JPH11276851A - Remover for hydrogen chloride and sulfer dioxide - Google Patents

Remover for hydrogen chloride and sulfer dioxide

Info

Publication number
JPH11276851A
JPH11276851A JP10080648A JP8064898A JPH11276851A JP H11276851 A JPH11276851 A JP H11276851A JP 10080648 A JP10080648 A JP 10080648A JP 8064898 A JP8064898 A JP 8064898A JP H11276851 A JPH11276851 A JP H11276851A
Authority
JP
Japan
Prior art keywords
gas
desalting
hydrogen chloride
tower
sulfur dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10080648A
Other languages
Japanese (ja)
Other versions
JP3820027B2 (en
Inventor
Hitoshi Miyamoto
均 宮本
Katsuhisa Kojima
勝久 小嶋
Manabu Miyamoto
学 宮本
Shinichi Takimoto
新一 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08064898A priority Critical patent/JP3820027B2/en
Publication of JPH11276851A publication Critical patent/JPH11276851A/en
Application granted granted Critical
Publication of JP3820027B2 publication Critical patent/JP3820027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent and check corrosion of a heating tube or the like while removal efficiency of hydrogen chloride and/or sulfer dioxide is improved by a method wherein a granular desalting and a desulfurizing agents are filled in a container equipped with a gas flow passage up and down, and an exhaust gas temperature is kept within a specific range. SOLUTION: An apparatus which generates hydrogen chloride and sulfur dioxide, for example, a dry distillating furnace or a combustion furnace 8 is generally operated at near 500 deg.C, and a gas 6 containing hydrogen chloride gas and sulfur dioxide gas in addition to hydrogen, nitrogen, carbon monoxide, or the like is generated by the operation. The gas 6 is conducted to a desalting and desulfurizing tower 1. For the desalting and desulfurizing tower 1, a desalting and a desulfurizing agents 2 are filled inside, and the gas 6 is ventilated from a lower part of the tower 1. As the desalting and desulfurizing agent 2, CaO, Ca(OH)2 , or the like are used. After reaction-treating the gas 6 in the desalting and desulfurizing tower 1 in the state wherein an exhaust gas temperature is kept within a range of 350 to 550 deg.C, the gas 6 as a treating gas 5 is sent to an exhaust gas boiler 9 and burnt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の塩化水
素及び/又は二酸化硫黄の除去装置に関し、さらに詳し
くは、ゴミ,カーシュレッダーダスト等の塩素又は硫黄
を含む物質の焼却炉、溶融炉等から発生するガスの浄化
方法に関し、また、一般の廃棄物焼却炉,廃棄物乾留
炉,廃棄物溶融炉等から発生する塩素ガス,二酸化硫黄
を含むガスの除去装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing hydrogen chloride and / or sulfur dioxide from exhaust gas, and more particularly, to an incinerator, a melting furnace, and the like for chlorine or sulfur-containing substances such as dust and car shredder dust. The present invention relates to a method for purifying gas generated from wastewater, and to a device for removing gas containing chlorine gas and sulfur dioxide generated from a general waste incinerator, a waste carbonization furnace, a waste melting furnace, and the like.

【0002】[0002]

【従来の技術】ゴミ等の塩素又は硫黄を含む廃棄物を燃
焼させる場合、排ガス中には塩化水素や二酸化硫黄ガス
が含まれているため、そのまま環境(大気中)には放出
できない。そのため、従来は、排ガスを大気中に放出す
る前に、塩化水素を除去する脱塩装置や二酸化硫黄を除
去する脱硫装置が設置されていた。図4及び5に、この
設置形態を示す。図4は、脱塩・脱硫のために、排ガス
中に消石灰Ca(OH)2 をスラリー状又は粉体状で噴
霧し、気相中で脱塩・脱硫反応を行わせた後、バグフィ
ルタで除去する形態の一例を示す。また、図5には、N
aOHやCa(OH)2 を含む水を排ガスに循環噴射し
て脱塩・脱硫する湿式スラリージェット法を用いた排ガ
ス処理の一例を示す。
2. Description of the Related Art When burning waste containing chlorine or sulfur, such as garbage, it cannot be released to the environment (atmosphere) as it is because exhaust gas contains hydrogen chloride and sulfur dioxide gas. Therefore, conventionally, a desalination device for removing hydrogen chloride and a desulfurization device for removing sulfur dioxide have been installed before the exhaust gas is released into the atmosphere. 4 and 5 show this installation mode. FIG. 4 shows that, for desalination and desulfurization, slaked lime Ca (OH) 2 is sprayed in the form of slurry or powder into the exhaust gas, and the salt is desalted and desulfurized in the gas phase. An example of a form for removal is shown. Also, FIG.
An example of exhaust gas treatment using a wet slurry jet method in which water containing aOH or Ca (OH) 2 is circulated and injected into exhaust gas to desalinate and desulfurize will be described.

