JPH11273918A - Permanent magnet - Google Patents
Permanent magnetInfo
- Publication number
- JPH11273918A JPH11273918A JP10095475A JP9547598A JPH11273918A JP H11273918 A JPH11273918 A JP H11273918A JP 10095475 A JP10095475 A JP 10095475A JP 9547598 A JP9547598 A JP 9547598A JP H11273918 A JPH11273918 A JP H11273918A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- grain boundary
- ferromagnetic
- crystal
- boundary phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は永久磁石に関し、特
に、永久磁石原料、永久磁石中間体及び最終製品である
永久磁石に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet, and more particularly to a permanent magnet raw material, a permanent magnet intermediate and a permanent magnet as a final product.
【0002】[0002]
【従来の技術】実用されている永久磁石の保磁力発生機
構には、単磁区粒子理論型、核生成型、及びピニング型
などがある。これらのうち、核生成型の保磁力発生機構
は、単磁区粒子径以上の大きさの結晶粒径を有する焼結
磁石が大きな保磁力を発生する理由を説明するために導
入されたもので、結晶粒界付近における逆磁区の核生成
の容易さが、その結晶粒の保磁力を決定しているという
考え方である。この型の磁石は着磁特性に特徴があり、
初期磁化過程での磁化の飽和は比較的低い印加磁界で起
こるが、十分な保磁力を得るには飽和磁化以上の磁界を
加える必要がある。これは、高い磁界によって粒内に残
存する逆磁区が完全に追い出されることにより、高い保
磁力が発生するためと考えられている。核生成型の保磁
力発生機構を有する磁石には、SmCo5系焼結磁石、Nd-Fe
-B系焼結磁石などがある。2. Description of the Related Art Coercive force generating mechanisms for permanent magnets in practical use include a single magnetic domain particle theory type, a nucleation type, and a pinning type. Among these, the nucleation type coercive force generation mechanism was introduced to explain the reason why a sintered magnet having a crystal grain size larger than a single magnetic domain particle size generates a large coercive force, The idea is that the easiness of nucleation of the reversed magnetic domain near the crystal grain boundary determines the coercive force of the crystal grain. This type of magnet is characterized by its magnetizing properties,
Saturation of the magnetization in the initial magnetization process occurs at a relatively low applied magnetic field, but a magnetic field higher than the saturation magnetization must be applied to obtain a sufficient coercive force. It is considered that this is because a high magnetic field completely drives out the reverse magnetic domains remaining in the grains, thereby generating a high coercive force. Magnets with a nucleation-type coercive force generation mechanism include SmCo 5 sintered magnets, Nd-Fe
-B-based sintered magnets.
【0003】[0003]
【発明が解決しようとする課題】本発明者らは、上記の
核生成型磁石に関する従来の技術に以下の問題点がある
ことを知見した。すなわち、従来の技術では核生成型の
磁石の保磁力が逆磁区の核生成に支配されていることが
予見されていたが、逆磁区の核生成を抑制し、保磁力を
向上させる具体的な手段については十分な知見が得られ
ていない。例えば、Nd-Fe-B系焼結磁石ではNd-richな粒
界相の存在が保磁力を高めるはたらきをしていることが
知られているが、そのメカニズムの詳細は不明である。SUMMARY OF THE INVENTION The present inventors have found that the prior art relating to the nucleation type magnet has the following problems. That is, in the prior art, it was predicted that the coercive force of the nucleation type magnet was dominated by the nucleation of the reverse magnetic domain. Sufficient knowledge has not been obtained on the means. For example, in an Nd-Fe-B based sintered magnet, it is known that the presence of an Nd-rich grain boundary phase acts to increase the coercive force, but details of the mechanism are unknown.
【0004】本発明は、高い磁気性能を有する永久磁石
を設計するための指針を提供することを課題とする。An object of the present invention is to provide a guide for designing a permanent magnet having high magnetic performance.
【0005】[0005]
【課題を解決するための手段】従来、磁石の磁気特性、
なかでも保磁力を決定する主相(以下、本明細書中で
“主相”とは“強磁性を発揮する相”をいうものとす
る、主相は半分以上存在することが好ましい)、粒界相
間の界面の構造が未知であった。このため、従来技術で
は、磁石の製造工程の各種の条件を最適化することで、
経験的に磁石の磁気特性を向上させている。このような
経験的な手法は、試料作成及び評価のための時間及び費
用がかかる上に、磁石特性をさらに向上させるには限界
がある。Means for Solving the Problems Conventionally, the magnetic properties of a magnet,
Among them, the main phase that determines the coercive force (hereinafter, the “main phase” in this specification refers to “the phase exhibiting ferromagnetism”, and the main phase is preferably present in at least half or more). The structure of the interface between the boundary phases was unknown. For this reason, in the prior art, by optimizing various conditions in the magnet manufacturing process,
Experience has shown to improve the magnetic properties of magnets. Such an empirical approach is time-consuming and expensive for sample preparation and evaluation, and has limitations in further improving magnet properties.
【0006】そこで、本発明者らは、経験的な手法に依
拠せず、理想的な界面の構造はどうあるべきかという根
本的な問題を探求した結果、核生成型の保磁力発生機構
を示す種々の磁石材料において、核生成の容易さが磁石
相の最外殻近傍における結晶磁気異方性の大きさに依存
しており、最外殻近傍の異方性定数K1の値を少なくとも
内部と同等、もしくはそれ以上に制御することにより核
生成が抑制され、磁石の保磁力を高めることができるこ
とを見出し、さらに鋭意研究を進めた結果、本発明を完
成するに至ったものである。The present inventors have investigated the fundamental problem of what the ideal interface structure should be, without relying on an empirical method. As a result, the present inventors have developed a nucleation-type coercive force generation mechanism. in various magnetic materials, ease of nucleation depends on the size of the crystal magnetic anisotropy in the outermost shell near the magnet phases, the value of the anisotropy constant K 1 of the outermost shell near at least showing It has been found that nucleation can be suppressed and the coercive force of the magnet can be increased by controlling it to be equal to or more than the inside, and as a result of further intensive research, the present invention has been completed.
【0007】本発明は第1の視点において次の要素を有
する。強磁性相と前記粒界相が整合していること。第2
の視点において、強磁性相と粒界相の界面を挟んだ原子
配列が規則的であること。第3の視点において、粒界相
が、強磁性相に対して整合する結晶型、面指数及び方位
指数(結晶方向)を有して存在すること。第4の視点に
おいて、強磁性相の界面に隣接する位置における結晶磁
気異方性が、強磁性粒子内部の結晶磁気異方性の半分以
上であること。[0007] The first aspect has the following elements. The ferromagnetic phase and the grain boundary phase are matched. Second
From the point of view that the atomic arrangement sandwiching the interface between the ferromagnetic phase and the grain boundary phase is regular. In a third aspect, the grain boundary phase exists with a crystal type, a plane index, and an orientation index (crystal direction) that match the ferromagnetic phase. In a fourth aspect, the magnetocrystalline anisotropy at a position adjacent to the ferromagnetic phase interface is at least half the magnetocrystalline anisotropy inside the ferromagnetic particles.
【0008】第5の視点において、強磁性粒子の最外殻
における結晶磁気異方性が内部の結晶磁気異方性の半分
以上であること。第6の視点において、強磁性粒子の最
外殻における結晶磁気異方性が内部の結晶磁気異方性よ
り高いこと。第7の視点において、強磁性粒子の最外殻
から5原子層以内である外殻の結晶磁気異方性が内部の
結晶磁気異方性より高いこと。第8の視点において、強
磁性粒子の結晶磁気異方性は主として希土類元素の結晶
場によって発現するものであること。強磁性粒子の外殻
に位置する希土類元素イオンに隣接する粒界相におい
て、希土類元素イオンの4f電子雲が伸びている方向に陽
イオンが位置すること。第9の視点において、陽イオン
源は、Be、Mg、Al、Si、P、Ca、Sc、Ti、V、Cr、Mn、F
e、Co、Ni、Cu、Zn、Ga、Sr、Zr、Nb、Mo、Cd、In、S
n、Ba、Hf、Ta、Ir、Pbの一種以上であること。In a fifth aspect, the crystal magnetic anisotropy in the outermost shell of the ferromagnetic particles is at least half of the internal crystal magnetic anisotropy. In a sixth aspect, the outermost shell of the ferromagnetic particles has a higher magnetocrystalline anisotropy than the inner magnetocrystalline anisotropy. In a seventh aspect, the crystal magnetic anisotropy of the outer shell within 5 atomic layers from the outermost shell of the ferromagnetic particles is higher than the inner crystal magnetic anisotropy. In an eighth aspect, the magnetocrystalline anisotropy of the ferromagnetic particles is expressed mainly by a crystal field of a rare earth element. In the grain boundary phase adjacent to the rare earth element ion located in the outer shell of the ferromagnetic particles, the cation is located in the direction in which the 4f electron cloud of the rare earth element ion extends. In the ninth aspect, the cation source is Be, Mg, Al, Si, P, Ca, Sc, Ti, V, Cr, Mn, F
e, Co, Ni, Cu, Zn, Ga, Sr, Zr, Nb, Mo, Cd, In, S
It must be at least one of n, Ba, Hf, Ta, Ir, and Pb.
【0009】第10の視点において、主として希土類元
素の結晶場によって結晶磁気異方性が発現する強磁性粒
子に陽イオン源を添加すること。少なくとも強磁性粒子
に隣接する粒界相部分に陽イオン源を含む結晶を析出す
ること。強磁性相に隣接する粒界相の結晶構造におい
て、強磁性粒子の最外殻に位置する希土類元素イオンの
4f電子雲が伸びている方向に直交する方向に陽イオン
を位置させること。第11の視点において、強磁性相と
粒界相が整合するように、強磁性相の結晶構造に応じ
て、粒界相の、組成、両相が共存した状態における結晶
型、面指数及び方位指数(結晶方向)を決定すること。In a tenth aspect, a cation source is added to ferromagnetic particles whose crystal magnetic anisotropy mainly develops due to the crystal field of a rare earth element. Precipitating a crystal containing a cation source at least in a grain boundary phase portion adjacent to the ferromagnetic particles. In the crystal structure of the grain boundary phase adjacent to the ferromagnetic phase, the cations are positioned in a direction orthogonal to the direction in which the 4f electron cloud of the rare earth element ion located at the outermost shell of the ferromagnetic particles extends. In the eleventh viewpoint, the composition of the grain boundary phase, the crystal type, the plane index, and the orientation in a state where both phases coexist according to the crystal structure of the ferromagnetic phase so that the ferromagnetic phase and the grain boundary phase match. Determining the index (crystal direction).
