JPH11273900A - Radiation light generation device - Google Patents

Radiation light generation device

Info

Publication number
JPH11273900A
JPH11273900A JP7876298A JP7876298A JPH11273900A JP H11273900 A JPH11273900 A JP H11273900A JP 7876298 A JP7876298 A JP 7876298A JP 7876298 A JP7876298 A JP 7876298A JP H11273900 A JPH11273900 A JP H11273900A
Authority
JP
Japan
Prior art keywords
light
electron beam
vacuum
thin film
synchrotron radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7876298A
Other languages
Japanese (ja)
Other versions
JP3263656B2 (en
Inventor
Takashi Yano
隆 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP07876298A priority Critical patent/JP3263656B2/en
Publication of JPH11273900A publication Critical patent/JPH11273900A/en
Application granted granted Critical
Publication of JP3263656B2 publication Critical patent/JP3263656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the restriction of the wavelength region and the degradation of the intensity of radiation and maintain a high vacuum state by installing hollow beam dumps, with which at least their radiant light passing surfaces are formed from a thin film and each of their inside is evacuated separately from a vacuum container at a part, excluding a radiant light extracting part located on the side wall of a vacuum container that generates radiant light by the movement of charged particles along a curved track in the inside. SOLUTION: Small box-like hollow beam dumps 50 of which passing surfaces for synchrotron radiation (SR light) 12 from an accumulated electron beam 10 that advances into an arc-like form in an electron beam deflection part are thin film windows 52 made of Be or the like and which are cooled are installed at parts, excluding an SR light extracting port 24P of a sidewall 24S of an evacuating part 24. The SR light 12 from the SR light extracting port 24P is extracted without changes, and a gas generated by photoelectrons emitted by other SR light passing through the thin film windows 52 and striking against the side wall 24S in the beam dump 50 is evacuated by means of an auxiliary vacuum pump or the like separately from an evacuating part 24. A gas generated in the continuous space between the electron beam deflection part can be significantly reduced, with a simple structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空容器内で荷電
粒子を曲線軌道に沿って運動させることにより放射光を
発生する放射光発生装置に係り、特に、シンクロトロン
放射光(SR光と称する)の発生に用いるのに好適な、
真空容器内で放射光の照射により発生するガスを低減す
ることが可能な放射光発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchrotron radiation device which generates radiation by moving charged particles along a curved orbit in a vacuum vessel, and more particularly to a synchrotron radiation (referred to as SR light). ) Suitable for use in generating
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation light generator capable of reducing gas generated by irradiation of radiation light in a vacuum vessel.

【0002】[0002]

【従来の技術】電子や陽電子等の荷電粒子を曲線軌道に
沿って運動させることにより、SR光を発生するシンク
ロトロン放射光発生装置が知られている。
2. Description of the Related Art A synchrotron radiation light generator that generates SR light by moving charged particles such as electrons and positrons along a curved orbit is known.

【0003】このシンクロトロン放射光発生装置は、例
えば図5(偏向部の平面図)及び図6(図5のVI−VI線
に沿う横断面図)に示す如く、蓄積電子ビーム10が円
弧状に進行する電子ビーム偏向部22、前記蓄積電子ビ
ーム10から放射されたSR光12を外部に取り出すた
めのSR光取出ポート24Pが側壁に形成された真空排
気部24、及び、該真空排気部24と前記電子ビーム偏
向部22を連結する連結部26からなる真空容器20を
備えている。ここで、電子ビーム蓄積部は、SR光を発
生する前記偏向部22と、SR光を発生しない直進部と
から構成される。
As shown in FIG. 5 (a plan view of a deflecting unit) and FIG. 6 (a cross-sectional view taken along the line VI-VI in FIG. 5), the synchrotron radiation light generating apparatus has a structure in which the accumulated electron beam 10 is formed in an arc shape. An electron beam deflecting unit 22, a vacuum exhaust unit 24 having an SR light extraction port 24P formed on a side wall for extracting the SR light 12 emitted from the accumulated electron beam 10 to the outside, and the vacuum exhaust unit 24 And a connecting portion 26 connecting the electron beam deflecting portion 22 and the electron beam deflecting portion 22. Here, the electron beam accumulating unit includes the deflecting unit 22 that generates SR light, and a straight traveling unit that does not generate SR light.