【0003】しかしながら、これらの従来法による脱塩
・脱硫装置の操作許容温度は、通常150〜250℃で
ある。よって、低温であることが必要なために、予めボ
イラーにて熱を回収し、冷却する形態となっている。こ
のような方法による場合には、ボイラーの腐食が著しい
等の問題点があった。一方、排ガス中の塩化水素あるい
は二酸化硫黄を除去することに対する環境的あるいは社
会的要請は、益々強くなってきており、ゴミ,カーシュ
レッダーダスト等の塩素又は硫黄を含む物質の焼却炉、
溶融炉等から発生する有害物質を、より効率的かつ確実
に低減すべき要請が高まっている。
[0003] However, the allowable operating temperature of these conventional desalination / desulfurization apparatuses is usually 150 to 250 ° C. Therefore, since the temperature needs to be low, heat is recovered in advance by a boiler and cooled. In the case of such a method, there is a problem that the corrosion of the boiler is remarkable. On the other hand, environmental or social demands for removing hydrogen chloride or sulfur dioxide in exhaust gas are becoming stronger and stronger, and incinerators for substances containing chlorine or sulfur such as garbage and car shredder dust,
There is an increasing demand for more efficient and reliable reduction of harmful substances generated from melting furnaces and the like.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、上記問
題点等に鑑み、極めて効果的に反応を起こして排ガス中
の塩化水素、二酸化硫黄を除去し、塩化水素ガスや二酸
化硫黄をほとんど含まない清浄な高温ガスをボイラーに
導くことで、環境への有害物質の低減は勿論、ボイラー
の伝熱管等の腐食を抑制することができる装置を開発す
べく鋭意検討した。その結果、本発明者らは、上下にガ
ス流通路を備えた容器に、粒状の脱塩・脱硫剤を充填
し、排ガス温度を350〜550℃の範囲に保つことよ
うな特定の除去装置によって、かかる問題点が解決され
ることを見い出した。本発明は、かかる見地より完成さ
れたものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present inventors have found that an extremely effective reaction takes place to remove hydrogen chloride and sulfur dioxide in exhaust gas, and to reduce hydrogen chloride gas and sulfur dioxide almost completely. By conducting a clean high-temperature gas to the boiler, not only reduction of harmful substances to the environment, but also development of a device capable of suppressing corrosion of heat transfer tubes of the boiler and the like have been studied diligently. As a result, the present inventors use a specific removal device such as filling a container provided with gas passages above and below with a granular desalting / desulfurizing agent and keeping the exhaust gas temperature in the range of 350 to 550 ° C. And found that such problems could be solved. The present invention has been completed from such a viewpoint.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、上
下にガス流通路を備えた容器に、粒状の脱塩・脱硫剤を
充填し、排ガス温度を350〜550℃の範囲に保つこ
とを特徴とする排ガス中の塩化水素、二酸化硫黄の除去
装置を提供するものである。ここで、本発明において
は、上記脱塩・脱硫剤を、排ガスに対向して流すことが
好ましい。また、本発明は、上記脱塩・脱硫剤を充填し
た容器が2つ以上(複数)設けられており、該容器が相
互に切り替え可能になっている塩化水素、二酸化硫黄の
除去装置を提供するものである。この場合、複数基の容
器は、一定時間経過後に排ガスを順次切り替えることに
より、連続的に排ガスを処理することができる。そし
て、排ガスを切り替えた後、上記容器内に充填した脱塩
・脱硫剤については全量排出した後、新しい脱塩・脱硫
剤に入れ換えることができる。
That is, the present invention provides a container provided with gas flow passages above and below, filled with a granular desalting / desulfurizing agent, and keeping the exhaust gas temperature in the range of 350 to 550 ° C. A feature of the present invention is to provide a device for removing hydrogen chloride and sulfur dioxide in exhaust gas. Here, in the present invention, it is preferable to flow the desalting / desulfurizing agent in such a manner as to face the exhaust gas. The present invention also provides an apparatus for removing hydrogen chloride and sulfur dioxide, in which two or more (plural) containers filled with the desalting / desulfurizing agent are provided, and the containers are mutually switchable. Things. In this case, the plurality of containers can continuously process the exhaust gas by sequentially switching the exhaust gas after a predetermined time has elapsed. After the exhaust gas is switched, the desalting / desulfurizing agent filled in the container is completely discharged, and then can be replaced with a new desalting / desulfurizing agent.