【0010】図1、図2(A)及び(B)を参照して、
主相(強磁性相)と粒界相がその界面で整合している場
合と、整合していない場合とで、界面近傍における結晶
磁気異方性の分布の相違を説明する。図1又は図2
(A)及び(B)において、横軸の"最外殻"とは主相の
最も外側の原子層の位置を示し、"第2層"、"第3層"と
はそれぞれ最外殻位置から内部に向かって数えて2番
目、3番目の原子層の位置を示す。第n層とは最外殻か
らの距離が遠く、界面からの影響が無視できる位置を示
す。図1のグラフ中、縦軸は主相の一軸異方性定数K
1(結晶磁気異方性の強さを示す)の大きさを示し、K1
の値が大きいほど主相の自発磁化の向きは磁化容易軸
(c軸)の方向で安定化する。また、図1中、実施例
(本発明)は図2(A)に示すように主相と粒界相が界
面で整合している条件でのK1の計算値を示し、比較例は
図2(B)に示すように粒界相の欠落などによって界面
の不整合などがある場合のK1の計算値を示している。Referring to FIGS. 1, 2A and 2B,
The difference in the distribution of magnetocrystalline anisotropy near the interface between the case where the main phase (ferromagnetic phase) and the grain boundary phase match at the interface and the case where they do not match will be described. FIG. 1 or FIG.
In (A) and (B), the “outermost shell” on the horizontal axis indicates the position of the outermost atomic layer of the main phase, and the “second layer” and “third layer” indicate the outermost shell positions, respectively. The positions of the second and third atomic layers counted from the inside toward the inside are shown. The n-th layer indicates a position where the distance from the outermost shell is long and the influence from the interface can be ignored. In the graph of FIG. 1, the vertical axis represents the uniaxial anisotropy constant K of the main phase.
1 (indicating the strength of crystal magnetic anisotropy), and K 1
Is larger, the direction of the spontaneous magnetization of the main phase is stabilized in the direction of the axis of easy magnetization (c-axis). In FIG. 1, the example (the present invention) shows the calculated value of K 1 under the condition that the main phase and the grain boundary phase are matched at the interface as shown in FIG. 2 (A). As shown in FIG. 2B, the calculated value of K1 in the case where there is an interface mismatch due to a lack of a grain boundary phase or the like is shown.
【0011】図1を参照して、比較例においては、界面
からの距離によって異方性定数K1の大きさが大きく変化
し、最外殻におけるK1の値が内部に比べて著しく低下し
ている。一方、実施例においては、界面からの距離によ
って異方性定数K1の大きさがあまり変化せず、むしろ最
外殻相において異方性定数K1が上昇している。従って、
比較例によれば、最外殻において逆磁区の核生成に要す
るエネルギーが局所的に低下して核生成と磁化反転が容
易になるため、磁石の保磁力が低下する。一方、実施例
によれば、最外殻におけるK1がむしろ内部より高いた
め、界面における逆磁区の核生成が抑制され、その結果
磁石の保磁力が増加する。[0011] Referring to FIG. 1, in the comparative example, the size is largely changed in the anisotropy constant K1 according to the distance from the interface, the value of K 1 is significantly reduced compared to the inside of the outermost shell I have. On the other hand, in the embodiment, without much change in the magnitude of the anisotropy constant K 1 by the distance from the interface, the anisotropy constant K 1 is increased in the outermost shell phase rather. Therefore,
According to the comparative example, the energy required for nucleation of the reverse magnetic domain in the outermost shell is locally reduced, and nucleation and magnetization reversal are facilitated, so that the coercive force of the magnet is reduced. On the other hand, according to the embodiment, since K 1 in the outermost shell is rather higher than that in the inner part, nucleation of reverse magnetic domains at the interface is suppressed, and as a result, the coercive force of the magnet increases.
【0012】[0012]
【発明の実施の形態】以下、本発明の一実施の形態を説
明するが、本発明は下記に記載された特定の組成に限定
されるものではなく、永久磁石及びその製造方法全般に
亘る指針を提供するものである。本発明は、特に核生成
型の永久磁石に適用されるが、その他、単磁区粒子理論
型、ピニング型などにも適用可能である。核生成型の永
久磁石を例示すれば、Nd-Fe-B(Nd2Fe14Bなど)、Sm2Fe
17Nx、SmCo5である。ここで、一例として、Nd2Fe14B相
の場合、粒界相の存在が界面近傍における主相の結晶磁
気異方性を高める理由を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described, but the present invention is not limited to the specific composition described below. Is provided. The present invention is particularly applied to a nucleation type permanent magnet, but can also be applied to a single domain particle theory type, a pinning type, and the like. Examples of nucleation type permanent magnets include Nd-Fe-B (Nd 2 Fe 14 B, etc.), Sm 2 Fe
17 N x , SmCo 5 . Here, as an example, in the case of the Nd 2 Fe 14 B phase, the reason why the presence of the grain boundary phase increases the crystal magnetic anisotropy of the main phase near the interface will be described.
【0013】[粒界相のはたらき]Nd-Fe-B系磁石の主
相であるNd2Fe14B相の結晶磁気異方性は結晶中のNd原子
の位置によって決まる。Nd原子とB原子はNd2Fe14B正方
晶の底面とz=1/2c0の面にのみ存在する。Nd原子は結晶
中で電子を放出してNd3+イオンの形で存在する。[Function of Grain Boundary Phase] The magnetocrystalline anisotropy of the Nd 2 Fe 14 B phase, which is the main phase of the Nd—Fe—B magnet, is determined by the position of Nd atoms in the crystal. Nd atoms and B atoms exist only on the bottom surface of the Nd 2 Fe 14 B tetragonal crystal and on the plane at z = 1 / 2c 0 . Nd atoms emit electrons in the crystal and exist in the form of Nd 3+ ions.
【0014】Nd3+イオンの4f電子はドーナッツ状に拡が
った空間分布をしており、その磁気モーメントJの向き
は4f電子雲が拡がった面に垂直に立っている。Nd3+イオ
ンの4f電子のドーナッツ状の電子雲は底面内で近接する
Nd3+イオンやB3+イオンの+電荷に引っ張られるため、磁
気モーメントJの向きは底面に垂直な方向、すなわちc
軸方向に固定される。これが、Nd2Fe14B相の強い一軸磁
気異方性の原因である。Ndなどの軽希土類とFeなどの遷
移金属との化合物中では、両者の磁気モーメントは交換
相互作用により平行にそろう傾向があり、その結果とし
てNd2Fe14B相全体の磁気モーメントはc軸方向に向く。The 4f electrons of the Nd 3+ ion have a spatial distribution spread in a donut shape, and the direction of the magnetic moment J is perpendicular to the plane in which the 4f electron cloud is spread. A donut-like electron cloud of 4f electrons of the Nd3 + ion is close in the base
The magnetic moment J is oriented in the direction perpendicular to the bottom surface, ie, c, because it is pulled by the + charges of Nd 3+ ions and B 3+ ions.
Fixed in the axial direction. This is the cause of the strong uniaxial magnetic anisotropy of the Nd 2 Fe 14 B phase. In a compound of a light rare earth such as Nd and a transition metal such as Fe, the magnetic moments of both tend to be parallel due to exchange interaction, and as a result, the magnetic moment of the entire Nd 2 Fe 14 B phase is in the c-axis direction. Turn to.
【0015】いま、粒界相と共存していないNd2Fe14B結
晶の最外殻を考えると、最も外側のNd3+イオンは、内部
のNd3+イオンに比べて近接するNd3+イオンやB3+イオン
の数が少ない。したがって、上述した4f電子雲の広がり
を底面内方向に固定する力が弱く、その結果として磁気
モーメントのc軸方向への固定が不十分となる。このよ
うな最外殻部分では、結晶磁気異方性が局所的に大きく
低下し、逆磁区の核生成に要するエネルギーが低くな
り、容易に核生成が起こって磁石の保磁力が低下する。[0015] Now, considering the outermost shell of the Nd 2 Fe 14 B crystal that is not co-exist with the grain boundary phase, the outermost Nd 3+ ions, Nd 3+ close than in the interior of Nd 3+ ions Small number of ions and B3 + ions. Therefore, the force for fixing the spread of the 4f electron cloud in the inward direction of the bottom surface is weak, and as a result, the magnetic moment is insufficiently fixed in the c-axis direction. In such an outermost shell portion, the crystal magnetic anisotropy is locally greatly reduced, the energy required for nucleation of the reverse magnetic domain is reduced, and nucleation easily occurs, and the coercive force of the magnet is reduced.
【0016】ここで、主相の最外殻に隣接する形でCaメ
タルなどの粒界相が存在する場合は、欠落したNd3+イオ
ンやB3+イオンの代わりとなる陽イオンが隣接するた
め、粒界相が全くない場合に比べて結晶磁気異方性は高
まる。特に、主相の最外殻Nd3+イオンのa軸方向近傍に
粒界相の強い陽イオンが位置するような両相の位置関係
になった場合、K1の値は主相内部に比べて逆に高くな
り、高保磁力の磁石が得られる。上記の好ましい位置関
係は、主相と粒界相が整合性のある界面で接しており、
かつ両相が特定の結晶方位関係を持つ場合に形成される
率が高くなる。Here, when a grain boundary phase such as Ca metal exists adjacent to the outermost shell of the main phase, a cation serving as a substitute for the missing Nd 3+ ion or B 3+ ion is adjacent. Therefore, the magnetocrystalline anisotropy increases as compared with the case where there is no grain boundary phase. In particular, when the two phases have a positional relationship such that the strong cation of the grain boundary phase is located near the a-axis direction of the outermost shell Nd 3+ ion of the main phase, the value of K 1 is smaller than that inside the main phase. Conversely, the magnet becomes higher and a magnet with a high coercive force is obtained. In the above preferred positional relationship, the main phase and the grain boundary phase are in contact at a compatible interface,
In addition, when both phases have a specific crystal orientation relationship, the rate of formation increases.