【0004】前記蓄積電子ビーム10は、偏向される箇
所で、その接線方向に連続的にSR光12を発生する
が、取出ポート24Pを通過する部分以外は、真空容器
(具体的には真空排気部)の側壁24Sに遮られ、大量
の放出ガス発生の原因となる。
The accumulated electron beam 10 continuously generates SR light 12 in a tangential direction at a point where the electron beam is deflected, but except for a portion passing through an extraction port 24P, a vacuum vessel (specifically, evacuation). Part), which is blocked by the side wall 24S, and causes a large amount of outgassing.

【0005】この放出ガス発生は、金属表層への高エネ
ルギフォトン照射に光電子放出の部分と入熱による吸着
分子の放出の部分があり、後者は極く初期に低下する
が、前者は大量であると共に、低下に時間を要する。
又、前者は、部材の加熱焼出し(いわゆるベイキング)
では、低減できない。
[0005] In the emission gas generation, a high-energy photon irradiation to the metal surface layer includes a part of photoelectron emission and a part of emission of adsorbed molecules due to heat input, and the latter is reduced at an initial stage, whereas the former is large. At the same time, it takes time to decrease.
In the former, heating and baking of members (so-called baking)
Then, it cannot be reduced.

【0006】このようなシンクロトロン放射光発生装置
において、問題となるのは、真空容器20の内壁にSR
光12が照射されることにより、真空容器表面から発生
する大量の放出ガスを、電子ビーム偏向部22に伝播す
ることなく排気し、電子ビーム蓄積部を超高真空に保つ
ことである。
[0006] In such a synchrotron radiation light generating apparatus, the problem is that the SR
By irradiating the light 12, a large amount of gas emitted from the surface of the vacuum vessel is exhausted without propagating to the electron beam deflecting unit 22, and the electron beam accumulating unit is maintained in an ultra-high vacuum.

【0007】そのため、SR光12が照射される部分
に、ビームダンプ30又はクロッチと呼ばれる放出ガス
の小さい部材(例えば真空中で溶解された純銅)を設
け、水等で冷却して、ガス発生の軽減を図っている。そ
して、発生したガスの電子ビーム偏向部22への伝播を
抑制するために、該電子ビーム偏向部22と前記真空排
気部24の間に、コンダクタンスの小さな連結部26を
設けている。
For this reason, a member called a beam dump 30 or a crotch (for example, pure copper dissolved in vacuum) called a beam dump 30 or a crotch is provided in a portion irradiated with the SR light 12, and cooled by water or the like to generate gas. We are trying to reduce it. In order to suppress the propagation of the generated gas to the electron beam deflecting unit 22, a connecting portion 26 having a small conductance is provided between the electron beam deflecting unit 22 and the vacuum exhaust unit 24.

【0008】更に、前記真空排気部24には、例えばク
ライオパネル等の内蔵型真空ポンプ32が設けられ、前
記真空排気部24の側壁24Sで発生し、連結部26で
塞き止められた放出ガスを排気して、真空容器20内を
超高真空に保っている。
Further, the vacuum exhaust unit 24 is provided with a built-in vacuum pump 32 such as a cryopanel, etc., and a discharge gas generated at the side wall 24S of the vacuum exhaust unit 24 and blocked by the connection unit 26. Is exhausted, and the inside of the vacuum vessel 20 is kept at an ultra-high vacuum.

【0009】図において、34は補助真空ポンプであ
る。
In FIG. 1, reference numeral 34 denotes an auxiliary vacuum pump.

【0010】このようなシンクロトロン放射光発生装置
の基本的な性能の1つに、蓄積電流の周回寿命がある
が、これは、最適に運転調整された状態では、装置の電
子ビーム蓄積部の真空度により決定される。しかしなが
ら、運転初期においては、ベースの真空を如何に低い真
空に排気しようとも、電子ビームが蓄積されSR光が真
空容器に照射されることにより大量のガスが発生し、電
子の周回軌道上を超高真空に保つのが困難となる。
[0010] One of the basic performances of such a synchrotron radiation light generating device is a circulating life of a stored current. This is because, in an optimally adjusted operation state, an electron beam storing portion of the device is required. It is determined by the degree of vacuum. However, in the initial stage of operation, no matter how low the vacuum of the base is evacuated, a large amount of gas is generated by the accumulation of the electron beam and the irradiation of the SR container with the SR light, and the electron beam travels over the electron orbit. It is difficult to maintain a high vacuum.