【0006】本発明の装置によれば、ガスと脱塩剤,脱
硫剤が向流接触等を行うことにより、ガスは常に新しい
脱塩剤,脱硫剤と出口において高温で接触することとな
る。これにより、極めて効果的に反応を起こし、塩化水
素及び/又は二酸化硫黄を除去することが可能になる。
そして、本発明によれば、塩化水素ガスや二酸化硫黄を
ほとんど含まない清浄な高温ガスをボイラーに導くこと
ができるので、環境への有害物質の低減は勿論、高価な
ボイラーの伝熱管等の腐食を抑制することができる。以
下、本発明について、詳細に説明する。
According to the apparatus of the present invention, the gas always contacts the new desalinating agent and desulfurizing agent at a high temperature at the outlet by countercurrent contact between the gas and the desalinating agent and desulfurizing agent. This makes it possible to react very effectively and to remove hydrogen chloride and / or sulfur dioxide.
Further, according to the present invention, since a clean high-temperature gas containing almost no hydrogen chloride gas or sulfur dioxide can be guided to the boiler, not only the reduction of harmful substances to the environment but also the corrosion of expensive heat transfer tubes and the like of the boiler can be achieved. Can be suppressed. Hereinafter, the present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】以下、添付図面(図1〜図3)を
参照しながら、本発明の実施の形態を具体的に説明す
る。実施の形態(その1) 図1は、本発明の一実施形態の概要をブロック図で示し
たもので、除去対象成分である塩化水素や二酸化硫黄を
含む高温ガスを温度350〜500℃で下部から供給
し、脱塩材は上部から供給する構造となっている。図1
中、8は塩化水素や二酸化硫黄を発生する装置であり、
例えば、乾留炉や燃焼炉等が挙げられる。より具体的に
は、例えばカーシュレッダーダストやプラスチック廃棄
物を投入して温度を上げ、可燃性ガスを取り出す乾留
炉、あるいは都市ゴミを燃やして焼却する焼却炉等が該
当する。乾留炉は、通常500℃付近で運転される。こ
こで発生するガス6の成分としては、水素,窒素,一酸
化炭素等の他、塩化水素ガスや二酸化硫黄ガスが含まれ
る。このガス6は、温度を下げることなく、脱塩・脱硫
塔1へ通気される。焼却炉は通常800℃以上で運転さ
れるが、この排ガスにも塩化水素ガスや二酸化硫黄が含
まれる。このガスを脱塩・脱硫塔1へと導く。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings (FIGS. 1 to 3). Embodiment (Part 1) FIG. 1 is a block diagram showing an outline of an embodiment of the present invention, in which a high-temperature gas containing hydrogen chloride and sulfur dioxide as components to be removed is cooled at a temperature of 350 to 500 ° C. And the desalination material is supplied from above. FIG.
Among them, 8 is a device for generating hydrogen chloride and sulfur dioxide,
For example, a carbonization furnace, a combustion furnace, and the like can be given. More specifically, it corresponds to, for example, a carbonization furnace for injecting car shredder dust or plastic waste to raise the temperature and extract flammable gas, or an incinerator for burning and burning city garbage. The carbonization furnace is usually operated at around 500 ° C. The components of the gas 6 generated here include hydrogen chloride gas and sulfur dioxide gas in addition to hydrogen, nitrogen, carbon monoxide and the like. This gas 6 is passed to the desalination / desulfurization tower 1 without lowering the temperature. The incinerator is usually operated at 800 ° C. or higher, and this exhaust gas also contains hydrogen chloride gas and sulfur dioxide. This gas is led to the desalination / desulfurization tower 1.

【0008】図1中の1は脱塩・脱硫塔であり、下部に
脱塩剤2の脱落防止の格子が設けられている。その内部
には、粒径が通常200μm〜5mm,好ましくは2m
m〜5mmである脱塩・脱硫剤2が充填されている。こ
の塔の下部から、入口に塩化水素あるいは二酸化硫黄を
含むガス6を通気する。脱塩・脱硫剤2としては、具体
的には、例えばCaO,Ca(OH)2 ,CaCO3
が用いられる。脱塩・脱硫剤2の投入方法としては、例
えば塔の上部に設けられたシリンダーを用いて押し出し
装置等の投入(注入)機構3によって行い、抜き取りは
塔の下部に設けられた同様な押し出し装置等の排出機構
4によって行う。ここで、脱塩・脱硫剤2の投入は、連
続的に行っても間欠的に行ってもよく、投入量(補給
量)に見合う量を下部の排出機構から抜き出す。一方、
塩化水素、二酸化硫黄を含む処理対象ガス6は、脱塩脱
硫塔1内で反応,処理された後、処理ガス5として排ガ
スボイラー9に送られる。このように、排ガスボイラー
9の前に脱塩脱硫装置が設置されることにより、塩化水
素ガスや二酸化硫黄ガスによる高価なボイラーの伝熱管
等の腐食の問題を回避することができる。
In FIG. 1, reference numeral 1 denotes a desalination / desulfurization tower, which is provided at its lower part with a lattice for preventing the desalting agent 2 from falling off. Inside, the particle size is usually 200 μm to 5 mm, preferably 2 m
It is filled with a desalting / desulfurizing agent 2 having a size of m to 5 mm. A gas 6 containing hydrogen chloride or sulfur dioxide is vented to the inlet from the bottom of the tower. As the desalting / desulfurizing agent 2, specifically, for example, CaO, Ca (OH) 2 , CaCO 3 and the like are used. As a method for charging the desalting / desulfurizing agent 2, for example, a cylinder provided at the upper part of the tower is used to perform the charging (injection) mechanism 3 such as an extruder, and extraction is performed by using a similar extruder provided at the lower part of the tower. And the like by the discharge mechanism 4. Here, the introduction of the desalting / desulfurizing agent 2 may be performed continuously or intermittently, and an amount corresponding to the amount of supply (replenishment amount) is extracted from the lower discharge mechanism. on the other hand,
The gas to be treated 6 containing hydrogen chloride and sulfur dioxide is reacted and treated in the desalination desulfurization tower 1 and then sent to the exhaust gas boiler 9 as the treatment gas 5. By installing the desalination and desulfurization device in front of the exhaust gas boiler 9 in this way, it is possible to avoid the problem of corrosion of expensive heat transfer tubes of a boiler due to hydrogen chloride gas or sulfur dioxide gas.