【0017】粒界相の陽イオンが主相Nd3+イオンのc軸
方向近傍に配置されると、結晶磁気異方性は低くなって
しまう。しかし、実際の界面でのc軸方向の積層順序
は、主相のNd原子層に隣接して粒界相が積層することは
なく、主相のFe原子層の上に粒界相が積層されるため、
粒界相の陽イオンの電荷はFe原子層によって遮蔽され、
結晶磁気異方性はさほど低下しない。If the cations of the grain boundary phase are arranged near the c-axis direction of the main phase Nd 3+ ions, the crystal magnetic anisotropy will be low. However, the actual stacking order in the c-axis direction at the interface is such that the grain boundary phase is not stacked adjacent to the main phase Nd atomic layer, but the grain boundary phase is stacked on the main phase Fe atomic layer. Because
The charge of the cation in the grain boundary phase is shielded by the Fe atomic layer,
The magnetocrystalline anisotropy does not decrease so much.
【0018】[界面における結晶学的方位関係]図3
は、互いに整合しているR2TM14B主相(R:Yを含む希土類
元素、TM:FeないしCo)とR-TM粒界相の顕微鏡写真であ
り、図4は図3に示した主相の制限視野電子線回折像で
あり、図5は図3に示した粒界相の制限視野電子線回折
像である。解析の結果、界面における両相の結晶学的方
位関係は、次の通り表され、その方位関係のずれが平行
から5°以内である。[Crystallographic Orientation Relationship at Interface] FIG.
Is a micrograph of the R 2 TM 14 B main phase (R: Y-containing rare earth element, TM: Fe or Co) and the R-TM grain boundary phase, which are mutually matched, and FIG. 4 is shown in FIG. FIG. 5 is a selected area electron diffraction image of the main phase, and FIG. 5 is a selected area electron diffraction image of the grain boundary phase shown in FIG. 3. As a result of the analysis, the crystallographic orientation relationship between the two phases at the interface is expressed as follows, and the deviation of the orientation relationship is within 5 ° from parallel.
【0019】[0019]
【化1】 Embedded image
【0020】このように整合した界面を有する焼結磁石
の保磁力は、同様の組成を有するが界面が整合していな
い焼結磁石の保磁力に対して顕著に高くなる(整合の場
合iHc=15.3kOe、不整合の場合7.2kOe)。なお、界面に
おいて、主相と粒界相が50%以上整合していることが好
ましい。The coercive force of a sintered magnet having such a matched interface is significantly higher than the coercive force of a sintered magnet having a similar composition but having an unmatched interface (in the case of matching, iHc = 15.3kOe, 7.2kOe in case of inconsistency). Note that it is preferable that the main phase and the grain boundary phase match at least 50% at the interface.
【0021】[異方性定数]本発明に基づく永久磁石に
おいて、強磁性相の最外殻近傍の異方性定数K1の値は内
部と同等、もしくはそれ以上であることが好ましい。こ
の場合の同等とは、内部での値の少なくとも50%以上で
ある。強磁性粒子の最外殻部における結晶磁気異方性
が、粒界相が存在しない場合の該強磁性粒子の最外殻部
の結晶磁気異方性に比べて強められることが好ましい。[Anisotropy Constant] In the permanent magnet according to the present invention, the value of the anisotropy constant K1 near the outermost shell of the ferromagnetic phase is preferably equal to or greater than that of the inside. Equivalence in this case is at least 50% or more of the internal value. It is preferable that the magnetocrystalline anisotropy in the outermost shell of the ferromagnetic particles be enhanced as compared with the magnetocrystalline anisotropy of the outermost shell of the ferromagnetic particles in the absence of the grain boundary phase.
【0022】[結晶磁気異方性の分布]また、非晶質で
ない特定の結晶構造を持ち、かつ室温において強磁性体
である金属、合金、または金属間化合物の少なくとも1
種の結晶粒からなる永久磁石において、該結晶粒の最外
殻位置での結晶磁気異方性が、結晶粒外部の影響が無視
できる結晶粒内部(中心部)と同等であるか、もしくは
向上し、内部に比べて大きく減少することのないことが
好ましい。実用的な保磁力を得るために、結晶粒の最外
殻位置での結晶磁気異方性は、結晶粒外部の影響が無視
できる内部の結晶磁気異方性の半分以上であることが好
ましい。[Distribution of Crystalline Magnetic Anisotropy] In addition, at least one of a metal, alloy, or intermetallic compound which has a specific crystal structure which is not amorphous and which is ferromagnetic at room temperature.
In a permanent magnet composed of seed crystal grains, the crystal magnetic anisotropy at the outermost shell position of the crystal grains is equal to or improved within the crystal grains (center portion) where the influence of the crystal grains outside can be ignored. However, it is preferable that it does not greatly decrease compared to the inside. In order to obtain a practical coercive force, the crystal magnetic anisotropy at the outermost shell position of the crystal grain is preferably at least half of the internal crystal magnetic anisotropy where the influence of the crystal grain outside can be ignored.
【0023】[囲まれた主相、離隔構造]非晶質でない
特定の結晶構造を持ち、かつ室温において強磁性体であ
る金属、合金、または金属間化合物からなる主相と,金
属、合金、または金属間化合物からなり、かつ主相の周
囲を取り囲む形で存在する粒界相の少なくとも2相で構
成されることが好ましい。粒界相は、主相を構成する強
磁性相(強磁性粒子)の一部ないし全部を囲むことによ
り保磁力向上が見られる。強磁性相(強磁性粒子)が粒
界相によって半分以上囲まれていることが好ましい。ま
た、主相を構成する一つの強磁性粒子と、他の強磁性粒
子が互いに離隔されていることが好ましい。また、実質
的に非磁性の粒界相によって、一つの強磁性粒子と、他
の強磁性粒子とが部分的ないし全体的に互いに離隔され
ていることが好ましい。[Enclosed Main Phase, Separated Structure] A main phase comprising a metal, alloy, or intermetallic compound having a specific non-amorphous crystal structure and being ferromagnetic at room temperature, and a metal, alloy, Alternatively, it is preferable to be composed of at least two phases of a grain boundary phase which are made of an intermetallic compound and exist around the main phase. The grain boundary phase can improve the coercive force by surrounding a part or all of the ferromagnetic phase (ferromagnetic particles) constituting the main phase. It is preferable that the ferromagnetic phase (ferromagnetic particles) is surrounded by a grain boundary phase by half or more. It is preferable that one ferromagnetic particle constituting the main phase and another ferromagnetic particle are separated from each other. Preferably, one ferromagnetic particle and another ferromagnetic particle are partially or wholly separated from each other by a substantially nonmagnetic grain boundary phase.
【0024】[主相と粒界相の好ましい組み合わせ]本
発明において、主相として好ましい金属、合金または金
属間化合物は、永久磁石の主相として優れた性質を有す
るものがよく、具体的には、飽和磁化が高く、キュリー
温度が室温以上で十分に高いものがよい。上記の条件を
満たす強磁性体の例を列挙すれば、Fe、Co、Ni、Fe-Co
合金、Fe-Ni合金、Fe-Co-Ni合金、Pt-Co合金、Mn-Bi合
金、SmCo5、Sm2Co17、Ne2Fe14B、Sm2Fe17N3などがある
が、以上に挙げた例は本発明の適用範囲を限定するもの
ではない。[Preferred Combination of Main Phase and Grain Boundary Phase] In the present invention, the metal, alloy or intermetallic compound preferable as the main phase preferably has excellent properties as the main phase of the permanent magnet. , A material having a high saturation magnetization and a sufficiently high Curie temperature at room temperature or higher. Examples of ferromagnetic materials satisfying the above conditions include Fe, Co, Ni, and Fe-Co.
Alloy, Fe-Ni alloy, Fe-Co-Ni alloy, Pt-Co alloys, Mn-Bi alloy, SmCo 5, Sm 2 Co 17 , Ne 2 Fe 14 B, there are such Sm 2 Fe 17 N 3, or Are not intended to limit the scope of the invention.
【0025】本発明において、粒界相として好ましい金
属、合金、または金属間化合物は、室温よりも高く、か
つ、主相の融点、または分解速度よりも低い融点、また
は分解温度を有し、熱処理によって主相の周りに拡散さ
せることが容易なものがよい。また、粒界相を構成する
原子は主相の最外殻原子に対して陽イオンとしてふるま
い、主相の結晶磁気異方性を高めるものが好ましい。上
記の条件を満たす金属を例示すれば、Be、Mg、Ca、Sr、
Ba、すべての遷移金属元素(Zn、Cdを含む)、Al、Ga、
In、Tl、Sn、Pbなどである。また、これらの金属同士の
合金、または金属間化合物も粒界相となり得るが、以上
に挙げた例は本発明の適用範囲を限定するものではな
い。In the present invention, the metal, alloy or intermetallic compound preferable as the grain boundary phase has a melting point or decomposition temperature higher than room temperature and lower than the melting point or decomposition rate of the main phase. What is easy to diffuse around the main phase by using is preferred. Further, it is preferable that the atoms constituting the grain boundary phase behave as cations with respect to the outermost shell atoms of the main phase to enhance the crystal magnetic anisotropy of the main phase. As an example of a metal satisfying the above conditions, Be, Mg, Ca, Sr,
Ba, all transition metal elements (including Zn and Cd), Al, Ga,
In, Tl, Sn, Pb and the like. In addition, alloys of these metals or intermetallic compounds can also be the grain boundary phase, but the examples given above do not limit the scope of the present invention.
