs to be corrected depending on the outside air temperature, there are various problems such as the necessity of providing a correction circuit.

【0005】本発明は、上記の問題を解消し、構造簡単
で省電力の経済的な焦電型放射温度検出器を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an economical pyroelectric radiation temperature detector with a simple structure and low power consumption.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の焦電型放射温度検出器は、測定対象からの
放射を受ける焦電体に三角波、矩形波、正弦波等の周期
波形電圧を印加する駆動手段を設け、これにより駆動さ
れる焦電体に生じる強誘電体分極反転電流をモニターす
ることにより温度に対応した出力を得るように構成した
ものである。
In order to achieve the above object, a pyroelectric radiation temperature detector according to the present invention comprises a pyroelectric body which receives radiation from a measurement object and has a periodic waveform such as a triangular wave, a rectangular wave, or a sine wave. A driving means for applying a voltage is provided, and an output corresponding to a temperature is obtained by monitoring a ferroelectric polarization inversion current generated in a pyroelectric body driven by the driving means.

【0007】焦電材料としては、低キューリー点の焦電
材料DLATGS,TGS等を用いることが好ましい。
As the pyroelectric material, it is preferable to use low curie point pyroelectric materials DLATGS, TGS and the like.

【0008】自発分極特性はそれぞれの焦電材料に固有
のもので、予めその材料の自発分極の温度特性を知って
おけば、結晶の自発分極値を測定することで結晶の温度
を知ることができる(自発分極には図2のような温度特
性がある)。結晶温度は対象物からの放射熱によって上
昇するが、この上昇による温度変化ΔTは対象物体温度
に比例する。
The spontaneous polarization characteristic is unique to each pyroelectric material. If the temperature characteristic of the spontaneous polarization of the material is known in advance, the temperature of the crystal can be known by measuring the spontaneous polarization value of the crystal. (Spontaneous polarization has a temperature characteristic as shown in FIG. 2). The crystal temperature rises due to radiant heat from the target, and the temperature change ΔT due to this rise is proportional to the target object temperature.

【0009】焦電体に外部から交番電界(矩形波、三角
波、サイン波)等を加えると、それに伴い焦電体に電流
(後述の式(2)で表わせる電流I)が流れる。なお、
この式(2)における第1項は自発分極が反転する際そ
れに伴って生じる反転分極電流を示している。この反転
分極電流をモニターすることで、温度変化ΔTに対応し
た出力を得ることが可能である。自発分極特性は焦電結
晶体によって異なる。たとえば、鼓膜体温計等の低温度
モニターには、その温度範囲において自発分極特性が急
峻なDLATGSがもっとも望ましい。この方法だと焦
電信号を取り出すための入手困難でばらつきの多い高抵
抗(10G−100GΩ)やFETといった素子は必要
で無くなる。
When an alternating electric field (rectangular wave, triangular wave, sine wave) or the like is externally applied to the pyroelectric body, a current (a current I expressed by the following equation (2)) flows through the pyroelectric body. In addition,
The first term in the equation (2) indicates a reversal polarization current generated when the spontaneous polarization reverses. By monitoring this inversion polarization current, it is possible to obtain an output corresponding to the temperature change ΔT. The spontaneous polarization characteristics differ depending on the pyroelectric crystal. For example, for a low-temperature monitor such as an eardrum thermometer, DLATGS having a sharp spontaneous polarization characteristic in the temperature range is most desirable. According to this method, an element such as a high resistance (10 G-100 GΩ) or an FET that is difficult to obtain and has a large variation for extracting a pyroelectric signal is not required.

【0010】[0010]