【0009】本実施の形態における作用は、以下の通り
である。排ガス中に含まれる塩化水素ガス,二酸化硫黄
ガスは、以下の反応式でCaO,Ca(OH)2 又はC
aCO3 等の脱塩脱硫剤と反応して、排ガス中から除去
される。 CaOの場合: CaO+2HCl = CaCl2 +H2 O ・・・ CaO+SO2 = CaSO3 ・・・ Ca(OH)2 の場合: Ca(OH)2 +2HCl = CaCl2 +2H2 O ・・・ Ca(OH)2 +SO2 = CaSO3 ・・・ CaCO3 の場合: CaCO3 +2HCl = CaCl2 +H2 O+CO2 ・・・ CaCO3 +SO2 = CaSO3 +CO2 ・・・ したがって、徐々にCaO,Ca(OH)2 又はCaC
3 は、反応に従ってCaCl2 あるいはCaSO3
なって活性を失う。
The operation of this embodiment is as follows. Hydrogen chloride gas and sulfur dioxide gas contained in the exhaust gas are converted into CaO, Ca (OH) 2 or C by the following reaction formula.
It reacts with a desalting and desulfurizing agent such as aCO 3 to be removed from exhaust gas. For CaO: CaO + 2HCl = CaCl 2 + H 2 O ··· CaO + SO 2 = CaSO 3 ··· Ca (OH) For 2: Ca (OH) 2 + 2HCl = CaCl 2 + 2H 2 O ··· Ca (OH) 2 + SO 2 = CaSO 3 ··· CaCO 3 : CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ··· CaCO 3 + SO 2 = CaSO 3 + CO 2 ··· Therefore, CaO, Ca (OH) 2 or gradually CaC
O 3 loses its activity as CaCl 2 or CaSO 3 according to the reaction.

【0010】そのため、本発明においては図1に示すよ
うに、充填装置の上部からは新しいCaO,Ca(O
H)2 あるいはCaCO3 を供給し、装置の下部からは
上記反応式〜により生成したCaCl2 又はCaS
3 を排出する。このように本発明においては、ガスと
脱塩剤,脱硫剤は向流接触を行うため、ガスは常に新し
い脱塩剤,脱硫剤と出口において接触することができ
る。
Therefore, in the present invention, as shown in FIG. 1, fresh CaO, Ca (O
H) 2 or CaCO 3 is supplied, and from the lower part of the apparatus, CaCl 2 or CaS
Emit O 3 . As described above, in the present invention, since the gas and the desalting agent and desulfurizing agent are in countercurrent contact, the gas can always contact the new desalting agent and desulfurizing agent at the outlet.

【0011】また、本発明の方法では、高温にて、ガス
と脱塩剤,脱硫剤を接触させることにより、効果的に反
応を起こすことができる。例えば、上記の反応の活性
化エネルギーは、5kcal/mol程度であるので、
250℃で反応させる場合に比べて、350℃で反応さ
せれば反応速度は2倍、550℃で反応させれば反応速
度は約6倍にも達し、効果的に反応を促進できる。な
お、本実施の形態については、後述の実施例1で実際に
その効果を確認する。
In the method of the present invention, a reaction can be effectively caused by bringing a gas into contact with a desalting agent and a desulfurizing agent at a high temperature. For example, since the activation energy of the above reaction is about 5 kcal / mol,
Compared to the reaction at 250 ° C., the reaction rate is doubled when the reaction is performed at 350 ° C., and the reaction rate is increased to about 6 times when the reaction is performed at 550 ° C., and the reaction can be effectively promoted. The effect of this embodiment is actually confirmed in Example 1 described later.