【0026】上記の主相と粒界相の組み合わせは、例え
ばSmCo5主相とY粒界相のように、両相がある温度域で平
衡に共存するものが好ましい。また、例えばSm2Fe17N3
主相とZn相の反応で金属間化合物相(Γ-FeZn)が形成
されるように、主相と第2相とが反応することにより粒
界に好ましい第3相を形成してもよい。後者の場合に
は、第3相が本発明でいうところの粒界相となる。The combination of the main phase and the grain boundary phase is preferably such that both phases coexist in equilibrium in a certain temperature range, for example, a SmCo5 main phase and a Y grain boundary phase. Also, for example, Sm 2 Fe 17 N 3
The main phase and the second phase may react with each other to form a preferred third phase at the grain boundary, such that an intermetallic compound phase (Γ-FeZn) is formed by the reaction between the main phase and the Zn phase. In the latter case, the third phase is the grain boundary phase in the present invention.
【0027】[微量添加元素の範囲]本発明において、
主相と粒界相との整合性を高めるために主として金属元
素を微量に添加することは好ましい実施形態である。上
記の微量添加元素は、粒界相に濃縮偏在して界面の濡れ
性を高めたり、あるいは界面の不整合な位置に拡散して
粒界相の格子定数を調整して界面エネルギーを下げ、界
面の整合性を高める効果があり、その結果として磁石の
保磁力が向上する。[Range of Trace Additive Element] In the present invention,
It is a preferred embodiment to mainly add a trace amount of a metal element in order to enhance the consistency between the main phase and the grain boundary phase. The above-mentioned trace added elements are concentrated and unevenly distributed in the grain boundary phase to enhance the wettability of the interface, or diffuse to an inconsistent position of the interface to adjust the lattice constant of the grain boundary phase to lower the interface energy, Has the effect of improving the coherence of the magnet, and as a result, the coercive force of the magnet improves.
【0028】上記の働きをする微量添加元素としては、
粒界相中に固溶しうる元素が好ましく、例えば、Al、S
i、P、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Zr、N
b、Mo、これら以外の上述の金属元素などがあるが、以
上に挙げた例は本発明の適用範囲を限定するものではな
い。上記の目的で添加する元素の添加量は、磁石全体に
対する割合で1.0wt%以下で良好な磁石の残留磁束密度が
得られ、0.05wt%以上で所定の効果が得られるので、添
加量の範囲は0.05〜1.0wt%が好ましい。より好ましい範
囲は0.1〜0.5wt%である。微量添加元素の添加方法は、
母合金に初めから含有させる、粉末冶金的手法で後から
添加するなど、磁石の製造方法に応じて適宜選択でき
る。また、上記微量元素などが主相(強磁性相)に侵入
し又は主相を構成する元素を置換してもよい。[0028] As the trace addition element having the above function,
Elements that can form a solid solution in the grain boundary phase are preferable, for example, Al, S
i, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, N
There are b, Mo, the above-mentioned metal elements other than these, and the like, but the examples given above do not limit the applicable scope of the present invention. The addition amount of the element to be added for the above purpose is 1.0% by weight or less with respect to the whole magnet to obtain a good residual magnetic flux density of the magnet, and the predetermined effect is obtained at 0.05% by weight or more. Is preferably 0.05 to 1.0 wt%. A more preferred range is from 0.1 to 0.5 wt%. The addition method of the trace addition element is
It can be selected as appropriate according to the method of manufacturing the magnet, such as adding it to the mother alloy from the beginning or adding it later by powder metallurgy. Further, the above-mentioned trace elements may invade the main phase (ferromagnetic phase) or replace the elements constituting the main phase.
【0029】[磁性相と粒界相の結晶構造]粒界相の結
晶構造は、磁性相の結晶構造と似ていることが好まし
い。さらに、粒界相の結晶構造と磁性相の結晶構造とが
特定の方位関係にあることが好ましい。これによって、
粒界相側の特定原子と主相側の特定原子の整合性が高ま
る。例えば、正方晶R2TM14B金属間化合物(R:Yを含む希
土類元素、TM:FeまたはCo)からなる主相と、R-TM合金
からなる粒界相から構成される永久磁石においては、該
主相と該粒界相の界面近傍における該粒界相の結晶構造
が面心立方構造であることが好ましい。さらに、面指数
と方位指数に関して、該主相と該粒界相との界面近傍に
おける結晶学的方位関係が下記の通りであることが好ま
しい。[Crystal Structure of Magnetic Phase and Grain Boundary Phase] The crystal structure of the grain boundary phase is preferably similar to the crystal structure of the magnetic phase. Further, it is preferable that the crystal structure of the grain boundary phase and the crystal structure of the magnetic phase have a specific orientation relationship. by this,
The consistency between the specific atom on the grain boundary phase side and the specific atom on the main phase side is enhanced. For example, in a permanent magnet composed of a main phase composed of a tetragonal R2TM14B intermetallic compound (a rare earth element containing R: Y, TM: Fe or Co) and a grain boundary phase composed of an R-TM alloy, the main phase The crystal structure of the grain boundary phase in the vicinity of the interface between the grain boundary phase and the grain boundary phase is preferably a face-centered cubic structure. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
【0030】[0030]
【化2】 Embedded image
【0031】正方晶R2TM14B金属間化合物(R:Yを含む希
土類元素、TM:FeまたはCo)からなる主相と、R3TM合金
からなる粒界相から構成される永久磁石においては、該
主相と該粒界相の界面近傍における該粒界相の結晶構造
が斜方晶構造であることが好ましい。さらに、面指数と
方位指数に関して、該主相と該粒界相との界面近傍にお
ける結晶学的方位関係が下記の通りであることが好まし
い。In a permanent magnet composed of a tetragonal R2TM14B intermetallic compound (a rare earth element containing R: Y, TM: Fe or Co) and a grain boundary phase composed of an R3TM alloy, the main phase is The crystal structure of the grain boundary phase in the vicinity of the interface of the grain boundary phase is preferably an orthorhombic structure. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
【0032】[0032]
【化3】 Embedded image
【0033】粒界相は、その主相との界面近傍(高々数
原子層)の原子が主相側と整合であればよく、非晶質、
部分的に非晶質、ほとんどが非晶質であってもよい。ま
た、界面の一部が整合であることによって効果が得られ
るが、界面の半分以上が整合であることが好ましい。ま
た、主相と粒界相は、その界面近傍に格子欠陥がなく連
続性が維持され規則的であることが好ましいが、一部格
子欠陥があってもよい。The grain boundary phase may be any one as long as atoms near the interface with the main phase (at most several atomic layers) match the main phase.
It may be partially amorphous and mostly amorphous. Although the effect can be obtained when a part of the interface is matched, it is preferable that half or more of the interface is matched. The main phase and the grain boundary phase preferably have regularity without lattice defects near the interface and maintain continuity, but may have some lattice defects.
【0034】本発明に基づく永久磁石において、強磁性
相はある条件下で実用的な保磁力を示すものであればよ
く、金属、合金、金属間化合物、半金属、その他の化合
物の一種以上から構成することが可能である。また、本
発明の原理は、永久磁石原料から中間体さらに最終製品
としての永久磁石及びそれらの製造方法まで適用され
る。例えば、永久磁石原料としては、鋳造粉砕法、急冷
薄板粉砕法、超急冷法、直接還元法、水素含有崩壊法、
アトマイズ法によって得られる粉末がある。中間体とし
ては、粉砕されて粉末冶金法の原料とする急冷薄板、熱
処理されて一部又は全部が結晶化する非晶質体(一部又
は全部)がある。最終製品である永久磁石としては、そ
れらの粉末を焼結又はボンド等によってバルク化した磁
石、鋳造磁石、圧延磁石、さらに、スパッタリング法、
イオンプレーティング法、PVD法又はCVD法などに
よる薄膜磁石などがある。さらに、永久磁石原料又は最
終製品として永久磁石の製造方法として、メカニカルア
ロイング法、ホットプレス法、ホットフォーミング法、
熱間・冷間圧延法、HDDR法、押出法、ダイアップセット
法などがあり、特に限定されない。In the permanent magnet according to the present invention, the ferromagnetic phase only needs to exhibit a practical coercive force under certain conditions, and may be formed of one or more of metals, alloys, intermetallic compounds, semimetals, and other compounds. It is possible to configure. In addition, the principle of the present invention is applied to permanent magnet raw materials, intermediates, permanent magnets as final products, and methods for producing them. For example, as raw materials for permanent magnets, casting and pulverization methods, quenched thin plate pulverization methods, ultra-quench methods, direct reduction methods, hydrogen-containing collapse methods,
There is a powder obtained by an atomizing method. Examples of the intermediate include a quenched thin plate that is pulverized and used as a raw material for the powder metallurgy method, and an amorphous body (part or all) that is partially or wholly crystallized by heat treatment. As permanent magnets as final products, magnets made by bulking these powders by sintering or bonding, cast magnets, rolled magnets, further sputtering method,
There is a thin film magnet by an ion plating method, a PVD method, a CVD method, or the like. Furthermore, as a method of manufacturing a permanent magnet as a permanent magnet raw material or a final product, a mechanical alloying method, a hot pressing method, a hot forming method,
There are a hot / cold rolling method, an HDR method, an extrusion method, a die upset method, and the like, and there is no particular limitation.
【0035】[0035]
【実施例】[実施例1]粒径10μmのNd2Fe14B結晶粒を磁
界中で配向しながらプレス成形した後、成形体の表面に
200μm以下に砕いたCaメタルを5wt%だけまぶして、真空
中で800℃、1h加熱した後、冷却した。得られた試料は
主相であるNd2Fe14B結晶粒の周りをCaメタルの粒界相が
囲んだ構造になっており、両相は整合な界面を介して直
接接していた。この試料の保磁力は1.3MA/mであった。[Example 1] Nd 2 Fe 14 B crystal grains having a particle size of 10 μm were press-formed while oriented in a magnetic field, and then pressed on the surface of the formed body.
5 wt% of Ca metal crushed to 200 μm or less was coated, heated at 800 ° C. for 1 hour in a vacuum, and then cooled. The obtained sample had a structure in which the grain boundary phase of Ca metal surrounded the Nd 2 Fe 14 B crystal grains as the main phase, and both phases were in direct contact with each other via a matching interface. The coercive force of this sample was 1.3 MA / m.