【発明の実施の形態】図1は、本発明の焦電型放射温度
検出器の1実施形態を示し、1は温度測定物からの放射
(主として赤外線)Lを受光する焦電体で、自発分極P
sの温度特性が測定温度範囲に適した既知の焦電材料の
結晶の板状体が用いられ、1対の電極2,3の間に挟持
されている。焦電体1の材料として、例えばLiTaO
3(タンタル酸リチウム)等も用いることができるが、
測定温度範囲において自発分極の温度特性のカーブの勾
配が急峻なものが好ましく、比較的低温の温度測定用と
しては、低キューリー点のTGS系焦電材料DLATG
S(重水素置換L−アラニントリグリシンサルフェイ
ト、キューリー点Tc=60°C)、TGS(トリグリ
シンサルフェイト、Tc=40°C)等好適である。ま
た、鼓膜体温計等の低温度モニターには、その温度範囲
において自発分極特性が急峻なDLATGS(同上)が
最適である。
FIG. 1 shows an embodiment of a pyroelectric radiation temperature detector according to the present invention. Reference numeral 1 denotes a pyroelectric body which receives radiation (mainly infrared light) L from a temperature measuring object. Polarization P
A crystal plate of a known pyroelectric material having a temperature characteristic of s suitable for the measurement temperature range is used, and is sandwiched between a pair of electrodes 2 and 3. As a material of the pyroelectric body 1, for example, LiTaO
3 (lithium tantalate) can also be used,
It is preferable that the slope of the temperature characteristic curve of spontaneous polarization be steep in the measurement temperature range. For a temperature measurement at a relatively low temperature, a TGS-based pyroelectric material DLATG having a low Curie point is preferably used.
Preferred are S (deuterium-substituted L-alanine triglycine sulfate, Curie point Tc = 60 ° C.), TGS (triglycine sulfate, Tc = 40 ° C.), and the like. For a low-temperature monitor such as an eardrum thermometer, DLATGS (same as above), which has a spontaneous polarization characteristic in the temperature range, is optimal.

【0011】電極2,3としては,図のようにNiCr
(ニッケルクロム)や金黒処理をしたAu(金)を用い
る。
The electrodes 2 and 3 are made of NiCr as shown in the figure.
(Nickel chrome) or Au (gold) treated with gold black is used.

【0012】4は、焦電体1を交番電界により駆動する
ための焦電体駆動回路であり、矩形波、三角波または正
弦波等の周期電圧波形を発生する。この場合、矩形波の
幅及び繰り返し周波数、三角波、正弦波等の周波数は、
分極反転電流の持続時間(ピーク幅)等を考慮して適宜
決めればよいが、これらは可変に構成しておくことが望
ましい。これらの波形は、任意の一つを発生すれば足
り、特に三角波が検出精度向上に最適であるが、焦電体
の種類を交換した場合に、これに適した波形をテスト
し、最適のものを選択できるように、各波形を発生で
き、これらを必要に応じて任意に切り換えできるように
構成してもよい。
Reference numeral 4 denotes a pyroelectric element driving circuit for driving the pyroelectric element 1 by an alternating electric field, and generates a periodic voltage waveform such as a rectangular wave, a triangular wave, or a sine wave. In this case, the width of the rectangular wave and the repetition frequency, the frequency of the triangular wave, the sine wave, etc.
It may be determined as appropriate in consideration of the duration (peak width) of the domain-inverted current, etc., but it is desirable that these be variably configured. It is sufficient to generate any one of these waveforms, and in particular, a triangular wave is most suitable for improving the detection accuracy.However, when the type of pyroelectric body is changed, a waveform suitable for this is tested and the optimum waveform is obtained. , Each waveform can be generated, and these can be arbitrarily switched as needed.

【0013】Rmは、焦電体駆動回路4に対して焦電体
1に直列に挿入された負荷抵抗、5はアース、6は増幅
器である。この増幅器6からの出力は、後述の式(2)
に示す電流Iに相当し、その電流波形から枠7に示すよ
うな分極反転電流波形pが取り出される。8は分極反転
電流pを積分する積分回路であり、枠7の分極反転電流
波形のピークの面積に相当する積分結果を得る。この積
分結果は、図1に示す式におけるPs値に相当し、投射
赤外線Lに基づく焦電体1の温度上昇ΔTに対応した出
力である。因みにSは焦電体の電極面積に相当し、強誘
体反転の実効面積にあたる。
Rm is a load resistor inserted in series with the pyroelectric body 1 in the pyroelectric body drive circuit 4, 5 is a ground, and 6 is an amplifier. The output from the amplifier 6 is expressed by the following equation (2).
, And a domain-inverted current waveform p as shown in a frame 7 is extracted from the current waveform. An integration circuit 8 integrates the polarization inversion current p, and obtains an integration result corresponding to the area of the peak of the polarization inversion current waveform in the frame 7. This integration result corresponds to the Ps value in the equation shown in FIG. 1 and is an output corresponding to the temperature rise ΔT of the pyroelectric body 1 based on the projected infrared light L. Incidentally, S corresponds to the electrode area of the pyroelectric body, and corresponds to the effective area of the strong attractant inversion.

【0014】次に、本発明装置の動作について説明す
る。
Next, the operation of the apparatus of the present invention will be described.

【0015】焦電体は、一般的に図2に示すような自発
分極Psの温度特性を有しており、自発分極Psの値が
判かれば、その温度を知ることができる。即ち自発分極
Psは、焦電体の温度上昇に寄与している赤外線Lの強
度に比例し、一方焦電体の温度変化に有効に作用する赤
外線強度Lは、次式の値に比例する。結局自発分極Ps
が判れば、測定対象物の温度を測定できる。
A pyroelectric body generally has a temperature characteristic of spontaneous polarization Ps as shown in FIG. 2, and if the value of spontaneous polarization Ps is known, the temperature can be known. That is, the spontaneous polarization Ps is proportional to the intensity of the infrared light L contributing to the temperature rise of the pyroelectric body, while the infrared light intensity L effectively acting on the temperature change of the pyroelectric body is proportional to the value of the following equation. Eventually spontaneous polarization Ps
, The temperature of the measurement object can be measured.

【0016】 A(T4 n−Te4 ) ……………………………………(1) ここで、Aは比例定数、Tは測定対象物の絶対温度、T
eは焦電体周辺雰囲気の絶対温度である。
A (T 4 n−Te 4 ) (1) where A is a proportional constant, T is the absolute temperature of the object to be measured, T
e is the absolute temperature of the atmosphere around the pyroelectric body.

【0017】なお、焦電体は、図3に示すように抵抗成
分と容量成分の並列接続の等価回路で表すことができ、
Rrはその等価抵抗値、Crは等価容量値である。
The pyroelectric element can be represented by an equivalent circuit in which a resistance component and a capacitance component are connected in parallel as shown in FIG.
Rr is the equivalent resistance value, and Cr is the equivalent capacitance value.

【0018】作動中、焦電体駆動回路2は出力電圧Vに
より焦電体1を駆動する。この状態で赤外線Lが焦電体
1に入射したとき焦電体1に流れる電流は、次の式
(2)で表すことができる。
In operation, the pyroelectric element drive circuit 2 drives the pyroelectric element 1 with the output voltage V. The current flowing through the pyroelectric body 1 when the infrared light L enters the pyroelectric body 1 in this state can be expressed by the following equation (2).

【0019】 I=dPs/dt+Cr・dV/dt+V/Rr ……(2) 第一項dPs/dtは、自発分極の変化に伴う分極反転
電流であり、赤外線Lの強度及びその波長分布に対応す
る。第二項は駆動電圧の変化に伴う容量電流であり、第
三項は、駆動電圧に比例する抵抗電流である。
I = dPs / dt + Cr · dV / dt + V / Rr (2) The first term dPs / dt is a polarization reversal current accompanying a change in spontaneous polarization, and corresponds to the intensity of infrared light L and its wavelength distribution. . The second term is a capacitance current associated with a change in the drive voltage, and the third term is a resistance current proportional to the drive voltage.

【0020】焦電体1に流れる電流Iは、焦電体1に直
列に挿入された負荷抵抗Rmの両端に電圧降下として現
れ、この電圧が増幅器6その他の適当な手段により増幅
され且つ分極反転電流以外のノイズ成分が除去されて、
駆動電圧Vの半周期ごとに、枠7内に示すような分極反
転電流波形pが得られる。この電流波形pのピーク部分
を積分回路8により積分してピーク面積を求めれば、式
(3)に示すように、焦電体結晶の自発分極Ps、即ち
焦電体結晶の温度変化ΔTに対応する出力9が得られ
る。
The current I flowing through the pyroelectric element 1 appears as a voltage drop across a load resistor Rm inserted in series with the pyroelectric element 1, and this voltage is amplified by the amplifier 6 and other appropriate means and the polarization is inverted. Noise components other than current are removed,
A domain-inverted current waveform p as shown in a frame 7 is obtained for each half cycle of the drive voltage V. When the peak area of the current waveform p is integrated by the integrating circuit 8 to obtain the peak area, the peak area corresponds to the spontaneous polarization Ps of the pyroelectric crystal, that is, the temperature change ΔT of the pyroelectric crystal as shown in Expression (3). An output 9 is obtained.