【0012】実施の形態(その2) 図3は、本発明の一実施形態の概要をブロック図で示し
たもので、脱塩・脱硫塔が複数設けられており、切り替
えを行うことが特徴である。図3は、脱塩・脱硫塔が3
塔設置された場合を示している。その他の部分は、図1
の上記実施の形態(その1)と同様である。図3中、8
は塩化水素や二酸化硫黄を発生する装置であり、例え
ば、乾留炉や燃焼炉等が挙げられる。より具体的には、
例えばカーシュレッダーダストやプラスチック廃棄物を
投入して温度を上げ、可燃性ガスを取り出す乾留炉、あ
るいは都市ゴミを燃やして焼却する焼却炉等が該当す
る。乾留炉は、通常500℃付近で運転される。ここで
発生するガス6の成分としては、水素,窒素,一酸化炭
素等の他、塩化水素ガスや二酸化硫黄ガスが含まれる。
このガス6は、温度を下げることなく、脱塩・脱硫塔1
へ通気される。焼却炉は通常800℃以上で運転される
が、この排ガスにも塩化水素ガスや二酸化硫黄が含まれ
る。このガスを脱塩・脱硫塔1へと導く。
Embodiment 2 FIG. 3 is a block diagram showing an outline of an embodiment of the present invention, wherein a plurality of desalination / desulfurization towers are provided and switching is performed. is there. Figure 3 shows that the desalination and desulfurization tower
This shows a case where a tower is installed. Other parts are shown in Fig. 1.
Is the same as the above-described embodiment (No. 1). In FIG. 3, 8
Is a device for generating hydrogen chloride and sulfur dioxide, and examples thereof include a dry distillation furnace and a combustion furnace. More specifically,
For example, a carbonization furnace for injecting car shredder dust or plastic waste to increase the temperature and extract flammable gas, or an incinerator for burning and burning city garbage. The carbonization furnace is usually operated at around 500 ° C. The components of the gas 6 generated here include hydrogen chloride gas and sulfur dioxide gas in addition to hydrogen, nitrogen, carbon monoxide and the like.
This gas 6 is supplied to the desalination / desulfurization tower 1 without lowering the temperature.
Ventilated to The incinerator is usually operated at 800 ° C. or higher, and this exhaust gas also contains hydrogen chloride gas and sulfur dioxide. This gas is led to the desalination / desulfurization tower 1.

【0013】図3中の1−1,1−2,1−3は脱塩・
脱硫塔であり、各々、下部に脱塩剤2の抜き出しのため
の仕切り機構が設けられている。その内部に、脱塩及び
脱硫剤2である粒径約2mmのCaOが充填されてい
る。この塔の下部から、入口に塩化水素あるいは二酸化
硫黄を含むガス6を通気する。脱塩・脱硫剤の投入方法
としては、例えば塔の上部に設けられたシリンダーを用
いて押し出し装置等の投入(注入)機構によって行い、
抜き取りは塔の下部に設けられた仕切り弁を開放するこ
とによって行う。また、脱塩・脱硫剤の投入について
は、連続的に行っても間欠的に行ってもよい。
In FIG. 3, 1-1, 1-2 and 1-3 are desalinated.
These are desulfurization towers, each provided with a partition mechanism at the bottom for extracting the desalting agent 2. The inside thereof is filled with CaO having a particle size of about 2 mm, which is a desalting and desulfurizing agent 2. A gas 6 containing hydrogen chloride or sulfur dioxide is vented to the inlet from the bottom of the tower. As a method for charging the desalting / desulfurizing agent, for example, using a cylinder provided at the top of the tower, using a charging (injection) mechanism such as an extruder,
The extraction is carried out by opening a gate valve provided at the lower part of the tower. Further, the introduction of the desalting / desulfurizing agent may be performed continuously or intermittently.

【0014】本実施の形態における作用は、以下の通り
である。排ガス中に含まれる塩化水素ガス,二酸化硫黄
ガスは、上記実施の形態(その1)(図1)と同様の作
用にて、排ガス中から除去される。図3においては、次
のようなメリーゴーラウンド方式と呼ばれる方式によ
り、各塔を順次切り替えして使用する。 第1ステップ: 塔1 → 塔2 → 塔3 第2ステップ(塔1の脱塩材の交換):塔1の脱塩材
は、塩化水素等の吸着によって交換の必要が生じてくる
ため、塔1を切り離す。 塔2 → 塔3 塔1の脱塩材を下部から排出した後、塔1に新しい脱塩
材を上部から入れる。続いて、塔3の後に入れる。 塔2 → 塔3 → 塔1 第3ステップ(塔2の脱塩材の交換):上記第2ステッ
プの塔1と同様に、塔2を切り離し、塔3を先頭に持っ
てきて、脱塩材の交換後、塔2を最後に持ってくる。
The operation of this embodiment is as follows. The hydrogen chloride gas and the sulfur dioxide gas contained in the exhaust gas are removed from the exhaust gas by the same operation as in the first embodiment (FIG. 1). In FIG. 3, each tower is sequentially switched and used by the following method called a merry-go-round method. First step: tower 1 → tower 2 → tower 3 Second step (replacement of desalting material in tower 1): The desalting material in tower 1 needs to be replaced by adsorption of hydrogen chloride or the like. Disconnect 1 Tower 2 → Tower 3 After discharging the desalinated material from Tower 1 from the bottom, new desalinated material is introduced into Tower 1 from the top. Subsequently, it is introduced after tower 3. Tower 2 → Tower 3 → Tower 1 Third step (replacement of desalinating material in tower 2): In the same manner as in tower 1 in the above second step, detaching tower 2, bringing tower 3 to the top, and removing desalinating material After the exchange, bring Tower 2 last.