【0036】[比較例1]実施例1で得られた成形体を、
そのまま真空中で1060℃、1h加熱した後、冷却した。得
られた試料のNd2Fe14B結晶粒は、互いの接点で焼結ネッ
クを形成している他は多くの空隙を含み、空隙部の結晶
粒の表面には酸化物相が形成されていた。この試料の保
磁力は0.1MA/mであった。[Comparative Example 1] The molded product obtained in Example 1 was
After heating at 1060 ° C. for 1 hour in vacuum as it was, it was cooled. The Nd 2 Fe 14 B crystal grains of the obtained sample contain many voids except that a sintering neck is formed at the point of mutual contact, and an oxide phase is formed on the surface of the crystal grains in the voids. Was. The coercive force of this sample was 0.1 MA / m.
【0037】[実施例2]粒径10μmのSm2Fe17Nx(xは約
3)結晶粒の表面に無電解メッキ法によりZnを2wt%だけコ
ーティングし、その後、真空中で450℃、1h加熱した
後、冷却した。得られた試料は、主相であるSm2Fe17Nx
結晶粒の周りをZnメタル相が囲んだ構造になっており、
両相は整合な界面を介して直接接していた。この試料の
保磁力は1.9MA/mであった。Example 2 Sm 2 Fe 17 N x (x is about 10 μm in particle diameter)
3) Zn was coated on the surface of the crystal grains by 2 wt% by an electroless plating method, then heated at 450 ° C. for 1 hour in a vacuum, and then cooled. The obtained sample was composed of Sm 2 Fe 17 N x
It has a structure in which Zn metal phase surrounds the crystal grains,
Both phases were in direct contact via a consistent interface. The coercive force of this sample was 1.9 MA / m.
【0038】[比較例2]実施例2で得られたZnメッキ後
の試料は、主相とZnメタル相の界面の結晶性が乱れてお
り、界面の整合性がなかった。この試料の保磁力は0.3M
A/mであった。[Comparative Example 2] In the sample after Zn plating obtained in Example 2, the crystallinity of the interface between the main phase and the Zn metal phase was disordered, and the interface was not consistent. The coercivity of this sample is 0.3M
A / m.
【0039】[実施例3]基板を700℃に加熱しながらス
パッタリング法で作製した厚さ80μmのSmCo5薄膜の表面
に、基板を400℃に加熱しながらYをスパッタリング法で
厚さ5μmになるようにコーティングした。X線回折によ
り、得られた試料膜中のSmCo5の結晶構造は六方晶のCaC
u5型構造、Yは六方最密構造であるLa型構造をとってお
り、両者の結晶方位はいずれもc軸が膜面に垂直であっ
た。また、透過電子顕微鏡で試料の断面組織を観察した
結果、SmCo5相は直径数μmの柱状晶をなしており、ま
た、SmCo5相とY相の界面は整合であった。この薄膜の保
磁力は1.5MA/mであった。Example 3 On a surface of an 80 μm thick SmCo 5 thin film produced by sputtering while heating the substrate to 700 ° C., Y was sputtered to 5 μm while heating the substrate to 400 ° C. Coated as follows. By X-ray diffraction, the crystal structure of SmCo 5 in the obtained sample film was hexagonal CaC
u 5 type structure, Y is taken La type structure which is hexagonal close-packed structure, any crystal orientation of both c-axis was perpendicular to the film plane. Further, as a result of observing the cross-sectional structure of the sample with a transmission electron microscope, it was found that the SmCo 5 phase was a columnar crystal having a diameter of several μm, and the interface between the SmCo 5 phase and the Y phase was consistent. The coercive force of this thin film was 1.5 MA / m.
【0040】[比較例3]実施例3で得られた厚さ80μm
のSmCo5薄膜の表面に、基板加熱をせずにYをスパッタリ
ング法で厚さ5μmになるようにコーティングした。得ら
れた試料膜中のSmCo5の結晶構造は六方晶のCaCu5型構
造、Yは六方最密構造であるLa型構造をとっており、SmC
o5相の結晶方位はc軸が膜面に垂直であったが、Y相の
c軸は膜面に対してランダムな方向に向いていた。ま
た、SmCo5相とY相の界面は不整合であった。この薄膜の
保磁力は0.2MA/mであった。Comparative Example 3 The thickness of 80 μm obtained in Example 3
The surface of the SmCo 5 thin film was coated with Y to a thickness of 5 μm by a sputtering method without heating the substrate. The crystal structure of SmCo 5 in the obtained sample film has a hexagonal CaCu 5 type structure, and Y has a La type structure which is a hexagonal close-packed structure.
o The crystal orientation of the five phases was such that the c-axis was perpendicular to the film surface, while the c-axis of the Y phase was oriented in a random direction with respect to the film surface. The interface between the SmCo 5 phase and the Y phase was inconsistent. The coercive force of this thin film was 0.2 MA / m.
【0041】[実施例4:微量添加元素の実施例]粒径1
0μmのSm2Co17粉末90gと、Zrを0.2wt%含有するNd合金の
粉末10gを混合し、磁界中で成形した後、真空中、1150
℃で2h焼結し、室温まで冷却した。得られた焼結体はSm
2Co17の主相とNd-Zr合金の粒界相からなり、両相の界面
は整合であった。この焼結体の保磁力は1.1MA/mであっ
た。[Example 4: Example of trace addition element] Particle size 1
90 g of Sm 2 Co 17 powder of 0 μm, and 10 g of Nd alloy powder containing 0.2 wt% of Zr were mixed and molded in a magnetic field.
Sintered at ℃ for 2 h and cooled to room temperature. The obtained sintered body is Sm
It consisted of a main phase of 2 Co 17 and a grain boundary phase of Nd-Zr alloy, and the interface of both phases was consistent. The coercive force of this sintered body was 1.1 MA / m.
【0042】[比較例4]粒径10μmのSm2Co17粉末90g
と、Ndの粉末10gを混合し、磁界中で成形した後、真空
中、1150℃で2h焼結し、室温まで冷却した。得られた焼
結体はSm2Co17の主相とNdの粒界相からなっていた。両
相の界面付近には多くの積層欠陥や転位が見られ、界面
は不整合であった。この焼結体の保磁力は0.4MA/mであ
った。Comparative Example 4 90 g of Sm 2 Co 17 powder having a particle size of 10 μm
And 10 g of Nd powder were mixed, molded in a magnetic field, sintered in vacuum at 1150 ° C. for 2 hours, and cooled to room temperature. The obtained sintered body was composed of a main phase of Sm 2 Co 17 and a grain boundary phase of Nd. Many stacking faults and dislocations were found near the interface between the two phases, and the interface was inconsistent. The coercive force of this sintered body was 0.4 MA / m.
【0043】[0043]
【発明の効果】本発明によれば、高い磁気性能(特に保
磁力)を有する永久磁石を設計するための指針が提供さ
れる。従来、保磁力を決定する主相と粒界相間の界面の
構造が未知であったが、本発明によって、保磁力を向上
させるための理想的な界面の構造が明らかにされたこと
により、新たな永久磁石の開発の指針が提供されると共
に、既存の永久磁石の保磁力のさらなる向上が可能とな
る。この結果、新規な磁石材料の発見が容易となり、今
まで保磁力が低いため実用されていない永久磁石の実用
化も可能となり、また最適組成決定も容易化される。According to the present invention, a guide for designing a permanent magnet having high magnetic performance (particularly, coercive force) is provided. Conventionally, the structure of the interface between the main phase and the grain boundary phase that determines the coercive force was unknown, but the present invention has revealed a new ideal interface structure for improving the coercive force. In addition to providing guidance for the development of a permanent magnet, the coercive force of the existing permanent magnet can be further improved. As a result, a new magnet material can be easily discovered, a permanent magnet that has not been used because of its low coercive force can be put to practical use, and the optimum composition can be easily determined.
【図1】界面からの距離と結晶磁気異方性の関係を説明
するための図であって、白丸が実施例の一軸異方性定数
K1、黒丸が比較例の一軸異方性定数K1を示す。FIG. 1 is a diagram for explaining a relationship between a distance from an interface and crystal magnetic anisotropy, in which a white circle indicates a uniaxial anisotropy constant of an example.
K1 and black circles indicate the uniaxial anisotropy constant K1 of the comparative example.
【図2】(A)は主相と粒界相が整合している様子を示
すモデル図、(B)主相と粒界相が整合していない様子
を示すモデル図である。FIG. 2A is a model diagram showing a state where a main phase and a grain boundary phase match, and FIG. 2B is a model diagram showing a state where a main phase and a grain boundary phase do not match.
【図3】主相と粒界相が整合している永久磁石を撮影し
た電子顕微鏡写真である。FIG. 3 is an electron micrograph of a permanent magnet in which a main phase and a grain boundary phase are matched.
【図4】図3に示した主相側の制限視野電子線回折像を
示す結晶構造の写真である。FIG. 4 is a photograph of a crystal structure showing a selected area electron beam diffraction image of the main phase shown in FIG. 3;
【図5】図3に示した粒界相側の制限視野電子線回折像
を示す結晶構造の写真である。5 is a photograph of a crystal structure showing a selected area electron beam diffraction image on the grain boundary phase side shown in FIG. 3;
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年4月21日[Submission date] April 21, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0010[Correction target item name] 0010
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0010】図1、図2(A)及び(B)を参照して、
主相(強磁性相)と粒界相がその界面で整合している場
合と、整合していない場合とで、界面近傍における結晶
磁気異方性の分布の相違を説明する。図1又は図2
(A)及び(B)において、横軸の"最外殻"とは主相の
最も外側の原子層の位置を示し、"第2層"、"第3
層"とはそれぞれ最外殻位置から内部に向かって数えて
2番目、3番目の原子層の位置を示す。第n層とは最外
殻からの距離が遠く、界面からの影響が無視できる位置
を示す。図1のグラフ中、縦軸は主相の一軸異方性定数
K1(結晶磁気異方性の強さを示す)の大きさを示し、K1
の値が大きいほど主相の自発磁化の向きは磁化容易軸
(c軸)の方向で安定化する。また、図1中、実施例
(本発明)は図2(A)に示すように主相と粒界相が界
面で整合している条件でのK1の計算値を示し、比較例は
図2(B)に示すように粒界相の欠落などによって界面
の不整合などがある場合のK1の計算値を示している。Referring to FIGS. 1, 2A and 2B,
The difference in the distribution of magnetocrystalline anisotropy near the interface between the case where the main phase (ferromagnetic phase) and the grain boundary phase match at the interface and the case where they do not match will be described. FIG. 1 or FIG.
