JPH11281476A - Infrared ray sensor and monitoring device using it - Google Patents

Infrared ray sensor and monitoring device using it

Info

Publication number
JPH11281476A
JPH11281476A JP10083526A JP8352698A JPH11281476A JP H11281476 A JPH11281476 A JP H11281476A JP 10083526 A JP10083526 A JP 10083526A JP 8352698 A JP8352698 A JP 8352698A JP H11281476 A JPH11281476 A JP H11281476A
Authority
JP
Japan
Prior art keywords
light receiving
receiving electrode
monitoring
monitoring area
pyroelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083526A
Other languages
Japanese (ja)
Inventor
Masao Inoue
雅央 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP10083526A priority Critical patent/JPH11281476A/en
Publication of JPH11281476A publication Critical patent/JPH11281476A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lengthen the service life, to facilitate maintenance/inspection, and to improve monitoring accuracy by constituting a pyroelectric element of a light receiving electrode plate for monitoring a two-dimensional scanning monitoring area formed by unfolding an one-dimensional monitoring area by being continuously arranged in a light receiving electride row for monitoring the one-dimensional monitoring area. SOLUTION: A circular pyroelectric element E mounted on a printed circuit board of an infrared ray sensor is constituted of a light receiving electrode row L1 for monitoring an one-dimensional monitoring area and a light receiving electrode plate L2 having the slightly large light receiving surface expanding in the lateral direction and monitoring a two-dimensional scanning monitoring area formed by unfolding the one-dimensional monitoring area together with the light receiving electrode row L1 by juxtaposing plural light receiving electrodes E1 to E8 in a row. The light receiving electrodes E1 to E8 are a square shape, and constitute the light receiving electrode row L1 by one channel (CH) to 8 CH, and the light receiving electrode plate L2 is constituted of almost semicircular light receiving electrodes Ea, Eb to be continuously arranged on both sides by sandwiching the light receiving electrode row L1 . Therefore, when a fire is caused in the two-dimensional scanning monitoring area, the pyroelectric element E judges the occurrence of the fire by receiving infrared rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中・大規模空間に
発生した火災と火源の位置等を検知する焦電素子用いた
赤外線センサ及びそれを用いた監視装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor using a pyroelectric element for detecting a fire that has occurred in a medium- or large-scale space and the position of a fire source, and a monitoring device using the same.

【0002】[0002]

【従来の技術】図9は従来の焦電素子を用いた監視装置
の構成を示す説明図で、特公平5−46599号公報記
載の装置が示されている。図9において、11は検出
部、12は旋回部、14は基台、16は光学系、17は
焦電体を用いた検出素子である。また、20は垂直検出
範囲、20aは瞬時視野、21はモータ、22は回転
鏡、23は対物レンズ、24は反射鏡、25はスリッ
ト、26は集光レンズ、27はロータリユニットであ
る。図9に示すように、基台14上に旋回部12が水平
方向に旋回可能に配置されると共に、旋回部12上に火
災の検出を行う検出部11が配置されている。そして、
この監視装置は、広い空間部を有する室内競技場等の監
視面を斜め上方から監視できる場所に設置される。
2. Description of the Related Art FIG. 9 is an explanatory view showing the configuration of a conventional monitoring device using a pyroelectric element, and shows the device described in Japanese Patent Publication No. 5-46599. In FIG. 9, 11 is a detection unit, 12 is a turning unit, 14 is a base, 16 is an optical system, and 17 is a detection element using a pyroelectric body. Reference numeral 20 denotes a vertical detection range, 20a denotes an instantaneous visual field, 21 denotes a motor, 22 denotes a rotating mirror, 23 denotes an objective lens, 24 denotes a reflecting mirror, 25 denotes a slit, 26 denotes a condenser lens, and 27 denotes a rotary unit. As shown in FIG. 9, the turning unit 12 is arranged on the base 14 so as to be able to turn in the horizontal direction, and the detecting unit 11 for detecting a fire is arranged on the turning unit 12. And
The monitoring device is installed in a place where a monitoring surface such as an indoor stadium having a wide space can be monitored from obliquely above.

【0003】このような構成の従来の監視装置の動作
を、次に説明する。監視面の垂直検出範囲20内の瞬時
視野20aの光学像は、対物レンズ23等の光学系16
を介して検出素子17に入射するように構成されてい
る。そして、検出部11内のモータ21により回転鏡2
2が駆動されて、監視面の垂直検出範囲20を上から下
まで走査して垂直走査が行われる。一方、上記の垂直走
査における検出部11の回転鏡22の回転に同期して、
制御信号により旋回部12のモータを駆動してロータリ
ーユニット27が原点と定点間を往復旋回しながらステ
ッピング制御されて水平走査が行われるようになってい
る。
The operation of the conventional monitoring device having such a configuration will be described below. The optical image of the instantaneous visual field 20 a within the vertical detection range 20 of the monitoring surface is converted into an optical system 16 such as an objective lens 23.
And is incident on the detection element 17 through the. Then, the rotating mirror 2 is driven by the motor 21 in the detecting unit 11.
2 is driven to scan the vertical detection range 20 on the monitoring surface from top to bottom, thereby performing vertical scanning. On the other hand, in synchronization with the rotation of the rotating mirror 22 of the detection unit 11 in the above vertical scanning,
The motor of the turning unit 12 is driven by the control signal, and the rotary unit 27 is stepped and controlled to perform horizontal scanning while reciprocating between the origin and a fixed point.