【0015】本実施の形態では、複数の塔を有するの
で、一定時間経過後に排ガスを順次切り替えることによ
り、連続的に排ガスを処理することができる。排ガスを
切り替えた後には、それまで流通させていた容器内に充
填した脱塩・脱硫剤については全量排出した後、新しい
脱塩・脱硫剤に入れ換えることができる。そして、上記
のような一連の操作を繰り返すことにより、排ガスは、
常に最後に新鮮な脱塩材を充填した塔を通過することに
なり、出口の塩化水素等の濃度は低く抑えられるという
効果がある。以下、実施例により本発明をより詳細に説
明するが、本発明はこれらの実施例によって何ら制限さ
れるものではない。
In this embodiment, since a plurality of towers are provided, the exhaust gas can be continuously processed by sequentially switching the exhaust gas after a certain period of time. After the exhaust gas is switched, the desalting / desulfurizing agent filled in the container that has been circulated up to that point can be replaced with a new desalting / desulfurizing agent after exhausting the entire amount. And by repeating a series of operations as described above, the exhaust gas is
It always passes through the tower filled with fresh desalinating material at the end, so that the concentration of hydrogen chloride or the like at the outlet can be kept low. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0016】[0016]

【実施例】実施例1 直径400mm,高さ400mmの大きさの脱塩塔を3
50℃に保たれた電気炉内5に設置し、入口に塩化水素
1000ppm,二酸化硫黄100ppmを含むガス6
を塔の下部から通気した。粒径約2mmのCaOの投入
は、塔の上部に設けられたシリンダーを用いた押し出し
装置3によって行い、抜き取りは塔の下部に設けられた
同様な押し出し装置4によって行った。CaOの充填,
抜き出しは、50時間に1回入れ換えできるように、平
均的には10mm/時間の速度とした。試験は56時間
実施したが、出口ガス7の塩化水素濃度は10ppm以
下、二酸化硫黄ガスの濃度も1ppm以下を保った。
EXAMPLE 1 A desalination tower having a diameter of 400 mm and a height of 400 mm was installed in three columns.
A gas containing 1000 ppm of hydrogen chloride and 100 ppm of sulfur dioxide was placed at the inlet in an electric furnace 5 maintained at 50 ° C.
Was vented from the bottom of the tower. The introduction of CaO having a particle size of about 2 mm was performed by an extruder 3 using a cylinder provided at the upper part of the tower, and the extraction was performed by a similar extruder 4 provided at the lower part of the tower. CaO filling,
Withdrawal was performed at an average speed of 10 mm / hour so that it could be replaced once every 50 hours. The test was performed for 56 hours, and the concentration of hydrogen chloride in the outlet gas 7 was kept at 10 ppm or less, and the concentration of sulfur dioxide gas was kept at 1 ppm or less.

【0017】同様な試験を温度550℃に上昇して実施
したが、性能に変化はなかった。試験後、塔内のCaO
を層毎にサンプリングし、CaCl2 を分析した結果
を、図2に示す。これにより、装置の下部では高濃度の
塩化水素と接するため、CaCl2 は高濃度となり、塔
の上部では逆に新しいCaOが供給されていることと、
既に塔の下部において、塩化水素は吸着されて低濃度と
なっていることもあり、CaCl2 はほとんど存在しな
い。このように本発明によれば、塩化水素ガスや二酸化
硫黄をほとんど含まない清浄な高温ガスをボイラーに導
くことができるので、環境への有害物質の低減は勿論、
高価なボイラーの伝熱管等の腐食を抑制することができ
る。
A similar test was performed with the temperature increased to 550 ° C., but no change was observed in performance. After the test, the CaO
Is sampled for each layer, and the result of analyzing CaCl 2 is shown in FIG. As a result, the lower part of the apparatus comes into contact with high-concentration hydrogen chloride, so that CaCl 2 becomes high-concentration, and new CaO is supplied to the upper part of the column.
Already in the lower part of the column, hydrogen chloride is adsorbed to a low concentration, and CaCl 2 is scarcely present. As described above, according to the present invention, a clean high-temperature gas containing almost no hydrogen chloride gas or sulfur dioxide can be guided to the boiler.
Corrosion of heat transfer tubes and the like of expensive boilers can be suppressed.

【0018】[0018]

【発明の効果】本発明の装置によれば、ガスと脱塩剤,
脱硫剤が向流接触等を行うことにより、ガスは常に新し
い脱塩剤,脱硫剤と出口において高温で接触するため、
極めて効果的に反応を起こし、塩化水素及び/又は二酸
化硫黄を除去することができる。また、本発明によれ
ば、塩化水素ガスや二酸化硫黄をほとんど含まない清浄
な高温ガスをボイラーに導くことにより、環境への有害
物質の低減は勿論のこと、高価なボイラーの伝熱管等の
腐食を予防,防止できるので、産業上極めて大きな意義
を有する。
According to the apparatus of the present invention, the gas and the desalinating agent,
Since the desulfurizing agent contacts the new desalting agent and desulfurizing agent at the outlet at a high temperature due to countercurrent contact etc.,
It reacts very effectively and can remove hydrogen chloride and / or sulfur dioxide. Further, according to the present invention, by introducing a clean high-temperature gas containing almost no hydrogen chloride gas or sulfur dioxide to the boiler, it is possible not only to reduce harmful substances to the environment but also to corrode expensive heat transfer tubes of the boiler. Can be prevented and prevented, which is of great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る塩化水素、二酸化硫黄の
除去装置の実施の形態の1つを示す配置図である。
FIG. 1 is a layout diagram showing one embodiment of an apparatus for removing hydrogen chloride and sulfur dioxide according to the present invention.

【図2】図2は、実施例1における塔内のCaOを層毎
にサンプリングし、CaCl2の吸着量を分析した結果
を示す図である。
FIG. 2 is a diagram showing the results of sampling CaO in a column in Example 1 for each layer and analyzing the amount of CaCl 2 adsorbed.

【図3】図3は、本発明に係る塩化水素、二酸化硫黄の
除去装置の他の1つの実施の形態を示す配置図である。
FIG. 3 is a layout view showing another embodiment of the apparatus for removing hydrogen chloride and sulfur dioxide according to the present invention.

【図4】図4は、バグフィルタを用いた排ガス処理の従
来技術を示す配置図である。
FIG. 4 is an arrangement view showing a conventional technique of exhaust gas treatment using a bag filter.

【図5】図5は、湿式スラリージェット法を用いた排ガ
ス処理の従来技術を示す配置図である。
FIG. 5 is a layout view showing a conventional exhaust gas treatment using a wet slurry jet method.

【符号の説明】[Explanation of symbols]

1(1-1,1-2,1-3) 脱塩・脱硫塔 2 脱塩材(脱塩剤) 3 投入(注入)機構 4 排出機構 5 処理ガス 6 処理対象ガス 8 乾留炉、燃焼炉 9 排ガスボイラー 10 バグフィルタ 11 スラリージェット 1 (1-1,1-2,1-3) Desalination / desulfurization tower 2 Desalting material (desalting agent) 3 Input (injection) mechanism 4 Discharge mechanism 5 Processing gas 6 Gas to be processed 8 Dry distillation furnace, combustion furnace 9 Exhaust gas boiler 10 Bag filter 11 Slurry jet

フロントページの続き (72)発明者 滝本 新一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内Continued on the front page (72) Inventor Shinichi Takimoto 1-1-1, Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Inside Mitsubishi Heavy Industries, Ltd. Kobe Shipyard

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上下にガス流通路を備えた容器に、粒状
の脱塩・脱硫剤を充填し、排ガス温度を350〜550
℃の範囲に保つことを特徴とする塩化水素、二酸化硫黄
の除去装置。
1. A container provided with gas flow passages above and below is filled with a granular desalting / desulfurizing agent, and the temperature of the exhaust gas is set to 350 to 550.
A device for removing hydrogen chloride and sulfur dioxide, which is maintained in the range of ° C.
【請求項2】 上記脱塩・脱硫剤を、排ガスに対向して
流すことを特徴とする請求項1記載の塩化水素、二酸化
硫黄の除去装置。
2. The apparatus for removing hydrogen chloride and sulfur dioxide according to claim 1, wherein the desalting / desulfurizing agent is caused to flow against exhaust gas.
【請求項3】 上記脱塩・脱硫剤を充填した容器が2つ
以上設けられており、該容器が相互に切り替え可能にな
っていることを特徴とする請求項1記載の塩化水素、二
酸化硫黄の除去装置。
3. The hydrogen chloride and sulfur dioxide according to claim 1, wherein two or more containers filled with the desalting / desulfurizing agent are provided, and the containers are mutually switchable. Removal equipment.
JP08064898A 1998-03-27 1998-03-27 Removal equipment for hydrogen chloride and sulfur dioxide Expired - Fee Related JP3820027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08064898A JP3820027B2 (en) 1998-03-27 1998-03-27 Removal equipment for hydrogen chloride and sulfur dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08064898A JP3820027B2 (en) 1998-03-27 1998-03-27 Removal equipment for hydrogen chloride and sulfur dioxide