In (A) and (B), the “outermost shell” on the horizontal axis indicates the position of the outermost atomic layer of the main phase, and “the second layer”, “the third layer”.
The "layer" indicates the position of the second and third atomic layers counted from the outermost shell position toward the inside. The distance from the outermost shell is far from the nth layer, and the influence from the interface is negligible. In the graph of Fig. 1, the vertical axis represents the uniaxial anisotropy constant of the main phase.
Indicates the magnitude of K 1 (indicating the strength of magnetocrystalline anisotropy), and K 1
Is larger, the direction of the spontaneous magnetization of the main phase is stabilized in the direction of the axis of easy magnetization (c-axis). In FIG. 1, the example (the present invention) shows the calculated value of K 1 under the condition that the main phase and the grain boundary phase are matched at the interface as shown in FIG. 2 (A). such as by 2 (B) lack of grain boundary phase, as shown in shows the calculated values of K 1 in the case where there is such an interface mismatch.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0011[Correction target item name] 0011
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0011】図1を参照して、比較例においては、界面
からの距離によって異方性定数K1の大きさが大きく変化
し、最外殻におけるK1の値が内部に比べて著しく低下し
ている。一方、実施例においては、界面からの距離によ
って異方性定数K1の大きさがあまり変化せず、むしろ最
外殻相において異方性定数K1が上昇している。従って、
比較例によれば、最外殻において逆磁区の核生成に要す
るエネルギーが局所的に低下して核生成と磁化反転が容
易になるため、磁石の保磁力が低下する。一方、実施例
によれば、最外殻におけるK1がむしろ内部より高いた
め、界面における逆磁区の核生成が抑制され、その結果
磁石の保磁力が増加する。Referring to FIG. 1, in the comparative example, the magnitude of the anisotropy constant K 1 changes greatly depending on the distance from the interface, and the value of K 1 in the outermost shell is significantly lower than that in the interior. ing. On the other hand, in the embodiment, without much change in the magnitude of the anisotropy constant K 1 by the distance from the interface, the anisotropy constant K 1 is increased in the outermost shell phase rather. Therefore,
According to the comparative example, the energy required for nucleation of the reverse magnetic domain in the outermost shell is locally reduced, and nucleation and magnetization reversal are facilitated, so that the coercive force of the magnet is reduced. On the other hand, according to the embodiment, since K 1 in the outermost shell is rather higher than that in the inner part, nucleation of reverse magnetic domains at the interface is suppressed, and as a result, the coercive force of the magnet increases.
【手続補正3】[Procedure amendment 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0014】Nd3+イオンの4f電子はドーナッツ状に拡が
った空間分布をしており、その磁気モーメントJの向き
は4f電子雲が拡がった面に垂直に立っている。Nd3+イオ
ンの4f電子のドーナッツ状の電子雲は底面内で近接する
Nd3+イオンやB3+イオンの+電荷に引っ張られるため、磁
気モーメントJの向きは底面に垂直な方向、すなわちc
軸方向に固定される。これが、Nd2Fe14B相の強い一軸磁
気異方性の原因である。Ndなどの軽希土類とFeなどの遷
移金属との化合物中では、両者の磁気モーメントは交換
相互作用により平行にそろう傾向があり、その結果とし
てNd2Fe14B相全体の磁気モーメントはc軸方向に向く。The 4f electrons of the Nd 3+ ion have a spatial distribution spread in a donut shape, and the direction of the magnetic moment J is perpendicular to the plane in which the 4f electron cloud is spread. A donut-like electron cloud of 4f electrons of the Nd3 + ion is close in the base
The magnetic moment J is oriented in the direction perpendicular to the bottom surface, ie, c, because it is pulled by the + charges of Nd 3+ ions and B 3+ ions.
Fixed in the axial direction. This is the cause of the strong uniaxial magnetic anisotropy of the Nd 2 Fe 14 B phase. In a compound of a light rare earth such as Nd and a transition metal such as Fe, the magnetic moments of both tend to be parallel due to exchange interaction, and as a result, the magnetic moment of the entire Nd 2 Fe 14 B phase is in the c-axis direction. Turn to.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0021[Correction target item name] 0021
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0021】[異方性定数]本発明に基づく永久磁石に
おいて、強磁性相の最外殻近傍の異方性定数K1の値は内
部と同等、もしくはそれ以上であることが好ましい。こ
の場合の同等とは、内部での値の少なくとも50%以上で
ある。強磁性粒子の最外殻部における結晶磁気異方性
が、粒界相が存在しない場合の該強磁性粒子の最外殻部
の結晶磁気異方性に比べて強められることが好ましい。[Anisotropy Constant] In the permanent magnet according to the present invention, the value of the anisotropy constant K 1 near the outermost shell of the ferromagnetic phase is preferably equal to or greater than that of the inside. Equivalence in this case is at least 50% or more of the internal value. It is preferable that the magnetocrystalline anisotropy in the outermost shell of the ferromagnetic particles be enhanced as compared with the magnetocrystalline anisotropy of the outermost shell of the ferromagnetic particles in the absence of the grain boundary phase.
【手続補正5】[Procedure amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0026[Correction target item name] 0026
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0026】上記の主相と粒界相の組み合わせは、例え
ばSmCo5主相とY粒界相のように、両相がある温度域で平
衡に共存するものが好ましい。また、例えばSm2Fe17N3
主相とZn相の反応で金属間化合物相(Γ-FeZn)が形成
されるように、主相と第2相とが反応することにより粒
界に好ましい第3相を形成してもよい。後者の場合に
は、第3相が本発明でいうところの粒界相となる。The combination of the main phase and the grain boundary phase is preferably such that both phases coexist in equilibrium in a certain temperature range, for example, a SmCo 5 main phase and a Y grain boundary phase. Also, for example, Sm 2 Fe 17 N 3
The main phase and the second phase may react with each other to form a preferred third phase at the grain boundary, such that an intermetallic compound phase (Γ-FeZn) is formed by the reaction between the main phase and the Zn phase. In the latter case, the third phase is the grain boundary phase in the present invention.
【手続補正6】[Procedure amendment 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0029[Correction target item name] 0029
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0029】[磁性相と粒界相の結晶構造]粒界相の結
晶構造は、磁性相の結晶構造と似ていることが好まし
い。さらに、粒界相の結晶構造と磁性相の結晶構造とが
特定の方位関係にあることが好ましい。これによって、
粒界相側の特定原子と主相側の特定原子の整合性が高ま
る。例えば、正方晶R2TM14B金属間化合物(R:Yを含む希
土類元素、TM:FeまたはCo)からなる主相と、R-TM合金
からなる粒界相から構成される永久磁石においては、該
主相と該粒界相の界面近傍における該粒界相の結晶構造
が面心立方構造であることが好ましい。さらに、面指数
と方位指数に関して、該主相と該粒界相との界面近傍に
おける結晶学的方位関係が下記の通りであることが好ま
しい。[Crystal Structure of Magnetic Phase and Grain Boundary Phase] The crystal structure of the grain boundary phase is preferably similar to the crystal structure of the magnetic phase. Further, it is preferable that the crystal structure of the grain boundary phase and the crystal structure of the magnetic phase have a specific orientation relationship. by this,
The consistency between the specific atom on the grain boundary phase side and the specific atom on the main phase side is enhanced. For example, in a permanent magnet composed of a main phase composed of a tetragonal R 2 TM 14 B intermetallic compound (a rare earth element containing R: Y, TM: Fe or Co) and a grain boundary phase composed of an R-TM alloy, Preferably, the crystal structure of the grain boundary phase near the interface between the main phase and the grain boundary phase is a face-centered cubic structure. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
【手続補正7】[Procedure amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0031[Correction target item name] 0031
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0031】正方晶R2TM14B金属間化合物(R:Yを含む希
土類元素、TM:FeまたはCo)からなる主相と、R3TM合金
からなる粒界相から構成される永久磁石においては、該
主相と該粒界相の界面近傍における該粒界相の結晶構造
が斜方晶構造であることが好ましい。さらに、面指数と
方位指数に関して、該主相と該粒界相との界面近傍にお
ける結晶学的方位関係が下記の通りであることが好まし
い。In a permanent magnet composed of a main phase composed of a tetragonal R 2 TM 14 B intermetallic compound (a rare earth element containing R: Y, TM: Fe or Co) and a grain boundary phase composed of an R 3 TM alloy Preferably, the crystal structure of the grain boundary phase near the interface between the main phase and the grain boundary phase is an orthorhombic structure. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
【手続補正8】[Procedure amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】界面からの距離と結晶磁気異方性の関係を説明
するための図であって、白丸が実施例の一軸異方性定数
K1、黒丸が比較例の一軸異方性定数K1を示す。 ─────────────────────────────────────────────────────
FIG. 1 is a diagram for explaining a relationship between a distance from an interface and crystal magnetic anisotropy, in which a white circle indicates a uniaxial anisotropy constant of an example.
K 1 and black circles indicate the uniaxial anisotropy constant K 1 of the comparative example. ────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年5月13日[Submission date] May 13, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0010[Correction target item name] 0010
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0010】図1、図2(A)及び(B)を参照して、
主相(強磁性相)と粒界相がその界面で整合している場
合と、整合していない場合とで、界面近傍における結晶
磁気異方性の分布の相違を説明する。図1又は図2
(A)及び(B)において、横軸の”最外殻”とは主相
の最も外側の原子層の位置を示し、”第2層”、”第3
層”とはそれぞれ最外殻位置から内部に向かって数えて
2番目、3番目の原子層の位置を示す。第n層とは最外
殻からの距離が遠く、界面からの影響が無視できる位置
を示す。図1のグラフ中、縦軸は主相の一軸異方性定数
K1(結晶磁気異方性の強さを示す)の大きさを示し、
K1の値が大きいほど主相の自発磁化の向きは磁化容易
軸(c軸)の方向で安定化する。また、図1中、実施例
(本発明)は図2(A)に示すように主相と粒界相が界
面で整合している条件でのK1の計算値を示し、比較例
は図2(B)に示すように粒界相の欠落などによって界
面の不整合などがある場合のK1の計算値を示してい
る。Referring to FIGS. 1, 2A and 2B,
The difference in the distribution of magnetocrystalline anisotropy near the interface between the case where the main phase (ferromagnetic phase) and the grain boundary phase match at the interface and the case where they do not match will be described. FIG. 1 or FIG.