【0021】 Ps=(1/2S)∫(V/Rm)dt …………………(3) ここで、S:焦電体の電極面積(強誘体反転の実効面積
に相当) V:焦電体駆動回路2の出力電圧 Rm:分極反転電流出力Iの負荷抵抗値 この出力9は、焦電体1が被測定体からの赤外線Lを受
光している期間連続的に得ることができ、赤外線Lの強
度、従って被測定体の温度に応じて変化する。以上のよ
うに、本発明により、測定対象からの放射を断続するた
めの機械的チョッパを要することなく、温度検出を連続
的に行うことが可能となる。
Ps = (1 / S) ∫ (V / Rm) dt (3) where, S: electrode area of pyroelectric body (corresponding to effective area of strongly induced body inversion) V : Output voltage of pyroelectric body drive circuit 2 Rm: load resistance value of polarization reversal current output I This output 9 can be obtained continuously during the period when pyroelectric body 1 receives infrared light L from the object to be measured. It changes depending on the intensity of the infrared light L, and therefore the temperature of the object to be measured. As described above, according to the present invention, it is possible to continuously perform temperature detection without requiring a mechanical chopper for interrupting radiation from a measurement target.

【0022】なお、駆動回路4から焦電体1への駆動出
力としては、矩形波、三角波、サイン波その他各種の電
圧波形を用いることができるが、三角波電圧を印加する
と、前記式(2)のうちCr・dV/dtの項が直線と
なり、電流IからCrの成分が分離除去でき、温度測定
に関係する分極反転電流の検出精度が向上する。
The drive output from the drive circuit 4 to the pyroelectric element 1 can be a rectangular wave, a triangular wave, a sine wave or any other voltage waveform. When a triangular wave voltage is applied, the above equation (2) is obtained. Of these, the term Cr · dV / dt becomes a straight line, the component of Cr can be separated and removed from the current I, and the detection accuracy of the polarization inversion current related to the temperature measurement is improved.

【0023】図4、図5は、上記の点を駆動電圧Vと焦
電体電流Iの波形図から示すものである。図4は矩形波
1 nで駆動した場合であり、矩形波の立ち上がり、立
ち下がりと同時に振幅の大きなスパイク状波形sが現
れ、その後やや振幅の小さい分極反転電流pが現れる。
他方、図5は三角波V2 で駆動した場合であり、三角波
の上下頂点の直後に発生するスパイク状ノイズは小さ
く、分極反転電流pは相当に大きいので、測定精度を向
上できる。
FIGS. 4 and 5 show the above points from waveform diagrams of the driving voltage V and the pyroelectric current I. FIG. FIG. 4 shows a case in which the rectangular wave V 1 n is driven. A spike-like waveform s having a large amplitude appears at the same time as the rise and fall of the rectangular wave, and a polarization inversion current p having a slightly smaller amplitude appears thereafter.
On the other hand, FIG. 5 is a case of driving a triangular wave V 2, spike noise generated immediately after the upper and lower vertices of the triangle wave is small, since the polarization reversal current p is considerably larger, it can improve the measurement accuracy.

【0024】また、自発分極特性は焦電結晶体によって
異なるが、焦電体1の材料として、低キューリー点の焦
電材料DLATGS,TGS等を用いれば、測定温度範
囲付近での自発分極の温度特性の曲線の勾配が急峻であ
り、僅かの温度変化で自発分極値が大きく変化するの
で、温度検出の感度及び精度を向上することができ、放
射型温度計用の焦電型放射温度検出器として好適であ
る。また、鼓膜体温計等の低温度モニターには、その温
度範囲において自発分極特性が急峻なDLATGSを用
いた場合には、焦電信号を取り出しのために、入手困難
でばらつきの多い高抵抗(10G−100GΩ)やFE
Tといった素子は必要でなくなる。
Although the spontaneous polarization characteristics vary depending on the pyroelectric crystal, if a pyroelectric material DLATGS, TGS or the like having a low Curie point is used as the material of the pyroelectric body 1, the temperature of the spontaneous polarization near the measurement temperature range is increased. Since the slope of the characteristic curve is steep and the spontaneous polarization value greatly changes with a slight temperature change, the sensitivity and accuracy of temperature detection can be improved, and a pyroelectric radiation temperature detector for a radiation thermometer. It is suitable as. When a low temperature monitor such as a tympanic thermometer uses DLATGS having a spontaneous polarization characteristic in the temperature range, it is difficult to obtain a pyroelectric signal to extract a pyroelectric signal. 100GΩ) and FE
Elements such as T are not required.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
による焦電型放射温度検出器は次の諸効果を得ることが
できる。
As is apparent from the above description, the pyroelectric radiation temperature detector according to the present invention can obtain the following effects.

【0026】1)反転分極電流をモニターすることで温
度変化ΔTに対応した出力を得ることが可能である。こ
の方法だと焦電信号を取り出すための入手困難でばらつ
きの多い高抵抗(10G−100GΩ)やFETといっ
た素子は不要となる。
1) An output corresponding to a temperature change ΔT can be obtained by monitoring the reversal polarization current. According to this method, an element such as a high resistance (10 G to 100 GΩ) and an FET, which are difficult to obtain and vary widely, for extracting a pyroelectric signal becomes unnecessary.

【0027】2)機械的チョッパやチョッパ駆動部等
を、焦電検出器に付加する必要がなくなる。したがっ
て、検出器の構造が簡単となるとともに、それにかかる
消費電力も低減でき、また外気温度に対するチョッパの
温度補正のための補正回路を設ける必要もない。さらに
機械的作動部に基づく故障や保守の必要がなく、検出器
全体として寿命を長くまたコンパクトに構成することが
できる。
2) It is not necessary to add a mechanical chopper, a chopper driving section, and the like to the pyroelectric detector. Therefore, the structure of the detector can be simplified, the power consumption can be reduced, and there is no need to provide a correction circuit for correcting the temperature of the chopper with respect to the outside air temperature. Further, there is no need for a failure or maintenance based on the mechanical operating portion, and the detector can be configured to have a long life and be compact as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焦電型放射温度検出器の1実施形態の
概略構成図。
FIG. 1 is a schematic configuration diagram of an embodiment of a pyroelectric radiation temperature detector according to the present invention.

【図2】焦電体の自発分極の温度特性例図。FIG. 2 is a diagram showing a temperature characteristic example of spontaneous polarization of a pyroelectric body.

【図3】焦電体の等価回路図。FIG. 3 is an equivalent circuit diagram of a pyroelectric body.

【図4】本発明の1実施態様の焦電型放射温度検出器の
動作説明用図。
FIG. 4 is a diagram for explaining the operation of the pyroelectric radiation temperature detector according to one embodiment of the present invention.

【図5】本発明の他の実施態様の焦電型放射温度検出器
の動作説明用図。
FIG. 5 is a diagram for explaining the operation of a pyroelectric radiation temperature detector according to another embodiment of the present invention.

【図6】従来の焦電型放射温度検出器の構成例図。FIG. 6 is a configuration example diagram of a conventional pyroelectric radiation temperature detector.

【符号の説明】[Explanation of symbols]

1…焦電体 2、3…電極 4…焦電体駆動回路 5…アース 6…増幅器 7…分極反転電流波形 8…積分回路 9…検出出力 61…焦電体 62…光束チョッパー 63…チョッパ駆動回路 64…FET 66…増幅出力 67…整流回路 I…焦電体電流 p…分極反転電流波形 Ps…自発分極 R1…超高抵抗 R2…負荷抵抗 Rm…負荷抵抗 T…温度 V…焦電体駆動電圧 DESCRIPTION OF SYMBOLS 1 ... Pyroelectric body 2, 3 ... Electrode 4 ... Pyroelectric body drive circuit 5 ... Ground 6 ... Amplifier 7 ... Polarization reversal current waveform 8 ... Integration circuit 9 ... Detection output 61 ... Pyroelectric body 62 ... Light flux chopper 63 ... Chopper drive Circuit 64 ... FET 66 ... Amplification output 67 ... Rectifier circuit I ... Pyroelectric current p ... Polarization reversal current waveform Ps ... Spontaneous polarization R1 ... Super high resistance R2 ... Load resistance Rm ... Load resistance T ... Temperature V ... Pyroelectric drive Voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】測定対象からの放射を受ける焦電体に三角
波、矩形波、正弦波等の周期波形電圧を印加する駆動手
段を設け、これにより駆動される焦電体に生じる強誘電
体分極反転電流を監視することにより温度に対応した出
力を得るように構成したことを特徴とする焦電型放射温
度検出器。
A pyroelectric body receiving radiation from a measurement object is provided with a driving means for applying a periodic waveform voltage such as a triangular wave, a rectangular wave, and a sine wave, and a ferroelectric polarization generated in the pyroelectric body driven by the driving means is provided. A pyroelectric radiation temperature detector configured to obtain an output corresponding to a temperature by monitoring a reversal current.
【請求項2】低キューリー点の焦電材料DLATGS,
TGS等を用いた請求項1記載の放射型温度計用の焦電
型放射温度検出器。
2. A low curie point pyroelectric material DLATGS,
The pyroelectric radiation temperature detector for a radiation thermometer according to claim 1, wherein TGS or the like is used.
JP10083790A 1998-03-30 1998-03-30 Pyroelectric type radiation temperature detector Pending JPH11281490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10083790A JPH11281490A (en) 1998-03-30 1998-03-30 Pyroelectric type radiation temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083790A JPH11281490A (en) 1998-03-30 1998-03-30 Pyroelectric type radiation temperature detector

Publications (1)

Publication Number Publication Date
JPH11281490A true JPH11281490A (en) 1999-10-15

Family

ID=13812452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083790A Pending JPH11281490A (en) 1998-03-30 1998-03-30 Pyroelectric type radiation temperature detector

Country Status (1)

Country Link
JP (1) JPH11281490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022991B2 (en) * 2001-06-13 2006-04-04 Delphi Technologies, Inc. Active regulator for maximizing pyroelectric sensitivity
DE102014008315A1 (en) * 2014-05-31 2015-12-03 Albert Walenta Capacitive phase selection for dielectric micro-bolometers
JP2016192860A (en) * 2015-03-31 2016-11-10 ダイハツ工業株式会社 Power generation system
DE102020115591A1 (en) 2020-06-12 2021-12-16 Heinz Werner Schenk Electrical system for determining measured variables, for example for thermal images

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022991B2 (en) * 2001-06-13 2006-04-04 Delphi Technologies, Inc. Active regulator for maximizing pyroelectric sensitivity
DE102014008315A1 (en) * 2014-05-31 2015-12-03 Albert Walenta Capacitive phase selection for dielectric micro-bolometers
JP2016192860A (en) * 2015-03-31 2016-11-10 ダイハツ工業株式会社 Power generation system
DE102020115591A1 (en) 2020-06-12 2021-12-16 Heinz Werner Schenk Electrical system for determining measured variables, for example for thermal images

Similar Documents

Publication Publication Date Title
US6373264B1 (en) Impedance detection apparatus and method of physical variable
JP4454586B2 (en) Pyroelectric sensor
US20040196660A1 (en) Terahertz light apparatus
US6339221B1 (en) Ferroelectric thermometry and pyrometry by active operation
JPH11281490A (en) Pyroelectric type radiation temperature detector
US5886528A (en) Electrostatic voltage metering apparatus
US6294784B1 (en) Pyroelectric sensor sensitivity enhanced by active hysteresis excitation
US5508546A (en) Active pyroelectric infrared detector
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
EP0109712A2 (en) Infrared thermal detector
JP5288483B2 (en) Temperature difference detector by Seebeck current integration
JP3622753B2 (en) Radiation thermometer
US9297704B2 (en) Modulation methods for CMOS-based thermal sensors
SU709957A1 (en) Method of measuring pulse radiation intensity
JP3100890B2 (en) Infrared detector
CN1240932A (en) Infrared and electronic non-contact oral thermometer
JP3670959B2 (en) Gas detector
Pradhan et al. A null detecting system for absolute measurement of infrared radiation
Takeuchi et al. Modulation-type pyroelectric infrared detector and its application
JPH0968461A (en) Pyroelectricity detector
KR0152493B1 (en) Measuring apparatus for rate and quantum of radiation for infrared radiation material
JPH03180730A (en) Temperature measuring instrument
KR100461201B1 (en) Portable type infrared measuring device
SU1055974A1 (en) Radiation flow measuring method
JPH11513798A (en) Method and apparatus for utilizing dielectric breakdown for indirect measurement purposes