JPH1127967A - Driving of super magnetostrictive material - Google Patents

Driving of super magnetostrictive material

Info

Publication number
JPH1127967A
JPH1127967A JP9174160A JP17416097A JPH1127967A JP H1127967 A JPH1127967 A JP H1127967A JP 9174160 A JP9174160 A JP 9174160A JP 17416097 A JP17416097 A JP 17416097A JP H1127967 A JPH1127967 A JP H1127967A
Authority
JP
Japan
Prior art keywords
magnetostrictive material
giant magnetostrictive
exciting
displacement
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9174160A
Other languages
Japanese (ja)
Other versions
JP2899689B2 (en
Inventor
Takayuki Kondo
孝之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9174160A priority Critical patent/JP2899689B2/en
Publication of JPH1127967A publication Critical patent/JPH1127967A/en
Application granted granted Critical
Publication of JP2899689B2 publication Critical patent/JP2899689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Micromachines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain very fine displacements in units of microseconds by forming a time lag in respective exciting coils for energizing them, so that a plurality of elastic waves based on magnetic strain generated by respective exciting coils overlap each other at one end surface of a magnetostrictive material. SOLUTION: The shape of a super magnetostrictive material 1 and exciting coils 2a, 2b are designated. A time lag is formed in only each of the exciting coils 2a, 2b so as to pass trigger pulse current and generate a displacement waveform at the end of the super magnetostrictive material 1. As a result, for example, pulse current is passed through the exciting coil 2a from the end of the super magnetostrictive material 1. When the pulse current is passed through the exciting coil 2b, after 12.4 μs the displacement of the displacement waveform of the end becomes one in which almost two displacements overlap each other, thus it is possible to attain very fine displacements in units of microseconds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はμmの単位の変位を
マイクロ秒あるいはそれ以下の時間で実現する変位や力
のもたらす応用分野に関し、特に微細加工や精密高速位
置決め、マイクロポンプ等の応用分野に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an application field of a displacement or a force for realizing a displacement of a unit of .mu.m in a microsecond or less, and more particularly to an application field of a micromachining, a high-precision high-speed positioning, a micropump and the like. Things.

【0002】[0002]

【従来の技術】磁性体を磁化すると、その寸法が変化す
る現象、すなわち「磁歪」現象は古くから知られいた
が、近年、従来にない大きな磁歪を示す超磁歪材料が発
見された。超磁歪材料はFe,Ni,Co等の遷移金属
とテルビウム(Tb)やジスプロシウム(Dy)等の希
土類金属の化合物で、室温でも大きな磁歪を示すもので
ある。
2. Description of the Related Art A phenomenon in which the dimensions change when a magnetic material is magnetized, that is, a "magnetostriction" phenomenon has been known for a long time. In recent years, however, a giant magnetostrictive material exhibiting unprecedented large magnetostriction has been discovered. The giant magnetostrictive material is a compound of a transition metal such as Fe, Ni, and Co and a rare earth metal such as terbium (Tb) and dysprosium (Dy), and shows a large magnetostriction even at room temperature.

【0003】[0003]

【発明が解決しようする課題】超磁歪材料として、例え
ばTerfenol-D(商品名)が一般に入手可能であるが、従
来は、Terfenol-Dのロッド(棒状体)の側面全体にコイ
ルを巻回しており、マイクロ秒(μs)の時間でロッド
を変位させることは考えていなかった。
As a giant magnetostrictive material, for example, Terfenol-D (trade name) is generally available. And did not consider displacing the rod in microseconds (μs).

【0004】すなわち、マイクロ秒の時間で変位を考え
ると、ロッド全体を同時間に変位させても、ロッドの各
部の変位は弾性波の進行に要する時間のため、ロッドの
軸端には同時間には現れず、このため、上記した従来の
方法は超磁歪材料からなるロッドの効果的な変位駆動方
法とは言えなかった。
That is, considering the displacement in microseconds, even if the entire rod is displaced at the same time, the displacement of each part of the rod is the time required for the propagation of the elastic wave. Therefore, the conventional method described above cannot be said to be an effective displacement driving method of the rod made of the giant magnetostrictive material.

【0005】[0005]

【課題を解決するための手段】本発明は上記に鑑みてな
されたもので、棒状の超磁歪材料の長さ方向に複数の励
磁コイルを位置を変えて巻回し、該各励磁コイルにそれ
ぞれパルス状の電流を印加することにより、上記超磁歪
材料の各励磁コイル付近にそれぞれ局部的な磁歪を生じ
させる超磁歪材料の駆動方法であって、上記各励磁コイ
ルによって生じた磁歪に基づく複数の弾性波が上記磁歪
材料の一端面において重なり合うように、上記各励磁コ
イルに時間差を設けて通電する超磁歪材料の駆動方法を
提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has a plurality of exciting coils wound at different positions in the longitudinal direction of a bar-shaped giant magnetostrictive material. A method of driving a giant magnetostrictive material in which local magnetostriction is generated in the vicinity of each exciting coil of the giant magnetostrictive material by applying a current in the shape of the giant magnetostrictive material. It is an object of the present invention to provide a method of driving a giant magnetostrictive material in which the excitation coils are energized with a time difference so that a wave overlaps at one end face of the magnetostrictive material.

【0006】[0006]

【発明の実施の形態】以下に本発明における一実施形態
の構成を図面に基づいて説明する。図1に超磁歪材料の
高速励磁コイル駆動装置の電気回路の大まかな回路図を
示す。図において、トリガ−パルスを入力することによ
って単発のほぼ正弦半波電流を励磁コイルに流すことが
できる。今回の実験では、半波電流の流れる時間が約5
μs、すなわち約100KHzの周波数に設定し、電流
の最大値が約200アンペアまで流せるようにした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic circuit diagram of an electric circuit of a high-speed exciting coil driving device made of a giant magnetostrictive material. In the drawing, by inputting a trigger pulse, a single-shot substantially half-sine-wave current can be supplied to the exciting coil. In this experiment, it took about 5 minutes for the half-wave current to flow.
μs, that is, a frequency of about 100 KHz, so that the maximum value of the current can flow up to about 200 amperes.

【0007】図2において、超磁歪材料のロッドの形状
は、直径が6ミリメートルで、長さが60ミリメートル
の円柱状であり、これを駆動する励磁コイルは直径0.
4mmの銅線を17回巻き、内径6.5mm、外径10
mm、長さ2.5mmの寸法とした。更に、励磁コイル
の位置は、ロッドの軸端からコイル中央の距離Xで表し
た。尚、ロッド上端の変位は、光ファイバー型非接触変
位計で計測した。
In FIG. 2, the rod of the giant magnetostrictive material has a cylindrical shape with a diameter of 6 mm and a length of 60 mm, and an exciting coil for driving the rod has a diameter of 0.2 mm.
Wind a 4mm copper wire 17 times, inner diameter 6.5mm, outer diameter 10
mm and a length of 2.5 mm. Further, the position of the exciting coil was represented by a distance X from the axial end of the rod to the center of the coil. The displacement of the upper end of the rod was measured by an optical fiber type non-contact displacement meter.

【0008】先ず、図2において、超磁歪材料の上端と
励磁コイル中央との距離xを30mmとして、コイルに
約200アンペア、5μsのパルス電流を流して磁歪を
発生させたとき、超磁歪材料の軸の上端中央部の変位は
図3のようであった。励磁コイルには別にサ−チコイル
(図示せず)を巻いて、励磁コイルを流れる磁束によっ
て誘起される電圧(起電圧)を測定しており、図3では
その起電圧も時間軸上に重ねて示した。
First, in FIG. 2, when a distance x between the upper end of the giant magnetostrictive material and the center of the exciting coil is set to 30 mm, a pulse current of about 200 amperes and 5 μs is applied to the coil to generate magnetostriction. The displacement at the center of the upper end of the shaft was as shown in FIG. A search coil (not shown) is separately wound around the exciting coil to measure a voltage (electromotive force) induced by magnetic flux flowing through the exciting coil. In FIG. 3, the electromotive voltage is also superimposed on the time axis. Indicated.

【0009】図3に示すサ−チコイルの起電圧デ−タを
見ると、励磁コイルにはほぼ正弦半波電流が流れ、流れ
ている時間は4.8μsで、電流が流れ始めてから電流
が最大になるまでの時間は2.2μsであることがわか
る。また、図3において、励磁コイルの電流が最大にな
る時刻と、超磁歪材料の軸端の変位が最大になる時刻の
差である17.7μsという値は、磁歪による弾性波が
励磁コイル中央位置から超磁歪材料の端面まで伝わる時
間と考えられ、その弾性波の伝ぱ速度は約1700m/
sであることが算出される。
Referring to the electromotive voltage data of the search coil shown in FIG. 3, a substantially half-sine-wave current flows through the exciting coil, and the flowing time is 4.8 μs. It turns out that the time until it becomes 2.2 μs. In FIG. 3, the value of 17.7 μs, which is the difference between the time when the current of the exciting coil becomes maximum and the time when the displacement of the shaft end of the giant magnetostrictive material becomes maximum, is the elastic wave due to the magnetostriction. From the surface to the end face of the giant magnetostrictive material, and the propagation speed of the elastic wave is about 1700 m /
s is calculated.

【0010】次に、上記実験条件において、超磁歪材料
内部のおよその磁束密度の分布を推定してみる。いま、
超磁歪材料が等方性材料、B−H曲線が線形で、比透磁
率が10、電気抵抗6×10−7Ωm、励磁コイルに2
00アンペアで100KHzの正弦波電流が流れている
と仮定してうず電流場解析を行うと、励磁コイル近傍の
磁束線は図4のようになる。尚、軸対称問題として、図
は片側半分だけ示してある。
Next, under the above experimental conditions, the distribution of the approximate magnetic flux density inside the giant magnetostrictive material will be estimated. Now
The giant magnetostrictive material is an isotropic material, the BH curve is linear, the relative magnetic permeability is 10, the electric resistance is 6 × 10 −7 Ωm, and the exciting coil is 2
When the eddy current field analysis is performed on the assumption that a sine wave current of 100 KHz flows at 00 amps, the magnetic flux lines near the exciting coil are as shown in FIG. Note that the figure shows only one side half as an axisymmetric problem.

【0011】実験と解析の結果を見ると、高速パルス駆
動したとき、励磁コイルの近傍のみが磁歪に寄与してい
ることがわかる。
From the results of the experiment and analysis, it is understood that only the vicinity of the exciting coil contributes to the magnetostriction when high-speed pulse driving is performed.

【0012】磁歪によって発生した局所的な変位は弾性
波として約1700m/sで進行することがわかったの
で、2箇所の励磁コイルの間隔から計算される時間差を
与えてそれぞれの励磁コイルにパルス電流を流した。
Since it has been found that the local displacement caused by magnetostriction proceeds at about 1700 m / s as an elastic wave, a pulse current is supplied to each excitation coil by giving a time difference calculated from the interval between two excitation coils. Shed.

【0013】図5に示すように超磁歪材料1と励磁コイ
ル2a,2bの形状及び寸法は前述のものと同じで、一
方の励磁コイル2aは軸端から25mmの位置に、他方
の励磁コイル2bは軸端から5mmの位置に配置した。
また、それぞれの励磁コイル2a,2bに流す電流も、
前述と同じになるようにした。まず、それぞれ1個の励
磁コイル2a及び2bだけにパルス電流を流したときの
超磁歪材料軸端の変位波形を図6(b)及び(d)に示
す。なお、図6(a),(c),(e)には、励磁コイ
ル2a,2bに取り付けたサ−チコイルの起電圧を示し
ている。
As shown in FIG. 5, the shapes and dimensions of the giant magnetostrictive material 1 and the exciting coils 2a and 2b are the same as those described above. One exciting coil 2a is located at a position 25 mm from the shaft end, and the other exciting coil 2b Was placed at a position 5 mm from the shaft end.
Also, the current flowing through each of the excitation coils 2a and 2b is
Same as above. First, FIGS. 6 (b) and 6 (d) show displacement waveforms of the giant magnetostrictive material shaft end when a pulse current is applied to only one excitation coil 2a and 2b, respectively. FIGS. 6A, 6C and 6E show the electromotive voltages of the search coils attached to the exciting coils 2a and 2b.

【0014】まず、超磁歪材料1の軸端から25mmの
位置にある励磁コイル2aにパルス電流を流し、それか
ら12.4μs後に5mmの位置にある励磁コイル2b
にパルス電流を流したときの軸端の変位波形を図6
(f)に示す。図6(f)の変位は、ほぼ、図6
(b),(d)の変位が重なったものになっている。
First, a pulse current is applied to the exciting coil 2a at a position 25 mm from the axial end of the giant magnetostrictive material 1, and 12.4 μs later, the exciting coil 2b at a position 5 mm away
Fig. 6 shows the displacement waveform of the shaft end when a pulse current is applied to the shaft.
(F). The displacement shown in FIG.
The displacements in (b) and (d) overlap.

【0015】以上、本発明を実施形態に基づいて説明し
たが、本発明は上記した実施形態に限定されるものでは
なく、特許請求の範囲に記載した構成を変更しない限
り、どのようにでも実施できる。例えば、上記実施形態
においては、励磁コイルの数は2つであったが、更に多
段にすることによって、より大きな変位を得ることが可
能となる。
As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and may be implemented in any manner unless the configuration described in the claims is changed. it can. For example, in the above-described embodiment, the number of the excitation coils is two. However, if the number of the excitation coils is further increased, a larger displacement can be obtained.

【0016】[0016]

【発明の効果】以上述べたように、本発明における超磁
歪材料の駆動方法は、簡単な構成でマイクロ秒の単位で
微細な変位を得ることができるので、微細加工や精密高
速位置決め、マイクロポンプ等といった様々な分野にお
いて使用することが可能である等、多大な効果を奏す
る。
As described above, the method of driving a giant magnetostrictive material according to the present invention can obtain a minute displacement in a unit of microsecond with a simple structure, so that fine machining, precise high-speed positioning, and micro pumping can be performed. It can be used in various fields such as, for example, and has a great effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における超磁歪材料の高速励磁コイル駆
動装置の電気回路を示す回路図である。
FIG. 1 is a circuit diagram showing an electric circuit of a high-speed exciting coil driving device for giant magnetostrictive material according to the present invention.

【図2】超磁歪材料の駆動装置の概略図である。FIG. 2 is a schematic view of a driving device for a giant magnetostrictive material.

【図3】コイル位置X=30mmのときの超磁歪材料の
軸端における変位を示す特性図である。
FIG. 3 is a characteristic diagram showing displacement at a shaft end of a giant magnetostrictive material when a coil position X = 30 mm.

【図4】コイル位置X=30mmのときの磁束線の状態
を示す概念図である。
FIG. 4 is a conceptual diagram showing a state of a magnetic flux line when a coil position X = 30 mm.

【図5】本発明の一実施形態における超磁歪材料の駆動
装置の概略図である。
FIG. 5 is a schematic view of a giant magnetostrictive material driving device according to an embodiment of the present invention.

【図6】(a)〜(f)はいずれも本発明の一実施形態
における超磁歪材料の駆動装置の原理を示す概念図であ
り、(a),(c)はそれぞれコイル位置X=25mm
及びX=5mmのときのサーチコイルの起電圧、
(b),(d)はそれぞれコイル位置X=25mm及び
X=5mmのときのロッド軸端の変位、(e)はコイル
位置X=25mm及びX=5mmで同時に励磁コイルを
駆動したときのサーチコイルの起電圧、(f)はコイル
位置X=25mm及びX=5mmで同時に励磁コイルを
駆動したときのロッド軸端の変位をそれぞれ示す特性図
である。
FIGS. 6A to 6F are conceptual diagrams showing the principle of a driving device for a giant magnetostrictive material according to an embodiment of the present invention, and FIGS. 6A and 6C respectively show a coil position X = 25 mm;
And the electromotive voltage of the search coil when X = 5 mm,
(B) and (d) are displacements of the rod shaft end when the coil positions X = 25 mm and X = 5 mm, respectively, and (e) are searches when the exciting coils are simultaneously driven at the coil positions X = 25 mm and X = 5 mm. (F) is a characteristic diagram showing the displacement of the rod shaft end when the exciting coil is simultaneously driven at the coil positions X = 25 mm and X = 5 mm.

【符号の説明】[Explanation of symbols]

1 超磁歪材料 2a,2b 励磁コイル 3 光ファイバー型非接触変位計 DESCRIPTION OF SYMBOLS 1 Giant magnetostrictive material 2a, 2b Excitation coil 3 Optical fiber type non-contact displacement meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 棒状の超磁歪材料の長さ方向に複数の励
磁コイルを位置を変えて巻回し、該各励磁コイルにそれ
ぞれパルス状の電流を印加することにより、上記励磁材
料の各励磁コイル付近にそれぞれ局部的な磁歪を生じさ
せる超磁歪材料の駆動方法であって、 上記各励磁コイルによって生じた磁歪に基づく複数の弾
性波が上記超磁歪材料の一端面において重なり合うよう
に、上記各励磁コイルに時間差を設けて通電することを
特徴とする超磁歪材料の駆動方法。
1. A plurality of exciting coils of the above-mentioned exciting material are wound by changing a position of a plurality of exciting coils in the longitudinal direction of a bar-shaped giant magnetostrictive material, and applying a pulsed current to each of the exciting coils. A method of driving a giant magnetostrictive material that causes local magnetostriction in the vicinity thereof, wherein each of the excitations is performed so that a plurality of elastic waves based on magnetostriction generated by the excitation coils overlap on one end surface of the giant magnetostriction material. A method for driving a giant magnetostrictive material, wherein current is supplied with a time difference between coils.
JP9174160A 1997-06-30 1997-06-30 How to drive giant magnetostrictive material Expired - Lifetime JP2899689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9174160A JP2899689B2 (en) 1997-06-30 1997-06-30 How to drive giant magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9174160A JP2899689B2 (en) 1997-06-30 1997-06-30 How to drive giant magnetostrictive material

Publications (2)

Publication Number Publication Date
JPH1127967A true JPH1127967A (en) 1999-01-29
JP2899689B2 JP2899689B2 (en) 1999-06-02

Family

ID=15973753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9174160A Expired - Lifetime JP2899689B2 (en) 1997-06-30 1997-06-30 How to drive giant magnetostrictive material

Country Status (1)

Country Link
JP (1) JP2899689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322395A (en) * 2004-04-30 2005-11-17 Headway Technologies Inc Recording head, reproducing head, reproducing and recording head and displacement method of reproducing and recording head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322395A (en) * 2004-04-30 2005-11-17 Headway Technologies Inc Recording head, reproducing head, reproducing and recording head and displacement method of reproducing and recording head

Also Published As

Publication number Publication date
JP2899689B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR100400958B1 (en) Magnetic sensor and manufacturing method thereof
US7023205B1 (en) Eddy current sensor capable of sensing through a conductive barrier
JP3303196B2 (en) Linear magnetic actuator
US7859260B2 (en) Nuclear magnetic resonance tool using switchable source of static magnetic field
US5146790A (en) Torque sensor
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
JPH02503235A (en) magnetic position detector
JP2003531368A (en) Magnetic transducer and method of manufacturing the same
US4709210A (en) Magnetoacoustic proximity sensor
JPH05297083A (en) Magnetic field-sensitive apparatus
CN101183593B (en) Alternating intense magnetic field instrument
JP2899689B2 (en) How to drive giant magnetostrictive material
JP2003004829A (en) Apparatus for measuring magnetic flux
KR101259432B1 (en) Orthogonal fluxgate sensor using amorphous magnetic substance wire
CN108428530B (en) Magnetizing method, magnetizing device, and magnet for magnetic encoder
JP2012165537A (en) Magnetic circuit and actuator
JP2005509394A (en) Static electromagnetic generator
SU1516957A1 (en) Electromagnetic acoustic converter
JP2021132175A (en) Magnetization device
JPH03295482A (en) Magnetic field detector
JP3613572B2 (en) Magnetic metal sensor
Hristoforou et al. Fast characterisation of magnetostrictive delay lines
US20220085272A1 (en) Power generating element and apparatus including power generating element
SU484457A1 (en) Electromagnetic Transducer for Control of Cylindrical Products
Yamasawa et al. A proposal for a finite-element force approximation of an automotive magnetic actuator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term