Publications (2)

Publication Number Publication Date
JPH11276851A true JPH11276851A (en) 1999-10-12
JP3820027B2 JP3820027B2 (en) 2006-09-13

Family

ID=13724194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08064898A Expired - Fee Related JP3820027B2 (en) 1998-03-27 1998-03-27 Removal equipment for hydrogen chloride and sulfur dioxide

Country Status (1)

Country Link
JP (1) JP3820027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179223A (en) * 2009-02-04 2010-08-19 Daioh Shinyo Co Ltd Method for performing neutralization treatment for acid gas and apparatus therefor
JP2010259967A (en) * 2009-04-30 2010-11-18 Panasonic Corp Device for adsorbing gas
WO2011124885A1 (en) 2010-04-07 2011-10-13 Rifat Al Chalabi Filter for removing pollutants from high temperature gases in a power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395177A (en) * 1977-01-27 1978-08-19 Unitika Ltd Purifying apparatus for exhaust gas
JPS5831021U (en) * 1981-08-19 1983-03-01 株式会社クボタ Adsorption device
JPH0576716A (en) * 1991-09-20 1993-03-30 Kawasaki Steel Corp Method for filling adsorbent in adsorber and the adsorbent
JPH06182144A (en) * 1992-12-16 1994-07-05 Kooken:Kk Dry gas treatment method
JPH11137963A (en) * 1997-11-10 1999-05-25 Nkk Corp Treatment of waste gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395177A (en) * 1977-01-27 1978-08-19 Unitika Ltd Purifying apparatus for exhaust gas
JPS5831021U (en) * 1981-08-19 1983-03-01 株式会社クボタ Adsorption device
JPH0576716A (en) * 1991-09-20 1993-03-30 Kawasaki Steel Corp Method for filling adsorbent in adsorber and the adsorbent
JPH06182144A (en) * 1992-12-16 1994-07-05 Kooken:Kk Dry gas treatment method
JPH11137963A (en) * 1997-11-10 1999-05-25 Nkk Corp Treatment of waste gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179223A (en) * 2009-02-04 2010-08-19 Daioh Shinyo Co Ltd Method for performing neutralization treatment for acid gas and apparatus therefor
JP2010259967A (en) * 2009-04-30 2010-11-18 Panasonic Corp Device for adsorbing gas
WO2011124885A1 (en) 2010-04-07 2011-10-13 Rifat Al Chalabi Filter for removing pollutants from high temperature gases in a power generation system

Also Published As

Publication number Publication date
JP3820027B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
KR100798983B1 (en) Exhaust gas treatment device and exhaust gas treatment method
CN101248160B (en) Mercury removal system and its removal method
EP1308198B1 (en) Mercury removal method and system
JP5675364B2 (en) Method for promoting mercury retention in wet flue gas desulfurization systems
JP2009262081A (en) System for treating discharge gas and method of removing mercury from discharge gas
US6217839B1 (en) Removal of sulfur compounds from gaseous waste streams
CN103429317A (en) Apparatus and system for NOX reduction in wet flue gas
KR100660234B1 (en) System and method for cleaning outgas of sintering process in the dry
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
JPH11114374A (en) Regenerating method of activated carbon used in activated carbon circulation bag filter
JP4987237B2 (en) Combustion waste gas purification method
JP2007007581A (en) Exhaust gas treatment device and method
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
JPH11276851A (en) Remover for hydrogen chloride and sulfer dioxide
US6960548B2 (en) Method for regenerating used absorbents derived from treatment of thermal generator fumes
JP4146042B2 (en) Flue gas treatment method
JP3773668B2 (en) Advanced treatment method for incinerator exhaust gas
JP2003159510A (en) Exhaust gas treatment apparatus
JP2009000662A (en) Method and apparatus for treating exhaust gas of waste treatment equipment
CN109310943A (en) The method that joint removes siloxanes and sulfur-containing compound from biological air-flow
JPH08131777A (en) Exhaust gas treatment method
JP2000294266A (en) Method and device for recovering energy
JP2001311515A (en) Exhaust gas treatment method for ash melting furnace and system for the same
CN217220893U (en) Full-flow ultralow-emission purification system for hazardous waste incineration flue gas
JP2831214B2 (en) Activated coke regeneration method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

LAPS Cancellation because of no payment of annual fees