【0004】[0004]

【発明が解決しようとする課題】上述した公報記載の従
来の焦電素子を用いた監視装置は、上記のように回転鏡
22や反射鏡24等をモータ21で回転して垂直走査を
行い、この垂直走査用の構造物を一体にした旋回部12
を基台14上で旋回させて水平走査が行われるようにな
っている。したがって、ロータリユニット27の旋回軸
等の可動部やトルクを伝達するためのベルト等が摩耗に
より劣化して、監視性能を低下させたり高所に設置した
装置の保守・管理が面倒になる等の欠点があった。ま
た、最悪の場合は可動部の破損により、継続的な監視状
態が維持できなくなって監視不能に陥る等の問題点があ
った。
The monitoring device using the conventional pyroelectric element described in the above-mentioned publication performs vertical scanning by rotating the rotating mirror 22 and the reflecting mirror 24 with the motor 21 as described above. The revolving unit 12 in which the structure for vertical scanning is integrated
Is rotated on the base 14 to perform horizontal scanning. Accordingly, the movable parts such as the rotating shaft of the rotary unit 27 and the belt for transmitting torque are deteriorated due to wear, so that the monitoring performance is reduced, and the maintenance and management of the equipment installed at a high place becomes troublesome. There were drawbacks. Further, in the worst case, there is a problem that the continuous monitoring state cannot be maintained due to breakage of the movable portion, and the monitoring becomes impossible.

【0005】本発明は、このような従来の焦電素子を用
いた赤外線センサの問題点を解消するためになされたも
ので、可動部を極力排除した監視区域の走査を行って故
障率を低下して長寿命化を図ると共に、保守・点検が容
易でしかも経済的で監視精度の高い焦電素子を用いた赤
外線センサとその監視装置を実現することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the conventional infrared sensor using a pyroelectric element, and reduces the failure rate by scanning a monitoring area in which movable parts are eliminated as much as possible. It is an object of the present invention to realize an infrared sensor using a pyroelectric element which is easy to maintain and inspect, is economical, and has high monitoring accuracy, and a monitoring device for the infrared sensor.

【0006】[0006]

【課題を解決するための手段】この発明は、一次元的な
監視区域を監視する複数の受光電極からなる受光電極列
と、受光電極列に連設されて受光電極列と共に一次元的
な監視区域を展開して形成される二次元的な走査監視区
域を監視する受光電極板とより成る焦電素子を備えた焦
電素子を用いた赤外線センサを構成したものである。ま
た、請求項1の発明において、受光電極列における遠地
点側の受光電極の配列方向の長さを近地点側の受光電極
より短く形成した焦電素子を用いた赤外線センサを構成
したものである。また、請求項1または2の発明におい
て、受光電極列を2列設けて、一方の受光電極列の受光
電極が他方の受光電極列の受光電極の隙間を埋める位置
に配置した焦電素子を用いた赤外線センサを構成したも
のである。
According to the present invention, there is provided a light-receiving electrode array comprising a plurality of light-receiving electrodes for monitoring a one-dimensional monitoring area, and a one-dimensional monitor provided with and connected to the light-receiving electrode array. An infrared sensor using a pyroelectric element provided with a pyroelectric element comprising a light receiving electrode plate for monitoring a two-dimensional scanning monitoring area formed by expanding the area. Further, according to the invention of claim 1, an infrared sensor using a pyroelectric element in which the length of the array of light-receiving electrodes on the apogee side in the light-receiving electrode array is shorter than the light-receiving electrode on the perigee side. Further, in the invention of claim 1 or 2, a pyroelectric element is used in which two light receiving electrode rows are provided, and the light receiving electrodes of one light receiving electrode row are arranged at positions where the gaps between the light receiving electrodes of the other light receiving electrode row are filled. Of the infrared sensor.

【0007】さらに、この発明は、焦電体上に受光電極
列と受光電極板を形成した焦電素子と、焦電素子の受光
電極列と受光電極板との監視窓を形成した切換板を切り
換えるコリメータと、受光電極列の入射光をチョッピン
グするセクター板を回転するチョッパーとより成る赤外
線センサを備え、赤外線センサにおける受光電極列と受
光電極板により二次元的な走査監視区域内に発生した線
源の放射した赤外線を検知すると共に、受光電極列を二
次元的な走査監視区域内に走査して線源の位置を検知す
る監視装置を構成したものである。
Further, the present invention provides a pyroelectric element in which a light receiving electrode array and a light receiving electrode plate are formed on a pyroelectric body, and a switching plate in which a monitoring window for the light receiving electrode array and the light receiving electrode plate of the pyroelectric element is formed. An infrared sensor consisting of a collimator for switching and a chopper rotating a sector plate for chopping the incident light of the light receiving electrode array. Lines generated in the two-dimensional scanning monitoring area by the light receiving electrode array and the light receiving electrode plate in the infrared sensor. A monitoring device is configured to detect infrared rays emitted by the source and scan the light receiving electrode array into a two-dimensional scanning monitoring area to detect the position of the radiation source.

【0008】通電後、監視装置の異常がチェックされて
から、監視モードが常時監視モードに設定される。常時
監視モードが設定されるとチョッパーの小径部が焦電素
子の前面で停止すると共に、コリメータの監視窓が焦電
素子に対向して受光電極列と受光電極板の前面が共に開
放されて焦電素子の監視可能な状態になる。その後、走
査監視区域に火災が発生すると、焦電素子が赤外線を受
光して火災の発生が判定される。この火災の発生の判定
結果に基づいて、監視モードが火源位置の検出モードに
切り換えられる。
After the power is turned on, the monitoring mode is set to the constant monitoring mode after an abnormality of the monitoring device is checked. When the continuous monitoring mode is set, the small-diameter portion of the chopper stops at the front of the pyroelectric element, and the monitoring window of the collimator faces the pyroelectric element, and both the light receiving electrode array and the front surface of the light receiving electrode plate are opened to focus. The monitoring of the electronic elements is enabled. Thereafter, when a fire occurs in the scanning monitoring area, the pyroelectric element receives infrared rays and the occurrence of the fire is determined. The monitoring mode is switched to the fire source position detection mode based on the determination result of the fire occurrence.