In (A) and (B), the “outermost shell” on the horizontal axis indicates the position of the outermost atomic layer of the main phase, and “second layer”, “third layer”.
The “layer” indicates the position of the second and third atomic layers counted from the outermost shell position toward the inside. The nth layer is far from the outermost shell, and the influence from the interface is negligible. 1, the vertical axis indicates the magnitude of the uniaxial anisotropy constant K 1 (indicating the strength of the crystalline magnetic anisotropy) of the main phase,
Spontaneous magnetization direction of higher values of K 1 is large main phase is stabilized in the direction of easy magnetization (c axis). Further, in FIG. 1, Example (the invention) shows the calculated values of K 1 in the condition where the main phase and a grain boundary phase as shown in FIG. 2 (A) is aligned at the interface, the comparative example FIG. such as by 2 (B) lack of grain boundary phase, as shown in shows the calculated values of K 1 in the case where there is such an interface mismatch.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0011[Correction target item name] 0011
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0011】図1を参照して、比較例においては、界面
からの距離によって異方性定数K1の大きさが大きく変
化し、最外殻におけるK1の値が内部に比べて著しく低
下している。一方、実施例においては、界面からの距離
によって異方性定数K1の大きさがあまり変化せず、む
しろ最外殻相において異方性定数K1が上昇している。
従って、比較例によれば、最外殻において逆磁区の核生
成に要するエネルギーが局所的に低下して核生成と磁化
反転が容易になるため、磁石の保磁力が低下する。一
方、実施例によれば、最外殻におけるK1がむしろ内部
より高いため、界面における逆磁区の核生成が抑制さ
れ、その結果磁石の保磁力が増加する。Referring to FIG. 1, in the comparative example, the magnitude of the anisotropy constant K 1 changes greatly depending on the distance from the interface, and the value of K 1 in the outermost shell is significantly lower than that in the interior. ing. On the other hand, in the embodiment, without much change in the magnitude of the anisotropy constant K 1 by the distance from the interface, the anisotropy constant K 1 is increased in the outermost shell phase rather.
Therefore, according to the comparative example, the energy required for nucleation of the reverse magnetic domain in the outermost shell is locally reduced to facilitate nucleation and magnetization reversal, so that the coercive force of the magnet is reduced. On the other hand, according to the embodiment, since higher internal rather is K 1 in the outermost shell, the nucleation of reverse magnetic domains at the interface is suppressed, so that the coercive force of the magnet is increased.
【手続補正3】[Procedure amendment 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0014】Nd3+イオンの4f電子はドーナッツ状
に拡がった空間分布をしており、その磁気モーメントJ
の向きは4f電子雲が拡がった面に垂直に立っている。
Nd3+イオンの4f電子のドーナッツ状の電子雲は底
面内で近接するNd3+イオンやB3+イオンの+電荷
に引っ張られるため、磁気モーメントJの向きは底面に
垂直な方向、すなわちc軸方向に固定される。これが、
Nd2Fe14B相の強い一軸磁気異方性の原因であ
る。Ndなどの軽希土類とFeなどの遷移金属との化合
物中では、両者の磁気モーメントは交換相互作用により
平行にそろう傾向があり、その結果としてNd2Fe
14B相全体の磁気モーメントはc軸方向に向く。The 4f electron of the Nd 3+ ion has a spatial distribution spread like a donut, and its magnetic moment J
Stands perpendicular to the plane where the 4f electron cloud spreads.
For donut-shaped electron cloud of 4f electrons of Nd 3+ ions is pulled to + charge of Nd 3+ ions and B 3+ ions adjacent in the bottom, the orientation of the magnetic moment J is a direction perpendicular to the bottom surface, namely the c-axis direction Fixed. This is,
This is the cause of the strong uniaxial magnetic anisotropy of the Nd 2 Fe 14 B phase. In a compound of a light rare earth such as Nd and a transition metal such as Fe, the magnetic moments of the two tend to be aligned in parallel by exchange interaction. As a result, Nd 2 Fe
The magnetic moment of the entire 14 B phase is oriented in the c-axis direction.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0021[Correction target item name] 0021
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0021】[異方性定数]本発明に基づく永久磁石に
おいて、強磁性相の最外殻近傍の異方性定数K1の値は
内部と同等、もしくはそれ以上であることが好ましい。
この場合の同等とは、内部での値の少なくとも50%以
上である。強磁性粒子の最外殻部における結晶磁気異方
性が、粒界相が存在しない場合の該強磁性粒子の最外殻
部の結晶磁気異方性に比べて強められることが好まし
い。[0021] The permanent magnet that is based on the anisotropy constant present invention, it is preferred values of the anisotropy constant K 1 of outermost vicinity of the ferromagnetic phase is inside the same, or more.
Equivalent in this case is at least 50% or more of the internal value. It is preferable that the magnetocrystalline anisotropy in the outermost shell of the ferromagnetic particles be enhanced as compared with the magnetocrystalline anisotropy of the outermost shell of the ferromagnetic particles in the absence of the grain boundary phase.
【手続補正5】[Procedure amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0026[Correction target item name] 0026
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0026】上記の主相と粒界相の組み合わせは、例え
ばSmCo5主相とY粒界相のように、両相がある温度
域で平衡に共存するものが好ましい。また、例えばSm
2Fe17N3主相とZn相の反応で金属間化合物相
(Γ−FeZn)が形成されるように、主相と第2相と
が反応することにより粒界に好ましい第3相を形成して
もよい。後者の場合には、第3相が本発明でいうところ
の粒界相となる。As the combination of the main phase and the grain boundary phase, it is preferable that both phases coexist in equilibrium in a certain temperature range, such as the SmCo 5 main phase and the Y grain boundary phase. Also, for example, Sm
The main phase and the second phase react with each other to form a preferred third phase at the grain boundary, such that an intermetallic compound phase (Γ-FeZn) is formed by the reaction between the 2 Fe 17 N 3 main phase and the Zn phase. May be. In the latter case, the third phase is the grain boundary phase in the present invention.
【手続補正6】[Procedure amendment 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0029[Correction target item name] 0029
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0029】[磁性相と粒界相の結晶構造]粒界相の結
晶構造は、磁性相の結晶構造と似ていることが好まし
い。さらに、粒界相の結晶構造と磁性相の結晶構造とが
特定の方位関係にあることが好ましい。これによって、
粒界相側の特定原子と主相側の特定原子の整合性が高ま
る。例えば、正方晶R2TM14B金属間化合物(R:
Yを含む希土類元素、TM:FeまたはCo)からなる
主相と、R−TM合金からなる粒界相から構成される永
久磁石においては、該主相と該粒界相の界面近傍におけ
る該粒界相の結晶構造が面心立方構造であることが好ま
しい。さらに、面指数と方位指数に関して、該主相と該
粒界相との界面近傍における結晶学的方位関係が下記の
通りであることが好ましい。[Crystal Structure of Magnetic Phase and Grain Boundary Phase] The crystal structure of the grain boundary phase is preferably similar to the crystal structure of the magnetic phase. Further, it is preferable that the crystal structure of the grain boundary phase and the crystal structure of the magnetic phase have a specific orientation relationship. by this,
The consistency between the specific atom on the grain boundary phase side and the specific atom on the main phase side is enhanced. For example, a tetragonal R 2 TM 14 B intermetallic compound (R:
In a permanent magnet composed of a main phase made of a rare earth element containing Y, TM: Fe or Co) and a grain boundary phase made of an R-TM alloy, the particles near the interface between the main phase and the grain boundary phase The crystal structure of the boundary phase is preferably a face-centered cubic structure. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
【手続補正7】[Procedure amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0031[Correction target item name] 0031
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0031】正方晶R2TM14B金属間化合物(R:
Yを含む希土類元素、TM:FeまたはCo)からなる
主相と、R3TM合金からなる粒界相から構成される永
久磁石においては、該主相と該粒界相の界面近傍におけ
る該粒界相の結晶構造が斜方晶構造であることが好まし
い。さらに、面指数と方位指数に関して、該主相と該粒
界相との界面近傍における結晶学的方位関係が下記の通
りであることが好ましい。The tetragonal R 2 TM 14 B intermetallic compound (R:
In a permanent magnet composed of a main phase composed of a rare earth element containing Y, TM: Fe or Co) and a grain boundary phase composed of an R 3 TM alloy, the grain size near an interface between the main phase and the grain boundary phase is reduced. The crystal structure of the interphase is preferably an orthorhombic structure. Further, with respect to the plane index and the orientation index, it is preferable that the crystallographic orientation relationship near the interface between the main phase and the grain boundary phase is as follows.
【手続補正8】[Procedure amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】界面からの距離と結晶磁気異方性の関係を説明
するための図であって、白丸が実施例の一軸異方性定数
K1、黒丸が比較例の一軸異方性定数K1を示す。FIG. 1 is a diagram for explaining a relationship between a distance from an interface and crystal magnetic anisotropy, wherein a white circle indicates a uniaxial anisotropy constant K 1 of an example, and a black circle indicates a uniaxial anisotropy constant K of a comparative example. 1 is shown.
Claims (11)
前記粒界相が整合していることを特徴とする永久磁石。1. A permanent magnet having a ferromagnetic phase and a grain boundary phase, wherein the ferromagnetic phase and the grain boundary phase are matched.
原子配列が規則的であることを特徴とする請求項1記載
の永久磁石。2. The permanent magnet according to claim 1, wherein the atomic arrangement sandwiching the interface between the ferromagnetic phase and the grain boundary phase is regular.
する結晶型、面指数及び方位指数を有して存在すること
を特徴とする請求項1又は2記載の永久磁石。3. The permanent magnet according to claim 1, wherein the grain boundary phase exists with a crystal type, a plane index, and an orientation index matching the ferromagnetic phase.