【0011】通常は、この問題を低減するために、大き
な排気能力を有する真空ポンプを備え、SR光が照射さ
れる部材に、より放出ガスの少ない材料を選択/使用
し、十分冷却可能な構造とすることがなされているが、
ビームダンプ30(又はクロッチ)の放出ガス低減も連
結部26のコンダクタンス低減も原理的な限界があり、
十分な効果を得られていない。結局、装置の運転(即
ち、ビームダンプ30へのSR光12の照射)を重ねて
放出ガスが低下する(枯れると称する)のを待たざるを
得ない。この間、蓄積電子ビーム10の周回寿命は、極
く短い状態から要求/設計された状態へとゆっくり伸び
ていくので、放出ガスが十分に減少して、蓄積電流の周
回寿命が予定(設計)された長さになるまで、数年を要
している。
Usually, in order to reduce this problem, a vacuum pump having a large pumping capacity is provided, and a material to be irradiated with SR light is selected / used with a material which emits less gas, and can be sufficiently cooled. Is being done,
There are fundamental limits to the reduction of the emitted gas of the beam dump 30 (or crotch) and the reduction of the conductance of the connecting portion 26,
Not enough effect. Eventually, the operation of the apparatus (that is, the irradiation of the SR light 12 to the beam dump 30) is repeated, and it is necessary to wait for the emission gas to decrease (called as withering). During this time, the circulating life of the stored electron beam 10 gradually increases from an extremely short state to a required / designed state, so that the amount of released gas is sufficiently reduced and the circulating life of the stored current is planned (designed). It takes several years to reach the desired length.

【0012】このような問題点を解決するべく、真空容
器内壁で放出されたガスが電子の蓄積軌道に到達し難い
ように邪魔板を設け、その途中の内蔵ポンプにより差動
排気することが行われている。
In order to solve such a problem, a baffle plate is provided so that the gas discharged from the inner wall of the vacuum vessel does not easily reach the electron accumulation trajectory, and differential exhaust is performed by a built-in pump in the middle. Have been done.

【0013】又、出願人は、特公平7−75200で、
図5及び図6に一点鎖線で示す如く、真空容器20内
を、真空排気部24の外壁に沿って同心円上に設けた、
例えばベリリウム薄膜からなる隔壁40で仕切り、SR
光12による放出ガスが発生する外側を、例えば真空ポ
ンプ42で別途真空排気することを提案している。
Further, the applicant filed Japanese Patent Publication No. 7-75200,
As shown by a dashed line in FIGS. 5 and 6, the inside of the vacuum vessel 20 is provided concentrically along the outer wall of the vacuum exhaust unit 24.
For example, partition by a partition wall 40 made of a beryllium thin film, SR
It has been proposed to separately evacuate the outside where the gas emitted by the light 12 is generated, for example, by a vacuum pump 42.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、発生し
た放出ガスが蓄積電子ビームの軌道上に到達し難いよう
な真空容器の形状としつつ、大排気量の真空ポンプで排
気する従来技術では、発生する放出ガス自体を大幅に低
減することはできず、蓄積電子ビーム10の軌道を高真
空に保つことが困難であった。
However, in the prior art in which the generated exhaust gas is evacuated by a large-displacement vacuum pump while having a shape of a vacuum vessel in which the generated gas is difficult to reach the trajectory of the accumulated electron beam, the generated gas is generated. The released gas itself could not be significantly reduced, and it was difficult to keep the trajectory of the stored electron beam 10 at a high vacuum.

【0015】又、特公平7−75200で提案した方法
では、隔壁40に適した材料(例えば厚さ10μm程度
のベリリウム膜で大面積のもの)の製作や施工が困難で
あり、実現されていない。又、この方法では、シンクロ
トロン放射光発生装置から外部に取り出されて利用され
るSR光が、全て隔壁40を通過することになるため、
白色であるSR光スペクトルのうちの限られた波長域の
みしか外部に取り出せなくなり、強度も低下するという
問題点を有していた。
In the method proposed in Japanese Patent Publication No. 7-75200, it is difficult to manufacture and construct a material (for example, a beryllium film having a thickness of about 10 μm and having a large area) suitable for the partition wall 40, which has not been realized. . Further, in this method, all the SR light extracted and used from the synchrotron radiation light generator to the outside passes through the partition wall 40.
There has been a problem that only a limited wavelength region of the white SR light spectrum can be extracted to the outside, and the intensity also decreases.

【0016】本発明は、前記従来の問題点を解決するべ
くなされたもので、放射光の波長域を制限したり、強度
を低下させることなく、真空容器内の真空度を高真空に
維持することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and maintains the degree of vacuum in a vacuum vessel at a high vacuum without limiting the wavelength range of emitted light or reducing the intensity. That is the task.

【0017】[0017]

【課題を解決するための手段】本発明は、真空容器内で
荷電粒子を曲線軌道に沿って運動させることにより放射
光を発生する放射光発生装置において、前記真空容器側
壁の放射光取出部を除く部分に、少なくとも放射光が通
過する面が薄膜とされた中空ビームダンプを配設し、該
中空ビームダンプの内部を、前記真空容器内部とは別個
に、真空に排気するようにして、前記課題を解決したも
のである。
According to the present invention, there is provided a synchrotron radiation generating apparatus for generating synchrotron radiation by moving charged particles along a curved orbit in a vacuum vessel. A hollow beam dump having at least a surface through which the radiated light passes is provided in a thin portion, and the inside of the hollow beam dump is separately evacuated to a vacuum separately from the inside of the vacuum vessel. It is a solution to the problem.

【0018】本発明では、発生するSR光の内、真空容
器内壁に照射され、外部に取出し利用されない部分、換
言すれば真空容器内でガス放出の原因となる部分のみ、
中空ビームダンプに導入し、SR光によるガス放出の大
部分を中空ビームダンプ内としたので、電子ビームの蓄
積軌道上を超高真空に保持することができる。又、装置
外に取出し利用するSR光の品質は、複数ある中空ビー
ムダンプの間の何もない部分を通過するので、何ら変化
せず、取出すことができる。
According to the present invention, of the generated SR light, the portion which is irradiated to the inner wall of the vacuum vessel and is not taken out and used outside, in other words, only the portion which causes gas release in the vacuum vessel,
Since the gas is introduced into the hollow beam dump and most of the gas emission due to the SR light is in the hollow beam dump, the electron beam can be maintained in an ultra-high vacuum on the storage trajectory. Further, since the quality of the SR light extracted and used outside the apparatus passes through an empty portion between the plurality of hollow beam dumps, the SR light can be extracted without any change.

【0019】[0019]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】本実施形態は、図1(要部を示す斜視
図)、図2(偏向部の平面図)及び図3(図2のIII −
III 線に沿う横断面図)に示す如く、図5及び図6に示
した従来例と同様のシンクロトロン放射光発生装置にお
いて、従来のビームダンプ30の代わりに、真空排気部
24の側壁24PのSR光取出ポート24Pを除く部分
に、放射光が通過する面が、例えばベリリウム製の薄膜
窓52とされた、小さな箱状の中空ビームダンプ50を
配設し、該中空ビームダンプ50を、間接あるいは直接
冷却すると共に、該中空ビームダンプ50の内部を、例
えば補助真空ポンプ34に接続して、真空排気部24の
内部とは別個に、中〜高真空に排気するようにしたもの
である。
In this embodiment, FIG. 1 (a perspective view showing a main part), FIG. 2 (a plan view of a deflecting unit), and FIG.
As shown in FIG. 5 and FIG. 6, in the synchrotron radiation light generator similar to the conventional example shown in FIG. 5 and FIG. A small box-shaped hollow beam dump 50 having a thin film window 52 made of, for example, beryllium is provided on a portion excluding the SR light extraction port 24P, and the surface through which the radiated light passes is provided. Alternatively, the inside of the hollow beam dump 50 is connected to, for example, an auxiliary vacuum pump 34 and evacuated to a medium to high vacuum separately from the inside of the evacuation unit 24 while cooling directly.

【0021】他の点に関しては、前記従来例と同様であ
るので、説明は省略する。
The other points are the same as those of the above-mentioned conventional example, and the description is omitted.

【0022】本実施形態において、SR光取出ポート2
4P以外に進むSR光12は、薄膜窓52を通して中空
ビームダンプ50内に導かれ、該中空ビームダンプ50
の側壁に衝突して、光電子を放出する。
In this embodiment, the SR light extraction port 2
The SR light 12 traveling to other than 4P is guided into the hollow beam dump 50 through the thin film window 52,
Collides with the side wall of the substrate and emits photoelectrons.

【0023】図4の実線Sは、シンクロトロン放射光発
生装置から発生するSR光のスペクトルの例であるが、
例えば厚さ10μmのベリリウム膜を通過した後のスペ
クトルは破線S′となり、光電子発生の原因となる高エ
ネルギのスペクトルのほとんどは、薄膜窓52表面で光
電子を発生することなく通過して、中空ビームダンプ5
0内に入る。薄膜窓52を通過したスペクトルは、中空
ビームダンプ50の内部に照射され、光電子を発生する
が、中空ビームダンプ50内部は電子ビーム偏向部22
とは別空間であるため、放出ガスは、蓄積電子に何等影
響を与えることなく、補助真空ポンプ34により排気さ
れる。
The solid line S in FIG. 4 is an example of the spectrum of the SR light generated from the synchrotron radiation light generator.
For example, the spectrum after passing through a beryllium film having a thickness of 10 μm is indicated by a broken line S ′, and most of the high-energy spectra that cause photoelectron generation pass without generating photoelectrons on the surface of the thin film window 52 and have a hollow beam. Dump 5
Enter within 0. The spectrum that has passed through the thin-film window 52 is applied to the inside of the hollow beam dump 50 to generate photoelectrons.
Since the space is different from the above, the released gas is exhausted by the auxiliary vacuum pump 34 without affecting the stored electrons at all.

【0024】一方、薄膜窓52を通過しないスペクトル
はエネルギが低いので、光電子を発生せず、熱として寄
与するだけであるため、その影響は短時間で低下する。
On the other hand, the spectrum that does not pass through the thin-film window 52 has low energy, does not generate photoelectrons, and only contributes as heat, so that the effect is reduced in a short time.

【0025】従って、電子ビーム偏向部22と連続した
空間で発生するガスは、この構造により大幅に低減さ
れ、10μmのベリリウム膜を通過した場合、1/10
程度と見積もられる。
Therefore, the gas generated in the space continuous with the electron beam deflecting section 22 is greatly reduced by this structure, and when passing through a 10 μm beryllium film, 1/10
Estimated degree.

【0026】この原理は、特公平7−75200にも示
されているが、特公平7−75200では、取り出して
利用するSR光も含む全てのSR光が隔壁40を通過し
てスペクトルが変化してしまうこと、又、大面積の薄膜
が必要であり、該大面積の薄膜で真空気密な空間を形成
する必要がある点で、実現が極めて困難であった。
Although this principle is also shown in Japanese Patent Publication No. 7-75200, in Japanese Patent Publication No. 7-75200, all the SR light including the SR light to be extracted and used passes through the partition wall 40 and the spectrum changes. This is extremely difficult to realize because a large-area thin film is required, and a vacuum-tight space must be formed with the large-area thin film.

【0027】これに対して本発明では、真空容器側壁の
SR光の取出部を除く部分に独立した小さな箱形の中空
ビームダンプを配することで、このような問題点を解消
している。
On the other hand, in the present invention, such a problem is solved by disposing an independent small box-shaped hollow beam dump in a portion of the side wall of the vacuum vessel other than the portion for extracting the SR light.

【0028】本実施形態においては、中空ビームダンプ
50の内側を補助真空ポンプ34で排気するようにして
いるので、別体の真空ポンプが不要であり、構成が簡略
である。なお、真空排気部24を排気するための補助真
空ポンプ34とは独立した真空ポンプを設けることも可
能である。
In the present embodiment, since the inside of the hollow beam dump 50 is evacuated by the auxiliary vacuum pump 34, a separate vacuum pump is not required and the configuration is simple. Note that a vacuum pump independent of the auxiliary vacuum pump 34 for evacuating the vacuum evacuation unit 24 can be provided.

【0029】又、前記実施形態においては、本発明が、
シンクロトロン放射光発生装置に適用されていたが、本
発明の適用対象はこれに限定されない。
Further, in the above embodiment, the present invention
Although the present invention has been applied to the synchrotron radiation light generator, the application target of the present invention is not limited to this.

【0030】[0030]

【発明の効果】本発明によれば、真空容器側壁の放射光
取出部には隔壁が設けられていないので、装置外に取り
出して使用するSR光のスペクトルを損なうことがな
い。又、大面積の薄膜が不要であり、容易に実現可能で
ある。
According to the present invention, since no partition is provided at the radiation light extraction portion on the side wall of the vacuum vessel, the spectrum of SR light extracted and used outside the apparatus is not impaired. Further, a large-area thin film is not required and can be easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の要部構成を示す斜視図FIG. 1 is a perspective view showing a main part configuration of an embodiment of the present invention.

【図2】同じく偏向部を示す平面図FIG. 2 is a plan view showing a deflection unit.

【図3】図2のIII −III 線に沿う横断面図FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2;

【図4】ベリリウム膜通過前後のシンクロトロン放射光
のスペクトルを比較して示す線図
FIG. 4 is a diagram showing a comparison of spectra of synchrotron radiation before and after passing through a beryllium film.

【図5】従来のシンクロトロン放射光発生装置の偏向部
を示す平面図
FIG. 5 is a plan view showing a deflection unit of a conventional synchrotron radiation light generating apparatus.

【図6】図5のVI−VI線に沿う横断面図FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG.

【符号の説明】[Explanation of symbols]

10…蓄積電子ビーム 12…シンクロトロン放射光(SR光) 20…真空容器 22…電子ビーム偏向部 24…真空排気部 24P…放射光取出ポート 24S…側壁 26…連結部 32…内蔵型真空ポンプ 34…補助真空ポンプ 50…中空ビームダンプ 52…薄膜窓 DESCRIPTION OF SYMBOLS 10 ... Accumulated electron beam 12 ... Synchrotron radiation light (SR light) 20 ... Vacuum container 22 ... Electron beam deflection part 24 ... Vacuum exhaust part 24P ... Radiation light extraction port 24S ... Side wall 26 ... Connection part 32 ... Built-in vacuum pump 34 ... Auxiliary vacuum pump 50 ... Hollow beam dump 52 ... Thin film window

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空容器内で荷電粒子を曲線軌道に沿って
運動させることにより放射光を発生する放射光発生装置
において、 前記真空容器側壁の放射光取出部を除く部分に、少なく
とも放射光が通過する面が薄膜とされた中空ビームダン
プが配設され、 該中空ビームダンプの内部が、前記真空容器内部とは別
個に、真空に排気されていることを特徴とする放射光発
生装置。
1. A synchrotron radiation generating apparatus for generating synchrotron radiation by moving charged particles along a curved orbit in a vacuum vessel, wherein at least a synchrotron radiation is provided at a portion of the vacuum vessel side wall other than a synchrotron radiation extraction section. A radiation beam generating apparatus, comprising: a hollow beam dump having a thin film passing therethrough, wherein the inside of the hollow beam dump is evacuated to a vacuum separately from the inside of the vacuum vessel.
JP07876298A 1998-03-26 1998-03-26 Synchrotron radiation generator Expired - Fee Related JP3263656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07876298A JP3263656B2 (en) 1998-03-26 1998-03-26 Synchrotron radiation generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07876298A JP3263656B2 (en) 1998-03-26 1998-03-26 Synchrotron radiation generator

Publications (2)

Publication Number Publication Date
JPH11273900A true JPH11273900A (en) 1999-10-08
JP3263656B2 JP3263656B2 (en) 2002-03-04

Family

ID=13670924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07876298A Expired - Fee Related JP3263656B2 (en) 1998-03-26 1998-03-26 Synchrotron radiation generator

Country Status (1)

Country Link
JP (1) JP3263656B2 (en)

Also Published As

Publication number Publication date
JP3263656B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US8212228B2 (en) Extreme ultra violet light source apparatus
JP4906176B2 (en) Ionization chamber with electron source
JP5448775B2 (en) Extreme ultraviolet light source device
US8710475B2 (en) Extreme ultraviolet light source device and method for generating extreme ultraviolet light
JP5586118B2 (en) Operation method of charged particle beam system
US6421421B1 (en) Extreme ultraviolet based on colliding neutral beams
JP2015532773A (en) Neutral beam injector based on negative ions
US4771447A (en) X-ray source
WO2002080254A1 (en) Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
US20060158126A1 (en) Plasma radiation source and device for creating a gas curtain for plasma radiation sources
US4641316A (en) D.C. electron beam method and apparatus for continuous laser excitation
JP3263656B2 (en) Synchrotron radiation generator
EP0105261B1 (en) Providing x-rays
JPH07258832A (en) Electron gun for vacuum deposition device and vacuum deposition device having the same
JPS6333261B2 (en)
JP4587766B2 (en) Cluster ion beam equipment
JP2004214480A (en) Aligner
WO2023188484A1 (en) Light source device
JP3100006B2 (en) Synchrotron radiation generator
JPH0676782A (en) Ion beam processing device
JP2511991B2 (en) Synchrotron radiation generator
JP5379591B2 (en) Electron beam irradiation device
JP2000285838A (en) Gas ionizing device
JP2001099999A (en) Electron beam radiator
CN114284124A (en) Electron beam irradiation enhancing device and using method thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081221

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101221

LAPS Cancellation because of no payment of annual fees