【0009】監視モードが火源位置の検出モードに切り
換えられると、モータが駆動されてコリメータが回転し
て切換円板上の長方形の監視窓が受光電極列に対向させ
て停止する。また、チョッパーのモータによりセクター
円板が回転して、小径部と大径部の交互的な回転により
各受光電極の入射光のチョッピングが開始される。この
ようにして、受光電極列に、光学系を介してチョッパー
の回転に同期した光信号が入射される。受光電極列に入
射した光信号は複数の受光電極により受光されて電気信
号に変換されてから、火源の温度に対応したパルス信号
が受光電極列から出力されることになる。一方、監視装
置は旋回軸上を往復動しながら旋回しており、エンコー
ダが旋回角度に応じたパルス信号を出力する。
When the monitoring mode is switched to the fire source position detection mode, the motor is driven to rotate the collimator, and the rectangular monitoring window on the switching disk stops facing the light receiving electrode array. The sector disk is rotated by the motor of the chopper, and the chopping of the incident light of each light receiving electrode is started by the alternate rotation of the small diameter portion and the large diameter portion. In this way, an optical signal synchronized with the rotation of the chopper is incident on the light receiving electrode array via the optical system. After the optical signal incident on the light receiving electrode array is received by the plurality of light receiving electrodes and converted into an electric signal, a pulse signal corresponding to the temperature of the fire source is output from the light receiving electrode array. On the other hand, the monitoring device is turning while reciprocating on the turning axis, and the encoder outputs a pulse signal according to the turning angle.

【0010】この結果、受光電極列内の複数の受光電極
の最大出力に対応するエンコーダの出力する旋回角度か
ら、走査監視区域内の火源の位置が判定される。判定の
結果は監視装置の表示部や火災受信機等に表示され、同
時に火源の位置付近に設置された消火設備を操作するた
めの動作信号が出力されるようになっている。このよう
な構成の本発明によれば、常時監視モードでは監視装置
の駆動動作が不必要になり、従来装置のような可動部の
摩耗や損傷が発生するようなことがなく安定した監視動
作を継続される。
As a result, the position of the fire source in the scanning monitoring area is determined from the turning angle output by the encoder corresponding to the maximum output of the plurality of light receiving electrodes in the light receiving electrode array. The result of the determination is displayed on a display unit of the monitoring device, a fire receiver, or the like, and at the same time, an operation signal for operating the fire extinguishing equipment installed near the position of the fire source is output. According to the present invention having such a configuration, in the constant monitoring mode, the driving operation of the monitoring device becomes unnecessary, and a stable monitoring operation without abrasion or damage of the movable portion unlike the conventional device occurs. To be continued.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を、図面
を用いて説明する。 実施形態1.図1は本発明の実施形態1の要部の底面
図、図2は実施形態1の側面図、図3は焦電素子の拡大
平面図、図4は図3のXーX断面図である。図1乃至図
4において、Sは赤外線センサである。また、Eはプリ
ント基板に実装された円形の焦電素子で、L1は複数の
受光電極E1,E2…(図4で説明する)を一列に並べ
た受光電極列、L2は横方向に拡張したやや大きな受光
面を有する受光電極板である。各受光電極E1,E2…
は角形で、1チャンネル(以下、CH)から8CHで受
光電極列L1を構成する。また、受光電極板L2はほぼ
半円形の2つの受光電極Ea,Ebで構成されて、受光
電極列L1を挟んで両側に連設されている。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a bottom view of a main part of the first embodiment of the present invention, FIG. 2 is a side view of the first embodiment, FIG. 3 is an enlarged plan view of the pyroelectric element, and FIG. 4 is a cross-sectional view taken along line XX of FIG. . In FIGS. 1 to 4, S is an infrared sensor. E is a circular pyroelectric element mounted on a printed circuit board, L1 is a light-receiving electrode array in which a plurality of light-receiving electrodes E1, E2,... (Described in FIG. 4) are arranged in a line, and L2 is expanded in the horizontal direction. This is a light receiving electrode plate having a slightly large light receiving surface. Each light receiving electrode E1, E2 ...
Is a rectangular shape, and a light receiving electrode row L1 is composed of 1 channel (hereinafter, CH) to 8CH. The light receiving electrode plate L2 is composed of two substantially semicircular light receiving electrodes Ea and Eb, and is continuously provided on both sides of the light receiving electrode row L1.

【0012】10はコリメータ、40はチョッパー、1
1と41はそれぞれコリメータ10とチョッパー40を
駆動するモータである。コリメータ10は監視モードを
切り換え、チョッパー40は火災時に発生する赤外線の
入射光をチョッピングする。また、12は監視窓13と
14を設けた切換円板、42は小径部43と大径部44
を形成したセクター円板である。切換円板12に設けら
れた長方形の監視窓13は位置検知用に用いられ、円形
の監視窓14は常時監視用に利用される。31は集光レ
ンズ、32は絞りである。レンズ31は1個で示されて
いるが、必要に応じて組み合わせレンズが構成される。
10 is a collimator, 40 is a chopper, 1
Motors 1 and 41 drive the collimator 10 and the chopper 40, respectively. The collimator 10 switches the monitoring mode, and the chopper 40 chops the incident infrared light generated at the time of fire. Reference numeral 12 denotes a switching disk provided with monitoring windows 13 and 14, and reference numeral 42 denotes a small-diameter portion 43 and a large-diameter portion 44.
It is a sector disk formed with. The rectangular monitoring window 13 provided on the switching disk 12 is used for position detection, and the circular monitoring window 14 is used for constant monitoring. 31 is a condenser lens and 32 is a stop. Although one lens 31 is shown, a combination lens is configured as needed.

【0013】図3の焦電素子EをXーX断面で示した構
造が、図4に示されている。図4おいて、1は焦電体で
ある。焦電体1には、自発分極を有する高分子材料やセ
ラミック材料等が使われる。一般に、板状の焦電体1の
両面に電極が添着されると、 温度変化により両電極間に
受光量に対応した電位差が生じる。焦電体1の材質を挙
げれば、PZT.タンタル酸リチウム.チタン酸鉛.P
VDF及びそのコポリマ等を薄いフィルム状に形成した
もの等である。2は上記した受光電極列L1を構成する
受光電極、3は下地電極、4はプリント基板である。5
は検出回路、6は導出用のリード線である。焦電素子E
は受光電極2を表面側にしてプリント基板4上にサンド
イッチ状に積層され、導出用のリード線6により検出回
路5に接続される。
FIG. 4 shows a structure of the pyroelectric element E shown in FIG. In FIG. 4, reference numeral 1 denotes a pyroelectric body. For the pyroelectric body 1, a polymer material having a spontaneous polarization, a ceramic material, or the like is used. Generally, when electrodes are attached to both surfaces of the plate-like pyroelectric body 1, a potential difference corresponding to the amount of received light is generated between the two electrodes due to a temperature change. If the material of the pyroelectric body 1 is given, PZT. Lithium tantalate. Lead titanate. P
VDF and its copolymer are formed into a thin film. Reference numeral 2 denotes a light-receiving electrode constituting the above-described light-receiving electrode row L1, reference numeral 3 denotes a base electrode, and reference numeral 4 denotes a printed board. 5
Is a detection circuit, and 6 is a lead wire for derivation. Pyroelectric element E
Are sandwiched on the printed circuit board 4 with the light-receiving electrode 2 as the front side, and are connected to the detection circuit 5 by a lead wire 6 for lead-out.

【0014】図5は実施形態1の監視装置の設置状態を
示す説明図である。図5において、Dは監視装置で、上
述の焦電素子Eを用いた赤外線センサSが内蔵されてい
る。また、7は旋回軸、8は歯車列、9はエンコーダで
ある。監視装置Dは電動機(不図示)で駆動されて旋回
軸7上を旋回しながら一定の角範囲を往復動し、エンコ
ーダ9は旋回軸7の旋回角度に対応したパルス信号を出
力する。θは受光電極列L1の配列方向を監視領域内に
拡大して投影したときの投射角、θ1,θ2,…は各受
光電極E1,E2,…の投射角である。
FIG. 5 is an explanatory diagram showing an installation state of the monitoring device according to the first embodiment. In FIG. 5, reference numeral D denotes a monitoring device, in which an infrared sensor S using the above-described pyroelectric element E is incorporated. Reference numeral 7 denotes a rotating shaft, 8 denotes a gear train, and 9 denotes an encoder. The monitoring device D is driven by an electric motor (not shown) to reciprocate in a predetermined angular range while turning on the turning shaft 7, and the encoder 9 outputs a pulse signal corresponding to the turning angle of the turning shaft 7. θ is a projection angle when the arrangement direction of the light receiving electrode array L1 is enlarged and projected into the monitoring area, and θ1, θ2,... are projection angles of the light receiving electrodes E1, E2,.

【0015】また、a1,a2,…は受光電極E1,E
2,…の監視する区画監視域、A1は受光電極列L1の
投影像で形成する一次元的な監視区域、A2は受光電極
列L1を配列方向と交差する方向に変位させて一次元的
な監視区域A1を展開した二次元的な走査監視区域、A
は体育館や劇場等の内部の全空間で占めるような監視領
域である(A2は図示されていない)。上記の一次元的
な監視区域A1は従来例の説明で示されたときの垂直検
出範囲20に相当し、区画監視域a1,a2,…は瞬時
視野20aに対応する。
A1, a2,... Are light-receiving electrodes E1, E
.., A1 is a one-dimensional monitoring area formed by a projected image of the light-receiving electrode row L1, and A2 is a one-dimensional one by displacing the light-receiving electrode row L1 in a direction intersecting the arrangement direction. A two-dimensional scanning monitoring area developed from monitoring area A1, A
Is a monitoring area that occupies the entire space inside a gymnasium or theater (A2 is not shown). The one-dimensional monitoring area A1 corresponds to the vertical detection range 20 shown in the description of the conventional example, and the section monitoring areas a1, a2,... Correspond to the instantaneous visual field 20a.

【0016】このような構成の実施形態1の監視動作
を、図6のフローチャートを併用して次に説明する。本
発明の実施形態の主要な監視動作は、常時監視モードM
1と火源位置の検出モードM2との2つに分けられる。
先ず通電後、監視装置Dの異常の有無がチェックされて
から、初期設定が行われる。初期設定の常時監視モード
M1は、赤外線センサSに設けられたモータ11,41
の回転角を制御して行われる。常時監視モードM1が設
定されると、チョッパー40を回転させるモータ41が
制御されてセクター円板42の小径部43が焦電素子E
の前面で停止する。
The monitoring operation of the first embodiment having such a configuration will be described below with reference to the flowchart of FIG. The main monitoring operation of the embodiment of the present invention is the continuous monitoring mode M.
1 and a fire source position detection mode M2.
First, after energization, the presence or absence of an abnormality in the monitoring device D is checked, and then initialization is performed. The initial monitoring mode M1 is a mode in which the motors 11 and 41 provided in the infrared sensor S are used.
Is performed by controlling the rotation angle. When the constant monitoring mode M1 is set, the motor 41 for rotating the chopper 40 is controlled, and the small-diameter portion 43 of the sector disk 42 is moved to the pyroelectric element E.
Stop at the front of.

【0017】また、コリメータ10の円形の監視窓14
が焦電素子Eに対向して、受光電極列L1と受光電極板
L2の前面が共に開放されて焦電素子Eが二次元的な走
査監視区域A2の監視可能な状態に設定される。受光電
極列L1と受光電極板L2が検出回路5に接続されて、
通常の炎感知器と同程度の8Hzをピークとして60d
B以上の増幅感度を持つ電気回路が構成されている。し
たがって、二次元的な走査監視区域A2に火災が発生す
ると、焦電素子Eが閾値を越えた赤外線を受光して火災
の発生が判定される。
The circular monitoring window 14 of the collimator 10
Faces the pyroelectric element E, the front surfaces of the light-receiving electrode row L1 and the light-receiving electrode plate L2 are both opened, and the pyroelectric element E is set in a state in which the two-dimensional scanning monitoring area A2 can be monitored. The light receiving electrode row L1 and the light receiving electrode plate L2 are connected to the detection circuit 5,
60d with a peak at 8Hz, the same level as a normal flame detector
An electric circuit having an amplification sensitivity of B or more is configured. Therefore, when a fire occurs in the two-dimensional scanning monitoring area A2, the pyroelectric element E receives infrared rays exceeding the threshold, and the occurrence of the fire is determined.

【0018】二次元的な走査監視区域A2内で火災の発
生が判定されると、監視モードが火源位置の検出モード
M2に切り換えられる。監視モードが火源位置の検出モ
ードM2に切り換えられると、モータ11が駆動されて
コリメータ10がほぼ1/2回転して切換円板12上の
長方形の監視窓13が受光電極列L1に対向して停止す
る。また、チョッパー40のモータ41によりセクター
円板42が回転して、小径部43と大径部44の交互的
な回転により各受光電極E1,E2…に入射する赤外線
をチョッピングする。
When it is determined that a fire has occurred in the two-dimensional scanning monitoring area A2, the monitoring mode is switched to the fire source position detection mode M2. When the monitoring mode is switched to the fire source position detection mode M2, the motor 11 is driven to rotate the collimator 10 by approximately 1/2, and the rectangular monitoring window 13 on the switching disk 12 faces the light receiving electrode row L1. And stop. Further, the sector disk 42 is rotated by the motor 41 of the chopper 40, and the infrared rays incident on the respective light receiving electrodes E1, E2,... Are chopped by the alternate rotation of the small diameter portion 43 and the large diameter portion 44.

【0019】こうして、受光電極列L1に、光学系51
を介してチョッパー40の回転に同期した光信号が投射
される。受光電極列L1に投射された光信号は受光電極
E1,E2,…により受光されて電気信号に変換され
て、火源の温度に対応したパルス信号が受光電極列L1
から出力されることになる。一方、前記のように監視装
置Dは旋回軸7上を往復動しながら旋回しており、エン
コーダ9が旋回角度に応じたパルス信号を出力する。
Thus, the optical system 51 is connected to the light receiving electrode row L1.
, An optical signal synchronized with the rotation of the chopper 40 is projected. The light signal projected on the light receiving electrode array L1 is received by the light receiving electrodes E1, E2,... And converted into an electric signal, and a pulse signal corresponding to the temperature of the fire source is generated.
Will be output. On the other hand, as described above, the monitoring device D is turning while reciprocating on the turning shaft 7, and the encoder 9 outputs a pulse signal according to the turning angle.

【0020】この結果、受光電極列L1内の受光電極E
1,E2…の最大出力に対応するエンコーダ9の旋回角
度から、二次元的な走査監視区域A2内の火源の位置が
判定される。判定結果は、監視装置Dの図示されていな
い表示部や火災受信機等に表示され、同時に火源の位置
付近に設置された消火設備を操作するための動作信号が
出力されることになる。このような構成の実施形態1に
よれば、常時監視モードM1では監視装置Dの駆動動作
が不必要で従来のような可動部の摩耗や損傷が発生する
ようなことがなく安定した監視動作を継続できる。
As a result, the light receiving electrodes E in the light receiving electrode row L1
The position of the fire source in the two-dimensional scanning monitoring area A2 is determined from the turning angle of the encoder 9 corresponding to the maximum output of 1, E2. The determination result is displayed on a display unit (not shown) of the monitoring device D, a fire receiver, or the like, and at the same time, an operation signal for operating the fire extinguishing equipment installed near the position of the fire source is output. According to the first embodiment having such a configuration, in the constant monitoring mode M1, the driving operation of the monitoring device D is unnecessary, and a stable monitoring operation without abrasion or damage of the movable portion unlike the related art is performed. Can continue.

【0021】実施形態2.この種の監視装置Dは上述の
ように、受光電極列L1内の受光電極E1,E2…によ
り一次元的な監視区域A1内の遠地点から近地点に亘っ
て投射される赤外線を受光するように構成されている。
しかしながら、受光電極E1,E2…の配列方向の長さ
Xをに均一に構成すると(図3を参照)、図5の区画監
視域a8で示すように遠地点の投影像が長くなってそれ
だけ分解能が低下することになる。
Embodiment 2 FIG. As described above, this type of monitoring device D is configured to receive the infrared rays projected from the far point to the near point in the one-dimensional monitoring area A1 by the light receiving electrodes E1, E2... In the light receiving electrode row L1. Have been.
However, if the length X in the arrangement direction of the light receiving electrodes E1, E2,... Is configured to be uniform (see FIG. 3), the projection image at the apogee becomes longer as shown by the section monitoring area a8 in FIG. Will decrease.

【0022】一方、図4のように焦電体1の両面に電極
を形成した構造の焦電素子E(Eは総称)は、電気的な
特性がコンデンサと共通するものと看做すことができ
る。したがって、焦電素子の受光面積と電極間に蓄積さ
れる電荷量とは、逆比例の関係になる。このため、焦電
素子Eの受光面積を大きくすると、電極間の電荷量が増
加してノイズの発生が減少する傾向がある。逆に、焦電
素子Eの受光面積が小さくなると、電荷量が減少して出
力の変動が大きくなりノイズ量も拡大する。
On the other hand, a pyroelectric element E (E is a generic name) having a structure in which electrodes are formed on both surfaces of the pyroelectric body 1 as shown in FIG. 4 can be regarded as having the same electrical characteristics as a capacitor. it can. Therefore, the light receiving area of the pyroelectric element and the amount of charge accumulated between the electrodes have an inversely proportional relationship. Therefore, when the light receiving area of the pyroelectric element E is increased, the amount of charge between the electrodes tends to increase, and the occurrence of noise tends to decrease. Conversely, when the light receiving area of the pyroelectric element E decreases, the charge amount decreases, the output fluctuates greatly, and the noise amount also increases.

【0023】そこで、図7の実施形態2では受光電極列
L1内の受光電極E1,E2…の遠地点側の長さXを順
次小さくすると共に、全ての受光電極E1,E2…の受
光面積が等しく構成されている。即ち、受光電極E1,
E2…の縦方向(配列方向)及び横方向の大きさをX
1,X2…及びY1,Y2…とすると、図7に示した受
光電極E1〜E8の長さXと受光面積(X×Y)につい
て、次の(a),(b)のような不等式と等式で表すこ
とができる。 X1>X2>…>X8 …(a) (X1×Y1)=(X2×Y2)=…=(X8×Y8) …(b) このような構成の実施形態2によれば、遠地点における
分解能の低下を防止すると共にノイズ量を少なくして結
果的に監視精度を向上できる。
Therefore, in Embodiment 2 of FIG. 7, the length X of the apogee side of the light receiving electrodes E1, E2... In the light receiving electrode row L1 is sequentially reduced, and the light receiving areas of all the light receiving electrodes E1, E2. It is configured. That is, the light receiving electrodes E1,
The vertical (arrangement direction) and horizontal size of E2.
, And Y1, Y2,..., The length X and the light receiving area (X × Y) of the light receiving electrodes E1 to E8 shown in FIG. It can be expressed by an equation. X1>X2>...> X8 (a) (X1 × Y1) = (X2 × Y2) =... = (X8 × Y8) (b) According to the second embodiment having such a configuration, the resolution It is possible to prevent the deterioration and reduce the amount of noise, thereby improving the monitoring accuracy.

【0024】実施形態3.図8は本発明の実施形態3の
焦電素子の平面図である。図8において、gは受光電極
列Lにおいて各焦電素子E1,E2,…の間に形成され
た隙間、G(図5では線で示されている)は隙間gに対
応して投影像上に形成される監視不能な死角域である。
監視不能な死角域Gは、前述の公開公報で“垂直方向の
非監視領域”として説明されている。
Embodiment 3 FIG. FIG. 8 is a plan view of a pyroelectric element according to Embodiment 3 of the present invention. 8, g is a gap formed between the pyroelectric elements E1, E2,... In the light receiving electrode row L, and G (indicated by a line in FIG. 5) corresponds to the gap g on the projected image. This is a blind spot that cannot be monitored.
The blind area G that cannot be monitored is described as a “vertical non-monitoring area” in the above-mentioned publication.

【0025】実施形態3では実施形態2の受光電極列L
1と同一構造の2列の受光電極列L11,L12が並べ
られて、焦電素子Eが構成されている。2列の受光電極
列L11,L12は配列方向がズラされていて、左右の
受光電極列L11とL12が相互に隙間Gを塞ぐように
配設されている。このような焦電素子Eを構成した実施
形態3によれば、実施形態2で得られる遠地点における
分解能の向上等の効果に加えて、上記の隙間gに対応し
て受光電極列L11,L12の投影像で構成する各区画
監視域a1,a2,…に形成される死角域Gを除去する
こともできる。
In the third embodiment, the light receiving electrode row L of the second embodiment
A pyroelectric element E is constituted by arranging two light receiving electrode rows L11 and L12 having the same structure as that of FIG. The two light receiving electrode rows L11 and L12 are arranged so that their arrangement directions are shifted, and the left and right light receiving electrode rows L11 and L12 are arranged so as to close the gap G between each other. According to the third embodiment having such a pyroelectric element E, in addition to the effect of improving the resolution at the apogee obtained in the second embodiment, in addition to the effects of the light receiving electrode arrays L11 and L12 corresponding to the gap g described above. The blind spot area G formed in each section monitoring area a1, a2,... Formed by the projected image can be removed.

【0026】なお、上述の本発明の実施形態では単一の
下地電極でコモン接続した場合を例示して説明したが、
下地電極を上部側の各受光電極に対応させて分離した分
離型に構成することもできる。また、赤外線センサを旋
回して扇形の二次元的な走査監視区域に展開した場合で
説明したが、赤外線センサを平行移動して方形や長方形
或いは回転軸を中心に回転して円形や環状の二次元的な
走査監視区域に展開するようにしてもよい。さらに、受
光電極列が8チャンネルの場合を挙げて火源を監視する
場合で説明したが、チャンネル数は適宜増減して監視区
域内の移動物体等を監視してもよく、検出回路の構成に
ついても必ずしも実施形態に限定するものではない。
In the above-described embodiment of the present invention, the case where the common connection is made with a single base electrode has been described as an example.
It is also possible to configure a separate type in which the base electrode is separated corresponding to each light receiving electrode on the upper side. In addition, although the case where the infrared sensor is turned and deployed in a fan-shaped two-dimensional scanning monitoring area has been described, the infrared sensor is translated and rotated around a square, rectangle, or rotation axis to form a circular or annular two-dimensional scanning monitoring area. It may be developed in a dimensional scanning monitoring area. Further, the case where the fire source is monitored using the case where the light receiving electrode array has eight channels has been described. However, the number of channels may be appropriately increased or decreased to monitor a moving object or the like in the monitoring area. Is not necessarily limited to the embodiment.

【0027】[0027]

【発明の効果】この発明は、一次元的な監視区域を監視
する複数の受光電極からなる受光電極列と、受光電極列
に連設されて受光電極列と共に一次元的な監視区域を展
開して形成される二次元的な走査監視区域を監視する受
光電極板とより成る焦電素子を備えた焦電素子を用いた
赤外線センサを構成した。この結果、単一のセンサで二
次元的に展開された広い監視区域からの赤外線を受光で
きる赤外線センサが実現できる。また、請求項1の発明
において、受光電極列における遠地点側の受光電極の配
列方向の長さを近地点側の受光電極より短く形成した焦
電素子を用いた赤外線センサを構成した。この結果、遠
地点でも分解能が低下せず、ノイズ量の少ない赤外線セ
ンサを実現することが可能になる。また、請求項1また
は2の発明において、受光電極列を2列設けて、一方の
受光電極列の受光電極が他方の受光電極列の受光電極の
隙間を埋める位置に配置した焦電素子を用いた赤外線セ
ンサを構成した。この結果、受光電極列の隙間が補償さ
れて、監視不能区域のない赤外線センサを提供すること
ができる。
According to the present invention, a one-dimensional monitoring area is developed with a plurality of light-receiving electrodes for monitoring a one-dimensional monitoring area, and a plurality of light-receiving electrodes connected to the light-receiving electrode row. An infrared sensor using a pyroelectric element provided with a pyroelectric element comprising a light receiving electrode plate for monitoring a two-dimensional scanning monitoring area formed as described above. As a result, an infrared sensor that can receive infrared rays from a wide monitoring area two-dimensionally developed by a single sensor can be realized. Further, in the invention of claim 1, an infrared sensor using a pyroelectric element in which the length in the arrangement direction of the light-receiving electrodes on the apogee side in the light-receiving electrode row is shorter than the light-receiving electrodes on the perigee side is configured. As a result, it is possible to realize an infrared sensor with a small amount of noise without a decrease in resolution even at a distant place. Further, in the invention of claim 1 or 2, a pyroelectric element is used in which two light receiving electrode rows are provided, and the light receiving electrodes of one light receiving electrode row are arranged at positions where the gaps between the light receiving electrodes of the other light receiving electrode row are filled. The infrared sensor was configured. As a result, the gap between the light receiving electrode rows is compensated, and an infrared sensor having no unmonitored area can be provided.

【0028】さらに、この発明は、焦電体上に受光電極
列と受光電極板を形成した焦電素子と、焦電素子の受光
電極列と受光電極板との監視窓を形成した切換板を切り
換えるコリメータと、受光電極列の入射光をチョッピン
グするセクター板を回転するチョッパーとより成る赤外
線センサを備え、赤外線センサにおける受光電極列と受
光電極板により二次元的な走査監視区域内に発生した線
源の放射した赤外線を検知すると共に、受光電極列を二
次元的な走査監視区域内に走査して線源の位置を検知す
る監視装置を構成した。この結果、可動部が少なく摩擦
や摩耗による故障が発生せず、しかも電力の消費量の低
い経済的な監視装置を実現することができる。
Further, the present invention provides a pyroelectric element having a light receiving electrode array and a light receiving electrode plate formed on a pyroelectric body, and a switching plate having a monitoring window formed between the light receiving electrode array and the light receiving electrode plate of the pyroelectric element. An infrared sensor consisting of a collimator for switching and a chopper rotating a sector plate for chopping the incident light of the light receiving electrode array. Lines generated in a two-dimensional scanning monitoring area by the light receiving electrode array and the light receiving electrode plate in the infrared sensor. A monitoring device for detecting the position of the radiation source by detecting the infrared radiation emitted from the source and scanning the light receiving electrode array into the two-dimensional scanning monitoring area. As a result, it is possible to realize an economical monitoring device that has few movable parts, does not cause a failure due to friction or wear, and has low power consumption.

【0029】よって、本発明によれば、可動部を極力排
除して故障が少なく長寿命になると共に、保守・点検が
容易でしかも経済的で監視精度の高い焦電素子を用いた
赤外線センサとその監視装置を提供することができる。
Therefore, according to the present invention, there is provided an infrared sensor using a pyroelectric element which eliminates movable parts as much as possible, has few failures, has a long service life, is easy to maintain and inspect, is economical, and has high monitoring accuracy. The monitoring device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の要部の底面図である。FIG. 1 is a bottom view of a main part according to a first embodiment of the present invention.

【図2】実施形態1の側面図である。FIG. 2 is a side view of the first embodiment.

【図3】実施形態1の焦電素子の拡大平面図である。FIG. 3 is an enlarged plan view of the pyroelectric element of the first embodiment.

【図4】図3のXーX断面図である。FIG. 4 is a sectional view taken along line XX of FIG. 3;

【図5】実施形態1の監視装置の設置状態を示す説明図
である。
FIG. 5 is an explanatory diagram illustrating an installation state of the monitoring device according to the first embodiment.

【図6】実施形態1の監視動作のフローチャートであ
る。
FIG. 6 is a flowchart of a monitoring operation according to the first embodiment.

【図7】本発明の実施形態2の構成を示す平面図であ
る。
FIG. 7 is a plan view showing a configuration of Embodiment 2 of the present invention.

【図8】本発明の実施形態3の構成を示す平面図であ
る。
FIG. 8 is a plan view showing a configuration of Embodiment 3 of the present invention.

【図9】従来の焦電素子を用いた監視装置の構成説明図
である。
FIG. 9 is an explanatory diagram of a configuration of a monitoring device using a conventional pyroelectric element.

【符号の説明】[Explanation of symbols]

1 焦電体 2(E) 受光電極 3 下地電極 4 プリント基板 5 検出回路 6 リード線 7 旋回軸 8 歯車列 9 エンコーダ 10 コリメータ 11 モータ 12 切換円板 13,14 監視窓 40 チョッパー 41 モータ 42 セクター円板 43 小径部 44 大径部 31 集光レンズ 32 絞り a 区画監視域 A1 一次元的な監視区域 A2 二次元的な走査監視区域 A 監視領域 CH チャンネル D 監視装置 E 焦電素子 E1,E2… 受光電極 Ea,Eb 受光電極 g 受光電極列の隙間 G 死角域 L1 受光電極列 L2 受光電極板 L2 受光電極板 M1 常時監視モード M2 火源位置の検出モード S 赤外線センサ X 受光電極の長さ Y 受光電極の幅 θ 受光電極列の投射角 θ1,θ2… 受光電極の投射角 DESCRIPTION OF SYMBOLS 1 Pyroelectric body 2 (E) Light receiving electrode 3 Base electrode 4 Printed circuit board 5 Detection circuit 6 Lead wire 7 Rotating shaft 8 Gear train 9 Encoder 10 Collimator 11 Motor 12 Switching disk 13, 14 Monitoring window 40 Chopper 41 Motor 42 sector circle Plate 43 Small-diameter portion 44 Large-diameter portion 31 Condensing lens 32 Aperture a Section monitoring area A1 One-dimensional monitoring area A2 Two-dimensional scanning monitoring area A Monitoring area CH channel D Monitoring device E Pyroelectric elements E1, E2 ... Light receiving Electrodes Ea, Eb Light receiving electrode g Gap between light receiving electrode rows G Dead area L1 Light receiving electrode row L2 Light receiving electrode plate L2 Light receiving electrode plate M1 Continuous monitoring mode M2 Fire source position detection mode S Infrared sensor X Light receiving electrode length Y Light receiving electrode Width θ Projection angle of the light-receiving electrode row θ1, θ2 ...

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 37/02 H04N 7/18 N H04N 7/18 G01V 9/04 T // H01L 27/14 H01L 27/14 K ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 37/02 H04N 7/18 N H04N 7/18 G01V 9/04 T // H01L 27/14 H01L 27/14 K

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一次元的な監視区域を監視する複数の受
光電極からなる受光電極列と、該受光電極列に連設され
て該受光電極列と共に前記一次元的な監視区域を展開し
て形成される二次元的な走査監視区域を監視する受光電
極板とより成る焦電素子を備えたことを特徴とする焦電
素子を用いた赤外線センサ。
1. A light receiving electrode array comprising a plurality of light receiving electrodes for monitoring a one-dimensional monitoring area, and the one-dimensional monitoring area is developed together with the light receiving electrode row and connected to the light receiving electrode row. An infrared sensor using a pyroelectric element, comprising: a pyroelectric element comprising a light-receiving electrode plate for monitoring a formed two-dimensional scanning monitoring area.
【請求項2】 前記受光電極列における遠地点側の受
光電極の配列方向の長さを近地点側の受光電極より短く
形成したことを特徴とする請求項1記載の焦電素子を用
いた赤外線センサ。
2. An infrared sensor using a pyroelectric element according to claim 1, wherein the length of the array of the light-receiving electrodes on the apogee side in the light-receiving electrode row is shorter than the length of the light-receiving electrodes on the perigee side.
【請求項3】 前記受光電極列を2列設けて、一方の受
光電極列の受光電極が他方の受光電極列の受光電極の隙
間を埋める位置に配置したことを特徴とする請求項1ま
たは2記載の焦電素子を用いた赤外線センサ。
3. The light receiving electrode array of claim 2, wherein two light receiving electrode arrays are provided, and the light receiving electrodes of one of the light receiving electrode arrays are arranged at positions where the gaps between the light receiving electrodes of the other light receiving electrode array are filled. An infrared sensor using the pyroelectric element described in the above.
【請求項4】 焦電体上に受光電極列と受光電極板を形
成した焦電素子と、該焦電素子の受光電極列と受光電極
板との監視窓を形成した切換板を切り換えるコリメータ
と、前記受光電極列の入射光をチョッピングするセクタ
ー板を回転するチョッパーとより成る赤外線センサを備
え、 該赤外線センサにおける前記受光電極列と受光電極板に
より二次元的な走査監視区域内に発生した線源の放射し
た赤外線を検知すると共に、前記受光電極列を二次元的
な走査監視区域内に走査して前記線源の位置を検知する
ことを特徴とする監視装置。
4. A pyroelectric element having a light receiving electrode array and a light receiving electrode plate formed on a pyroelectric body, and a collimator for switching a switching plate having a monitoring window formed between the light receiving electrode array and the light receiving electrode plate of the pyroelectric element. An infrared sensor comprising a chopper for rotating a sector plate for chopping the incident light of the light receiving electrode array, and a line generated in a two-dimensional scanning monitoring area by the light receiving electrode array and the light receiving electrode plate in the infrared sensor. A monitoring device for detecting infrared rays emitted by a source and scanning the light receiving electrode array in a two-dimensional scanning monitoring area to detect the position of the radiation source.
JP10083526A 1998-03-30 1998-03-30 Infrared ray sensor and monitoring device using it Pending JPH11281476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10083526A JPH11281476A (en) 1998-03-30 1998-03-30 Infrared ray sensor and monitoring device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083526A JPH11281476A (en) 1998-03-30 1998-03-30 Infrared ray sensor and monitoring device using it

Publications (1)

Publication Number Publication Date
JPH11281476A true JPH11281476A (en) 1999-10-15

Family

ID=13804940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083526A Pending JPH11281476A (en) 1998-03-30 1998-03-30 Infrared ray sensor and monitoring device using it

Country Status (1)

Country Link
JP (1) JPH11281476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017199A1 (en) 2021-08-10 2023-02-16 Advanced Thermal Devices S.L. Cathode based on the material c12a7:e− (electride) for thermionic electron emission and method for using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017199A1 (en) 2021-08-10 2023-02-16 Advanced Thermal Devices S.L. Cathode based on the material c12a7:e− (electride) for thermionic electron emission and method for using same

Similar Documents

Publication Publication Date Title
US7795587B2 (en) Scanning imaging device
JPH0776999B2 (en) Laser-Safety equipment for equipment used
US7154649B2 (en) Device for deflecting optical beams
EP0461837B1 (en) Pyro-electric type infrared detector
AU643064B2 (en) An imager
JP3979713B2 (en) Imaging device and monitoring device
JPH11281476A (en) Infrared ray sensor and monitoring device using it
US20070153351A1 (en) Micro optical scanner capable of measuring operating frequency of micro mirror
US4142206A (en) Pyroelectric solid state imager
JPH11281475A (en) Infrared ray sensor using pyroelectric element
RU2231123C2 (en) Tv emergency alarm system
JPH02197747A (en) Air conditioner
US6744049B2 (en) Detection of obstacles in surveillance systems using pyroelectric arrays
KR20220068721A (en) Method for imaging, apparatus for imaging, and monitoring apparatus
JP2523948B2 (en) Pyroelectric infrared detector
JPH10142046A (en) Pyroelectric infrared-detecting apparatus
JPH0510825A (en) Disaster detecting device with thermal image detecting means
JPH08152483A (en) Human body sensor
JP2689644B2 (en) Pyroelectric infrared detector
JPH09145480A (en) Multibeam type heat-ray detector
JPH10283580A (en) Fire origin sensor
JPS61292122A (en) Scanning system for infrared image device
JPH0772015A (en) Infrared sensor
EP2259036A1 (en) Heat source sensor
EP2259035A1 (en) Heat location sensor