る結晶磁気異方性が、該強磁性相内部の結晶磁気異方性
の半分以上であることを特徴とする請求項1〜3のいず
れか一記載の永久磁石。4. The ferromagnetic phase according to claim 1, wherein the magnetocrystalline anisotropy at a position adjacent to the interface of the ferromagnetic phase is at least half the magnetocrystalline anisotropy inside the ferromagnetic phase. The permanent magnet according to any one of the above.
性が、該強磁性粒子内部の結晶磁気異方性の半分以上で
あることを特徴とする永久磁石。5. The permanent magnet according to claim 1, wherein the crystal magnetic anisotropy in the outermost shell of the ferromagnetic particles is at least half the crystal magnetic anisotropy inside the ferromagnetic particles.
異方性が、該強磁性粒子内部の結晶磁気異方性より高い
ことを特徴とする請求項5記載の永久磁石。6. The permanent magnet according to claim 5, wherein the crystal magnetic anisotropy in the outermost shell of the ferromagnetic particles is higher than the crystal magnetic anisotropy inside the ferromagnetic particles.
である外殻の結晶磁気異方性が該強磁性粒子内部の結晶
磁気異方性より高いことを特徴とする請求項6記載の永
久磁石。7. The ferromagnetic particle, wherein the crystal magnetic anisotropy of the outer shell within 5 atomic layers from the outermost shell is higher than the crystal magnetic anisotropy inside the ferromagnetic particle. The permanent magnet as described.
磁気異方性が発現する強磁性粒子と、粒界相と、を含
み、 前記強磁性粒子の最外殻に位置する希土類元素イオンに
隣接する前記粒界相において、前記希土類元素イオンの
4f電子雲が伸びている方向に陽イオンが位置することを
特徴とする永久磁石。8. A ferromagnetic particle mainly exhibiting magnetocrystalline anisotropy due to a crystal field of a rare earth element, and a grain boundary phase, adjacent to a rare earth element ion located at the outermost shell of the ferromagnetic particle. In the grain boundary phase, the rare earth element ion
A permanent magnet characterized in that cations are located in the direction in which the 4f electron cloud extends.
a、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Sr、
Zr、Nb、Mo、Cd、In、Sn、Ba、Hf、Ta、Ir、Pbの一種以
上であることを特徴とする請求項8記載の永久磁石。9. The cation source is Be, Mg, Al, Si, P, C
a, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr,
9. The permanent magnet according to claim 8, wherein the permanent magnet is at least one of Zr, Nb, Mo, Cd, In, Sn, Ba, Hf, Ta, Ir, and Pb.
晶磁気異方性が発現する強磁性粒子に陽イオン源を添加
し、 少なくとも前記強磁性粒子に隣接する粒界相部分に前記
陽イオン源を含む結晶を析出し、該強磁性粒子に隣接す
る粒界相の結晶構造において、該強磁性粒子の最外殻に
位置する希土類元素イオンの4f電子雲が伸びている方
向に陽イオンを位置させることを特徴とする永久磁石の
製造方法。10. A cation source is added to ferromagnetic particles in which crystal magnetic anisotropy mainly develops due to a crystal field of a rare earth element, and the cation source is included in at least a grain boundary phase portion adjacent to the ferromagnetic particles. Depositing crystals, and positioning cations in the crystal structure of the grain boundary phase adjacent to the ferromagnetic particles in the direction in which the 4f electron cloud of the rare earth element ion located at the outermost shell of the ferromagnetic particles extends. A method for producing a permanent magnet, comprising:
磁性相の結晶構造に応じて、該粒界相の組成、両相が共
存した状態における結晶型、及び面指数及び方位指数を
設定することを特徴とする永久磁石の設計方法。11. The composition of the grain boundary phase, the crystal type in a state where both phases coexist, and the plane index and orientation according to the crystal structure of the ferromagnetic phase so that the ferromagnetic phase and the grain boundary phase match. A method for designing a permanent magnet, comprising setting an index.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09547598A JP3701117B2 (en) | 1998-03-23 | 1998-03-23 | Permanent magnet and method for manufacturing the same |
US09/265,669 US6511552B1 (en) | 1998-03-23 | 1999-03-10 | Permanent magnets and R-TM-B based permanent magnets |
EP06006902A EP1737001A3 (en) | 1998-03-23 | 1999-03-23 | Permanent magnets and methods for their production |
CNB031016642A CN1242424C (en) | 1998-03-23 | 1999-03-23 | Permanent magnet and R-TM-B series permanent magnet |
EP99105857A EP0945878A1 (en) | 1998-03-23 | 1999-03-23 | Permanent magnets and methods for their production |
CNB991073118A CN1242426C (en) | 1998-03-23 | 1999-03-23 | Permanent magnet and R-TM-B series permanent magnet |
KR1019990009794A KR100606156B1 (en) | 1998-03-23 | 1999-03-23 | Permanent magnets and R-TM-B based permanent magnet |
US10/256,166 US7025837B2 (en) | 1998-03-23 | 2002-09-27 | Permanent magnets and R-TM-B based permanent magnets |
US10/256,193 US6821357B2 (en) | 1998-03-23 | 2002-09-27 | Permanent magnets and R-TM-B based permanent magnets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09547598A JP3701117B2 (en) | 1998-03-23 | 1998-03-23 | Permanent magnet and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11273918A true JPH11273918A (en) | 1999-10-08 |
JP3701117B2 JP3701117B2 (en) | 2005-09-28 |
Family
ID=14138664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09547598A Expired - Lifetime JP3701117B2 (en) | 1998-03-23 | 1998-03-23 | Permanent magnet and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3701117B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270414A (en) * | 2001-03-09 | 2002-09-20 | Nichia Chem Ind Ltd | SmFeN MAGNET POWDER AND BONDED MAGNET USING THE SAME |
JP2020120112A (en) * | 2019-01-28 | 2020-08-06 | 包頭天和磁気材料科技股▲ふん▼有限公司 | Samarium cobalt magnet and method for manufacturing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219056A (en) * | 1990-01-22 | 1991-09-26 | Seiko Instr Inc | Rare earth magnetic alloy excellent in corrosion resistance |
JPH04152504A (en) * | 1990-10-16 | 1992-05-26 | Fuji Elelctrochem Co Ltd | Manufacture of rare earth permanent magnet |
JPH05247600A (en) * | 1992-03-05 | 1993-09-24 | Kanegafuchi Chem Ind Co Ltd | Magnet material and its production |
JPH05326229A (en) * | 1992-05-15 | 1993-12-10 | Nichia Chem Ind Ltd | Permanent magnet powder and production thereof |
JPH09186010A (en) * | 1995-08-23 | 1997-07-15 | Hitachi Metals Ltd | Large electric resistance rare earth magnet and its manufacture |
JPH1041116A (en) * | 1996-07-22 | 1998-02-13 | Sumitomo Special Metals Co Ltd | R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet |
-
1998
- 1998-03-23 JP JP09547598A patent/JP3701117B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03219056A (en) * | 1990-01-22 | 1991-09-26 | Seiko Instr Inc | Rare earth magnetic alloy excellent in corrosion resistance |
JPH04152504A (en) * | 1990-10-16 | 1992-05-26 | Fuji Elelctrochem Co Ltd | Manufacture of rare earth permanent magnet |
JPH05247600A (en) * | 1992-03-05 | 1993-09-24 | Kanegafuchi Chem Ind Co Ltd | Magnet material and its production |
JPH05326229A (en) * | 1992-05-15 | 1993-12-10 | Nichia Chem Ind Ltd | Permanent magnet powder and production thereof |
JPH09186010A (en) * | 1995-08-23 | 1997-07-15 | Hitachi Metals Ltd | Large electric resistance rare earth magnet and its manufacture |
JPH1041116A (en) * | 1996-07-22 | 1998-02-13 | Sumitomo Special Metals Co Ltd | R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270414A (en) * | 2001-03-09 | 2002-09-20 | Nichia Chem Ind Ltd | SmFeN MAGNET POWDER AND BONDED MAGNET USING THE SAME |
JP2020120112A (en) * | 2019-01-28 | 2020-08-06 | 包頭天和磁気材料科技股▲ふん▼有限公司 | Samarium cobalt magnet and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3701117B2 (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7025837B2 (en) | Permanent magnets and R-TM-B based permanent magnets | |
Cui et al. | Current progress and future challenges in rare-earth-free permanent magnets | |
CN104078176B (en) | Rare earth magnet | |
Hadjipanayis | Nanophase hard magnets | |
US8821649B2 (en) | Magnetic material and motor using the same | |
US20060005898A1 (en) | Anisotropic nanocomposite rare earth permanent magnets and method of making | |
Gorbachev et al. | Design of modern magnetic materials with giant coercivity | |
JPH01103805A (en) | Permanent magnet | |
HU227736B1 (en) | Iron-based rare earth alloy nanocomposite magnet and method for producing the same | |
Neznakhin et al. | Structure and magnetic properties of (Sm0. 9Zr0. 1) Fe11Ti alloys with ThMn12-type structure | |
CN111952030A (en) | Rare earth cobalt permanent magnet, preparation method and device thereof | |
JPH1053844A (en) | (rare earth)-iron-boron magnetic alloy and its production and bond magnet using the (rare earth)-iron-boron magnetic alloy | |
JP5732877B2 (en) | Magnetic material and method for producing the same | |
Sellmyer et al. | Advances in rare-earth-free permanent magnets | |
US20140010955A1 (en) | Method of producing alpha-fe/r2tm14b-type nanocomposite magnet | |
US9082537B2 (en) | R-T-B based permanent magnet | |
JP3701117B2 (en) | Permanent magnet and method for manufacturing the same | |
JP3695964B2 (en) | Rare earth magnetic powder for bonded magnet and method for producing the same | |
US6034450A (en) | Stepping motor and method of manufacturing hard magnetic alloy therefor | |
US4715890A (en) | Method of preparing a magnetic material | |
JP4320701B2 (en) | Permanent magnet alloy and bonded magnet | |
Zijlstra | Trends in permanent magnet material development | |
JPH0325922B2 (en) | ||
JPH11214219A (en) | Thin film magnet and its manufacture | |
JPH11273920A (en) | R-tm-b permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080722 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |