JPH11272723A - Device for calculating modulus of elasticity and storage medium - Google Patents

Device for calculating modulus of elasticity and storage medium

Info

Publication number
JPH11272723A
JPH11272723A JP10071559A JP7155998A JPH11272723A JP H11272723 A JPH11272723 A JP H11272723A JP 10071559 A JP10071559 A JP 10071559A JP 7155998 A JP7155998 A JP 7155998A JP H11272723 A JPH11272723 A JP H11272723A
Authority
JP
Japan
Prior art keywords
processing means
fluctuation
elasticity
strain
elastic constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10071559A
Other languages
Japanese (ja)
Inventor
Hirohisa Masuda
裕寿 増田
Harunobu Isato
治展 伊里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10071559A priority Critical patent/JPH11272723A/en
Publication of JPH11272723A publication Critical patent/JPH11272723A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To very easily and quickly obtain the modulus of elasticity of not only a material consisting of a single kind of atoms but also a material consisting of plural kinds of atoms by taking out distortion states of molecules at three or more points of time to obtain the fluctuation of the temporal average of distortion and calculating the modulus of elasticity based on this fluctuation with respect to a elasticity modulus calculation device, which obtains the modu lus of elasticity, and a recording medium. SOLUTION: A first processing means 3 which takes out distortion states of molecules at three or more points of time from a series of simulation processings based on molecular kinetics, a second processing means 4 which obtains the fluctuation from the temporal average of distortion from the result taken out by the first processing means 3, and a third processing means 5 which obtains the modulus of elasticity from the result obtained by the second processing means 4 are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、弾性定数を求める
弾性定数計算装置および記録媒体に関するものである。
新素材開発において、実験的手段の併用手段として、分
子動力学法を用いたシミュレーションが用いられてい
る。材料の特性を示す物理量の1つである弾性定数につ
いても、分子動力学法によるシミュレーションを用いる
ことで求めることが望まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elastic constant calculating apparatus for determining an elastic constant and a recording medium.
In the development of new materials, simulation using molecular dynamics has been used as a combined means of experimental means. It is desired that the elastic constant, which is one of the physical quantities indicating the properties of the material, be obtained by using a simulation based on the molecular dynamics method.

【0002】[0002]

【従来の技術】従来の分子動力学のシミュレーションを
用いて、弾性定数を求めることは、第1に、シミュレー
ションの対象の分子に対して、ある応力を加えて、応力
を加える前の状態を示すH−Matrix(h0)と、
応力を加えた後の状態を示すH−Matrix(h)を
求め、その2つの状態(h0、h)より歪みを求める。
このとき、hの転置行列h~とhの関係は、 G=h~ *h G0 =h0~*h0 という関係があり、歪εは以下の式で求められる。
2. Description of the Related Art Conventionally, to obtain an elastic constant by using a simulation of molecular dynamics, first, a certain stress is applied to a molecule to be simulated, and a state before the stress is applied is shown. H-Matrix (h 0 );
State seeking H-Matrix (h) showing the after stress added to obtain the strain from the two states (h 0, h).
At this time, the relationship between the transposed matrix hh and h has the following relationship: G = h ~ * h G 0 = h 0 to * h 0 , and the strain ε is obtained by the following equation.

【0003】 ε=1/2{h0~-1*Gh0 -1−1} (11) そして、第2に、上記の歪みεを求めえるためのシミュ
レーションを十数種類の応力について行う。そして、第
3に、十数個の応力と、歪みとの関係より弾性定数を求
めていた。
Ε = 1 / {h 0 −1 −1 * Gh 0 −1 −1} (11) Secondly, a simulation for obtaining the above-mentioned strain ε is performed for more than ten kinds of stresses. Third, the elastic constant is determined from the relationship between the stress and the strain of more than ten pieces.

【0004】[0004]

【発明が解決しようとする課題】従来の上述した手法で
は、弾性定数を求めるのに、多くの処理時間を要してし
まうという問題があった。
However, the above-mentioned conventional technique has a problem that it takes a lot of processing time to obtain the elastic constant.

【0005】ここで、従来、初期状態のH−Matri
x(h0)と最終状態のH−Matrix(he)を求
めていたのに対し、初期状態から最終状態までの間に複
数個の状態毎のH−Matrix(hi)を求め、歪の
ゆらぎ(εij、εkn)を求める。そして、公知の歪みの
ゆらぎと弾性定数(CS)との下記(12)の関係より
弾性定数CSを求めることが望まれている。
Here, conventionally, the H-Matri in the initial state is used.
While had sought x (h0) and the final state H-Matrix (he), obtains the H-Matrix for each plurality of states (h i) between the initial state to the final state, distortion fluctuation of (Ε ij , ε kn ) is obtained. Then, it is desired to determine the elastic constant C S from the relationship of the following equation (12) between the well-known strain fluctuation and the elastic constant (C S ).

【0006】 δ(εijεkn)={kBT/V0}(CSij,kn -1 (12) 本発明は、これらの問題を解決するため、分子動力学法
を用いたシミュレーション処理から3つ以上の時点にお
ける分子の歪みの状態を取り出して歪みの時間平均のゆ
らぎを求めてこれより弾性定数を算出し、単一種類の原
子のみならず複数種類の原子からなる物質の弾性定数を
極めて容易かつ高速を求めることを目的としている。
Δ (ε ij ε kn ) = {k B T / V 0 } (C S ) ij, kn −1 (12) In order to solve these problems, the present invention uses a molecular dynamics method. The state of molecular strain at three or more time points is extracted from the simulation process, the time-average fluctuation of the strain is obtained, and the elastic constant is calculated from the fluctuation. The purpose is to determine the elastic constant very easily and at high speed.

【0007】[0007]

【課題を解決するための手段】図1を参照して課題を解
決するための手段を説明する。図1において、処理装置
1は、プログラムに従い各種処理を行うものであって、
ここでは、シミュレーション手段2、第1の処理手段
3、第2の処理手段4、および第3の処理手段5などか
ら構成されるものである。
Means for solving the problem will be described with reference to FIG. In FIG. 1, a processing device 1 performs various processes according to a program.
Here, it is configured by the simulation means 2, the first processing means 3, the second processing means 4, the third processing means 5, and the like.

【0008】表示装置6は、入力画面や出力画面などを
表示するものである。入力装置7は、解析条件などを入
力するものである。次に、動作を説明する。
The display device 6 displays an input screen, an output screen, and the like. The input device 7 is for inputting analysis conditions and the like. Next, the operation will be described.

【0009】シミュレーション手段2が指定されたセル
について指定された条件(原子数、エネルギー、体積、
圧力、エンタルピー、温度などのうちの指定された条
件)をもとに公知の分子動力学法をもとにここでは後述
する図3の歪み(H−matrix(h))を求め、第
1の処理手段3がシミュレーション手段2によって求め
られた結果から3つ以上の時点における分子の歪の状態
を取り出し、第2の処理手段4が第1の処理手段3で求
めた結果より歪の時間平均からのゆらぎを求め、第3の
処理手段5が第2の処理手段4で求めた結果より弾性定
数を求めるようにしている。
The simulation means 2 specifies conditions (number of atoms, energy, volume,
Based on a known molecular dynamics method based on a specified condition among pressure, enthalpy, temperature, etc., a strain (H-matrix (h)) of FIG. The processing means 3 extracts the state of the molecular strain at three or more time points from the result obtained by the simulation means 2, and the second processing means 4 obtains the state of the strain from the time average of the strain obtained from the result obtained by the first processing means 3. And the third processing means 5 obtains the elastic constant from the result obtained by the second processing means 4.

【0010】従って、分子動力学法を用いたシミュレー
ション処理から3つ以上の時点における分子の歪みの状
態を取り出して歪みの時間平均のゆらぎを求めてこれよ
り弾性定数を算出することにより、単一種類の原子のみ
ならず複数種類の原子からなる物質の弾性定数を極めて
容易かつ高速を求めることが可能となる。
Therefore, the state of the molecular strain at three or more time points is taken out from the simulation processing using the molecular dynamics method, the time average fluctuation of the strain is obtained, and the elastic constant is calculated from the fluctuation. It is possible to determine the elastic constant of a substance composed of a plurality of types of atoms as well as the types of atoms extremely easily and at high speed.

【0011】[0011]

【発明の実施の形態】次に、図2から図8を用いて図1
の構成の動作を詳細に説明する。ここで、記録媒体ある
いは外部記憶装置であるハードディスク装置から読み出
したプログラム、またはセンタの外部記憶装置から読み
出して回線を介して転送を受けたプログラムを主記憶に
ローディングして起動し、以下に説明する各種処理を行
うようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, referring to FIGS.
The operation of the configuration will be described in detail. Here, a program read from a recording medium or a hard disk device as an external storage device, or a program read from an external storage device of a center and transferred via a line is loaded into a main storage and activated, and will be described below. Various processes are performed.

【0012】図2は、本発明の動作説明フローチャート
を示す。図2において、S1は、解析条件の入力を行
う。これは、後述する図4の入力画面上から解析者が ・H−Matrix Reference Step:解析開始ステップ:R ・Start Step :解析開始ステップ:S ・End Step :解析終了ステップ:E を入力して指定する。
FIG. 2 is a flowchart illustrating the operation of the present invention. In FIG. 2, S1 inputs an analysis condition. This is specified by inputting an H-Matrix Reference Step: analysis start step: R, Start Step: analysis start step: S, End Step: analysis end step: E from an input screen shown in FIG. I do.

【0013】S2は、分子動力学計算シミュレーション
を行う。これは、後述する図3の(a)の状態で(b)
の状態に歪むときの公知の分子動力学計算のシミュレー
ション(指定されたセルについて指定された条件(原子
数、エネルギー、体積、圧力、エンタルピー、温度など
のうちの指定された条件)をもとに分子動力学法のシミ
ュレーション)を行い、ここでは、歪みを求める。
In step S2, a molecular dynamics simulation is performed. This corresponds to (b) in the state of (a) in FIG.
Simulation of known molecular dynamics calculation when distorting to the state of (based on specified conditions (specified number of atoms, energy, volume, pressure, enthalpy, temperature, etc.) for specified cell) In this case, the strain is determined.

【0014】S3は、S2の分子動力学結果の読込を行
う。これは、例えば図3の(c)の各ステップの温度
T、体積V、H−Matrixを読み込む。S4は、参
照用H−Matrix(h0)の逆行列h0 -1を計算す
る。これは、S1で入力されたステップRでのH−Ma
trixをh0とし、その逆行列h0 -1を計算する。
In step S3, the molecular dynamics result of step S2 is read. This reads, for example, the temperature T, volume V, and H-Matrix of each step in FIG. In step S4, the inverse matrix h 0 -1 of the reference H-Matrix (h 0 ) is calculated. This is because H-Ma in step R input in S1
Let trix be h 0, and calculate the inverse matrix h 0 -1 .

【0015】S5は、G0=h0~*h0の計算を行う。これ
は、h0の転置行列h0 ~を計算し、G 0=h0~*hの計算
を行うと共に、h(0)~の逆行列h(0)~-1の計算を行う。
S6は、各ステップのG=h~*hの計算を行う。これ
は、ステップtのH−Matrixをh(t)とし、h
(t)の転置行列h(t)~を計算し、G(t)=h(t)~*h(t)の
計算を行う。
S5 is G0= H0~ * h0Is calculated. this
Is h0Transpose matrix h0 ~And calculate G 0= H0Calculation of ~ * h
And h (0)~Inverse matrix h (0) ~-1Is calculated.
In S6, G = hh * h in each step is calculated. this
Is defined as h (t) for the H-Matrix in step t, and h
Calculate the transposed matrix h (t) ~ of (t) and calculate G (t) = h (t) ~ * h (t)
Perform calculations.

【0016】S7は、各ステップのε={1/2}{h
0~-1(G−G0)h0 -1の計算を行う。これは、S5、S
6の結果を用いて、ε={1/2}{h0~-1(G−G0
0 - 1の計算を行う。
In step S7, ε = {1/2} h
0 ~ -1 (G-G 0 ) the calculation of h 0 -1. This is S5, S
Using the result of No. 6, ε = {1/2} h 0 ~ −1 (G−G 0 )
performing one of calculation - h 0.

【0017】S8は、εの平均値、ゆらぎの計算を行
う。これは、図6の(d)に示すように、εの平均値、
およびその平均値のゆらぎの計算を行う。ここで、Sは
スタートステップ、Eはエンドステップを表す。
In step S8, the average value and fluctuation of ε are calculated. This is, as shown in FIG. 6D, the average value of ε,
And the fluctuation of the average value is calculated. Here, S represents a start step, and E represents an end step.

【0018】S9は、Fluctuation For
mula(歪みの平均値のゆらぎ)から弾性定数の各成
分の計算を行う。これは、図6の(e)に示すように、
弾性定数Csをここでは、6×6行列として求める(図
7、図8のように6×6行列として求める)。
S9 is a construction for
Each component of the elastic constant is calculated from mula (fluctuation of the average value of strain). This is, as shown in FIG.
Here, the elastic constant Cs is determined as a 6 × 6 matrix (determined as a 6 × 6 matrix as shown in FIGS. 7 and 8).

【0019】S10は、計算結果を出力する。以上によ
って、分子動力学計算シミュレーションによって求めた
歪みをもとに、指定された開始/終了ステップに従い、
S4ないしS7によって歪みを算出し、S8で計算した
歪みから当該歪みの時間的平均のゆらぎを計算し、S9
で計算した歪みの時間平均のゆらぎをもとに弾性定数の
各成分を計算し、後述する図8のようにここでは、6×
6行列として出力することが可能となる。
In step S10, a calculation result is output. As described above, based on the strain determined by the molecular dynamics calculation simulation,
The distortion is calculated in S4 to S7, and the temporal average fluctuation of the distortion is calculated from the distortion calculated in S8.
The respective components of the elastic constant are calculated based on the fluctuation of the time average of the strain calculated in the above, and here, as shown in FIG.
It is possible to output as six matrices.

【0020】図3は、本発明のシミュレーションの説明
図を示す。これは、分子動力学法による歪みのシミュレ
ーションを説明する図である。図3の(a)は、直方体
のセルおよび図示しない条件(原子数、エネルギー、体
積、圧力、エンタルピー、温度などのうちの指定された
条件)の指定された状態を示す。この歪みの無い状態で
は、後述する図3の(c−1)に示すように、H−Ma
trix h0が図示のような行列成分で表される(セ
ルのa~、b~、c~がそれぞれ直角であり、XYZ軸にそ
れぞれ順次図示のように配置したときに、自身の軸成分
しかそれぞれが持たないので、a 0 0というように
行列内で表される。
FIG. 3 is an explanatory diagram of a simulation according to the present invention. This is a diagram illustrating a simulation of strain by a molecular dynamics method. FIG. 3A shows a rectangular parallelepiped cell and a specified state (not shown) (conditions specified among the number of atoms, energy, volume, pressure, enthalpy, temperature, etc.). In a state where there is no distortion, as shown in FIG. 3 (c-1) described later, H-Ma
trix h 0 is a ~ represented by (cell matrix components, such as shown, b ~, c ~ are right angles, when arranged as shown in each sequence shown in XYZ axes, the axis component itself only Since each does not have, it is represented in the matrix as a 0 0.

【0021】図3の(b)は、歪みが生じた様子を示
す。一点鎖線が元の歪みのないセルを示し、直線が歪み
の生じたセルを示す。この場合には、図3の(c−2)
に示すように、H−Matrix hは、図示のように
自身の軸の外に他の成分を持つので、例えば1行目のよ
うにa11、b12、c13というように表される。
FIG. 3B shows a state in which distortion has occurred. The dashed line indicates the original cell without distortion, and the straight line indicates the cell with distortion. In this case, (c-2) in FIG.
As shown in, H-Matrix h, since with other components outside the axis of itself, as shown, is expressed as that a 11, b 12, c 13, for example, as the first row.

【0022】以上のように、公知の分子動力学法に従え
ば、図3の(a)のセルが図3の(b)のように歪んだ
ときに、図3の(c−2)に示すように、H−Matr
ixhがシミュレーションによって算出されることとな
る。この算出されたH−Matrix hが、既述した
図2のS3で読み込まれることとなる。
As described above, according to the known molecular dynamics method, when the cell shown in FIG. 3A is distorted as shown in FIG. As shown, H-Matr
ixh is calculated by simulation. The calculated H-Matrix h is read in S3 of FIG. 2 described above.

【0023】図4は、本発明の入力画面例を示す。これ
は、既述した図2のS1で解析条件を入力する画面の例
であって、ここでは、図示の下記の項目について指定す
る。 ・H-Matrix Reference Step: ・Start Step : ・End Step : 図5および図6は、本発明の説明図を示す。
FIG. 4 shows an example of an input screen according to the present invention. This is an example of the screen for inputting the analysis conditions in S1 of FIG. 2 described above. Here, the following items shown in the drawing are specified. H-Matrix Reference Step: Start Step: End Step: FIGS. 5 and 6 show explanatory diagrams of the present invention.

【0024】図5の(a)は、歪εとH−Matrix
の関係を示す。ここでは、図示の(1)ないし(6)に
示すような式で表される。図5の(b)は、歪εのゆら
ぎを示す。これは、既述した図2のS8の歪みεの時間
平均のゆらぎを求める手順と式を示す。
FIG. 5A shows the strain ε and the H-Matrix.
Shows the relationship. Here, it is represented by an equation as shown in (1) to (6). FIG. 5B shows the fluctuation of the strain ε. This shows a procedure and an expression for obtaining the time-average fluctuation of the strain ε in S8 of FIG. 2 described above.

【0025】図5の(c)は、Fluctuation Formulaを
示す。これは、図示のように、Fluctuation Formulaか
ら弾性定数CSは、図示の(9)によって算出される。
図6の(d)は、歪εの平均値、ゆらぎの計算を示す。
歪εの各平均値を求め、次に、これら平均値からのゆら
ぎを計算する。
FIG. 5C shows the Fluctuation Formula. This is because, as shown in the drawing, the elastic constant C S is calculated from the Fluctuation Formula by (9) shown in the drawing.
FIG. 6D shows the calculation of the average value and fluctuation of the strain ε.
The respective average values of the strain ε are obtained, and then fluctuations from these average values are calculated.

【0026】図6の(e)は、Fluctuation Formulaか
ら弾性定数の各成分の計算を示す。この計算は、式(9)
から図2のS8の結果を用いて弾性定数の各成分が計算
される。慣例に従って、ijの組について図示の下記の
組をそれぞれ1ないし6に割り当ると弾性定数CSが6
×6行列とし、後述する図7、図8に示すように計算さ
れる。
FIG. 6E shows the calculation of each component of the elastic constant from the Fluctuation Formula. This calculation is based on equation (9)
Each component of the elastic constant is calculated using the result of S8 in FIG. According to a convention, the following sets shown in the figure are assigned to 1 to 6 for the set of ij, respectively, to obtain an elastic constant C S of 6
It is calculated as a × 6 matrix as shown in FIGS. 7 and 8 described later.

【0027】図7は、本発明の出力画面例を示す。この
出力画面例は、弾性定数OUTPUT画面であって、既
述した図6の(e)の6×6行列をij(ijの組に付
与した1ないし6)の組として表示する。ここでは、i
jで対称であるので、右下斜め上半分あるいは下半分の
いずれかが判明すればよい。
FIG. 7 shows an example of an output screen according to the present invention. This output screen example is an elastic constant OUTPUT screen, and displays the 6 × 6 matrix of FIG. 6E described above as a set of ij (1 to 6 added to the set of ij). Here, i
Since it is symmetrical at j, it is sufficient that either the upper half or the lower half of the lower right is determined.

【0028】図8は、本発明の計算結果出力例を示す。
これは、図7の画面上に既述した図6の(e)に従い、
弾性定数の各成分を実際に求めて表示した6×6行列の
画面である。例えばのi=j=1の弾性定数CSの値
は、図3の(a)のセルを圧縮したときの弾性計数CS
の計算結果の例である。また、のi=1、j=2は、
セルの対向面内で相互に反対方向にすべるように力を加
えたときの弾性計数C Sの計算結果の例である。
FIG. 8 shows an example of a calculation result output according to the present invention.
This is in accordance with (e) of FIG. 6 already described on the screen of FIG.
Each component of the elastic constant is actually calculated and displayed as a 6 × 6 matrix.
Screen. For example, the elastic constant C for i = j = 1SThe value of the
Is the elasticity coefficient C when the cell of FIG.S
6 is an example of the calculation result of the above. Also, i = 1 and j = 2 of
Apply force so that they slide in opposite directions in the opposing faces of the cell.
Elasticity coefficient C S6 is an example of the calculation result of the above.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
分子動力学法を用いたシミュレーション処理から3つ以
上の時点における分子の歪みの状態を取り出して歪みの
時間平均のゆらぎを求めてこれより弾性定数を算出する
構成を採用しているため、単一種類の原子のみならず複
数種類の原子からなる物質の弾性定数を極めて容易かつ
高速を求めることができる。
As described above, according to the present invention,
Since the state of the molecular strain at three or more time points is extracted from the simulation processing using the molecular dynamics method, the time average fluctuation of the strain is obtained, and the elastic constant is calculated from the fluctuation. The elastic constant of a substance consisting of a plurality of types of atoms as well as the types of atoms can be determined very easily and at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシステム構成図である。FIG. 1 is a system configuration diagram of the present invention.

【図2】本発明の動作説明フローチャートである。FIG. 2 is a flowchart illustrating the operation of the present invention.

【図3】本発明のシミュレーションの説明図である。FIG. 3 is an explanatory diagram of a simulation according to the present invention.

【図4】本発明の入力画面例である。FIG. 4 is an example of an input screen according to the present invention.

【図5】本発明の説明図(その1)である。FIG. 5 is an explanatory view (No. 1) of the present invention.

【図6】本発明の説明図(その2)である。FIG. 6 is an explanatory view (2) of the present invention.

【図7】本発明の出力画面例である。FIG. 7 is an example of an output screen according to the present invention.

【図8】本発明の計算結果出力例である。FIG. 8 is a calculation result output example of the present invention.

【符号の説明】[Explanation of symbols]

1:処理装置 2:シミュレーション手段 3:第1の処理手段 4:第2に処理手段 5:第3の処理手段 6:表示装置 7:入力装置 1: processing device 2: simulation means 3: first processing means 4: second processing means 5: third processing means 6: display device 7: input device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】分子動力学法に基づく一連のシミュレーシ
ョン処理から3つ以上の時点における分子の歪の状態を
取り出す第1の処理手段と、 前記第1の処理手段で取り出した結果より歪の時間平均
からのゆらぎを求める第2の処理手段と、 前記第2の処理手段で求めた結果より弾性定数を求める
第3の処理手段とを備えたことを特徴とする弾性定数計
算装置。
1. A first processing means for extracting a state of strain of a molecule at three or more time points from a series of simulation processing based on a molecular dynamics method, and a distortion time based on a result obtained by the first processing means. An elastic constant calculating apparatus comprising: a second processing unit for obtaining a fluctuation from an average; and a third processing unit for obtaining an elastic constant from a result obtained by the second processing unit.
【請求項2】分子動力学法に基づく一連のシミュレーシ
ョン処理から3つ以上の時点における分子の歪の状態を
取り出す第1の処理手段と、 前記第1の処理手段で取り出した結果より歪の時間平均
からのゆらぎを求める第2の処理手段と、 前記第2の処理手段で求めた結果より弾性定数を求める
第3の処理手段として機能させるプログラムを記録した
コンピュータ読取可能な記録媒体。
2. A first processing means for extracting a state of molecular strain at three or more time points from a series of simulation processes based on a molecular dynamics method, and a time of distortion based on a result obtained by the first processing means. A computer-readable recording medium recording a second processing means for obtaining a fluctuation from an average, and a program for functioning as a third processing means for obtaining an elastic constant from a result obtained by the second processing means.
JP10071559A 1998-03-20 1998-03-20 Device for calculating modulus of elasticity and storage medium Pending JPH11272723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10071559A JPH11272723A (en) 1998-03-20 1998-03-20 Device for calculating modulus of elasticity and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10071559A JPH11272723A (en) 1998-03-20 1998-03-20 Device for calculating modulus of elasticity and storage medium

Publications (1)

Publication Number Publication Date
JPH11272723A true JPH11272723A (en) 1999-10-08

Family

ID=13464213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10071559A Pending JPH11272723A (en) 1998-03-20 1998-03-20 Device for calculating modulus of elasticity and storage medium

Country Status (1)

Country Link
JP (1) JPH11272723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113868850A (en) * 2021-09-17 2021-12-31 北京航空航天大学 High-flux elastic property calculation method based on symmetry and standard orientation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113868850A (en) * 2021-09-17 2021-12-31 北京航空航天大学 High-flux elastic property calculation method based on symmetry and standard orientation
CN113868850B (en) * 2021-09-17 2024-05-28 北京航空航天大学 High-flux elastic property calculation method based on symmetry and standard orientation

Similar Documents

Publication Publication Date Title
Weir et al. Mixed self and random mating at two loci
Liu et al. Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition
Thurstone A multiple group method of factoring the correlation matrix
Gorman et al. Accurate free vibration analysis of the completely free rectangular Mindlin plate
Shang et al. The generalized moment estimation of the additive–multiplicative hazard model with auxiliary survival information
JPH11272723A (en) Device for calculating modulus of elasticity and storage medium
Deodatis Stochastic FEM sensitivity analysis of nonlinear dynamic problems
CN107025339A (en) Analysis method and system of a kind of dislocation to ferroelectric material domain structure Influencing Mechanism
Guessab et al. A unified and general framework for enriching finite element approximations
Litzman et al. Vibrations of large imperfections in crystals
Murrell et al. Many-body contributions to the intermolecular potential in alkali halide crystals and clusters
Buyukdagli et al. Theoretical investigation of finite size effects at DNA melting
CN109150506B (en) Side channel analysis method and device for rainbow signature
CN109150533B (en) Key recovery device and method for UOV signature
Maeda et al. Box-ball systems related to the nonautonomous ultradiscrete Toda equation on the finite lattice
CN111353123B (en) Euler distance-based Higuchi fractal dimension calculation method and system
Pan et al. Superfast computations with singular structured matrices over abstract fields
Gasca et al. Elimination techniques: from extrapolation to totally positive matrices and CAGD
Fu et al. Strategy optimization of networked evolutionary games with bankruptcy mechanism
Holley On the generalization of the Burt reciprocity principle
Yoo Binary Truncated Moment Problems and the Hadamard Product
Levitan et al. What the survivors' areas do at long times?
KR100224407B1 (en) Substructuring method for dynamic structure modification
Mañosa Fernández et al. Kahan-Hirota-Kimura maps preserving original cubic hamiltonians
Gladwell et al. Iterations and Predictors for Second-Order Problems

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030916