JPH11271549A - Manufacture of optical integrated circuit with outer-surface branching mirror - Google Patents

Manufacture of optical integrated circuit with outer-surface branching mirror

Info

Publication number
JPH11271549A
JPH11271549A JP9225898A JP9225898A JPH11271549A JP H11271549 A JPH11271549 A JP H11271549A JP 9225898 A JP9225898 A JP 9225898A JP 9225898 A JP9225898 A JP 9225898A JP H11271549 A JPH11271549 A JP H11271549A
Authority
JP
Japan
Prior art keywords
electron beam
optical
integrated circuit
mirror
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9225898A
Other languages
Japanese (ja)
Other versions
JP2942825B1 (en
Inventor
Okihiro Sugihara
興浩 杉原
Naomichi Okamoto
尚道 岡本
Tsutomu Egami
力 江上
Hideki Nakayama
英樹 中山
Hisanori Tomaru
尚紀 都丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP9225898A priority Critical patent/JP2942825B1/en
Application granted granted Critical
Publication of JP2942825B1 publication Critical patent/JP2942825B1/en
Publication of JPH11271549A publication Critical patent/JPH11271549A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture an integrated circuit with an outer-surface branching mirror in high precision through a relatively simple manufacturing process. SOLUTION: A method for the manufacture of an optical integrated circuit which has an outer-surface branching mirror on a substrate 10, is provided with a process for forming a polymer optical material film 11 constituting an optical circuit element on the substrate 10, a process for scanning the polymer optical material film 11 two-dimensionally and directly with an electron beam and a process for removing the polymer optical material film in the area where the optical circuit element is not constituted by development. In the electron beam scanning process, the area where the optical circuit element is not constituted is scanned with a temporally constant energy irradiation quantity and the area where the outer-surface branching mirror is expected to be constituted is scanned while the irradiation energy quantity is varied with the time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光集積回路の製造方
法、特に電子線を直接照射することにより面外分岐ミラ
ーを有する光集積回路の製造方法に関するものである。
The present invention relates to a method for manufacturing an optical integrated circuit, and more particularly to a method for manufacturing an optical integrated circuit having an out-of-plane branching mirror by directly irradiating an electron beam.

【0002】[0002]

【従来の技術】基板上に高分子膜を形成し、この高分子
膜を利用して光導波路や光変調器等の種々の光学素子を
形成する光集積回路が実用化されている。この光集積回
路においては、外部からの信号光を光集積回路に入射さ
せ又は光集積回路からの信号光を別の光学素子に送出す
るための面外分岐ミラーのような光カップリング素子が
必要である。
2. Description of the Related Art An optical integrated circuit in which a polymer film is formed on a substrate and various optical elements such as an optical waveguide and an optical modulator are formed using the polymer film has been put to practical use. In this optical integrated circuit, an optical coupling element such as an out-of-plane branching mirror for making external signal light incident on the optical integrated circuit or transmitting signal light from the optical integrated circuit to another optical element is required. It is.

【0003】従来、光集積回路に光カップリング素子と
して面外分岐ミラーを形成する場合、フォトリソグラフ
ィー及びエッチング技術が用いられていた。すなわち、
面外分岐ミラーの作製には、まず乾板上に電子線レジス
トを堆積し、電子線発生源を用いて電子線を照射、現像
処理を行うことにより、所望のパターンのフォトマスク
を作製する。次に、光導波路上に光感光材であるフォト
レジストを成膜し、フォトレジストの上から紫外線をフ
ォトマスクを通して照射してパターニングし、現像す
る。そして、フォトレジストをマスクとしてエッチング
を行い、光導波路のコア部分を削ることにより分岐ミラ
ーを持つ高分子光導路が完成する。また、高分子導波路
上への面外分岐ミラーの作製には、ダイシングソーの刃
を用いて高分子を機械的に切削するという方法が利用さ
れていた。
Conventionally, when an out-of-plane branch mirror is formed as an optical coupling element in an optical integrated circuit, photolithography and etching techniques have been used. That is,
To manufacture an out-of-plane branching mirror, first, an electron beam resist is deposited on a dry plate, an electron beam is irradiated using an electron beam source, and development processing is performed, thereby manufacturing a photomask having a desired pattern. Next, a photoresist, which is a photosensitive material, is formed on the optical waveguide, and the photoresist is irradiated with ultraviolet rays through a photomask, patterned, and developed. Then, etching is performed using the photoresist as a mask, and the core portion of the optical waveguide is shaved to complete a polymer optical waveguide having a branch mirror. In addition, a method of mechanically cutting a polymer using a blade of a dicing saw has been used for manufacturing an out-of-plane branch mirror on a polymer waveguide.

【0004】[0004]

【発明が解決しようとする課題】従来技術においては、
面外分岐ミラーの作製のために、多数の工程を経る必要
があり、製造工程が複雑化する欠点があった。また、従
来技術の工程では、機械加工処理を必要とするため、熱
的、機械的に弱い材料は利用できなかった。さらに、こ
れらの方法では、フレキシビリティーに富んだミラーパ
ターンが実現困難であった。
In the prior art,
The production of the out-of-plane branching mirror requires a number of steps, which has the disadvantage of complicating the manufacturing process. Further, in the process of the prior art, since a mechanical processing is required, thermally and mechanically weak materials cannot be used. Furthermore, these methods have made it difficult to realize a highly flexible mirror pattern.

【0005】従って、本発明の目的は上述した欠点を解
消し、比較的簡単な製造工程で面外分岐ミラーを有する
光集積回路を正確に形成できる光集積回路の製造方法を
提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of manufacturing an optical integrated circuit which can solve the above-mentioned drawbacks and can accurately form an optical integrated circuit having an out-of-plane branching mirror in a relatively simple manufacturing process. .

【0006】さらに、本発明の目的は、単一の光カップ
リング面だけでなく回折格子状等の種々の形態の面外分
岐ミラーを有する光集積回路の製造方法を提供すること
にある。
Another object of the present invention is to provide a method of manufacturing an optical integrated circuit having not only a single optical coupling surface but also various types of out-of-plane branching mirrors such as a diffraction grating.

【0007】[0007]

【課題を解決するための手段】本発明による面外分岐ミ
ラーを有する光集積回路の製造方法は、基板上に面外分
岐ミラーを有する光集積回路を形成するに当たり、基板
上に、光回路素子を構成する高分子光学材料膜を形成す
る工程と、前記高分子光学材料膜を電子線ビームで直接
2次元的に走査する工程と、現像処理により、光回路素
子を構成しない区域の高分子光学材料膜を除去する工程
とを具え、前記電子線ビームの走査工程において、光回
路素子を構成しない区域に対して時間的に一定のエネル
ギー照射量で走査し、面外分岐ミラーを形成する予定の
区域に対しては照射エネルギー量を時間的に変えながら
走査することを特徴とする。
According to the method of manufacturing an optical integrated circuit having an out-of-plane branching mirror according to the present invention, an optical integrated circuit having an out-of-plane branching mirror is formed on a substrate. Forming a polymer optical material film, forming the polymer optical material film directly two-dimensionally with an electron beam, and developing the polymer optical material film in an area where an optical circuit element is not formed. A step of removing the material film, and in the electron beam scanning step, an area not forming an optical circuit element is scanned with a temporally constant energy irradiation amount to form an out-of-plane branch mirror. It is characterized in that an area is scanned while changing the irradiation energy amount with time.

【0008】本発明者が、基板上に形成した高分子光学
材料膜について種々の実験及び解析を行った結果、高分
子膜に電子線を照射し熱現像又は湿式現像を行うと、現
像処理により除去される高分子膜の厚さと照射した電子
線の照射量との間に対応関係が存在することが判明し
た。すなわち、単位時間当たりの電子線照射量が少ない
場合浅く除去され、電子線照射量を多くすることにより
表面から一層深い位置まで除去されことが判明した。こ
の実験結果によれば、面外分岐ミラーが形成される予定
の区域について電子線の照射量を時間的に変化させるこ
とにより、基板の法線に対して90°以外の任意の角度
のミラー面を形成することができる。本発明は、このよ
うな認識に基づくものであり、光集積回路の光導波路や
光変調器のような光回路素子を構成しない区域について
は時間的に一定の照射量の電子線を照射する。一方、面
外ミラーを構成する区域については、電子線照射量を時
間的に変化させる。この場合、電子線の照射量は、電子
線ビームの走査速度を変化させることにより変えること
ができ、または走査速度を一定にし照射量自体を時間的
に変化させることにより変えることもできる。このよう
に構成することにより、1回の電子線照射処理により面
外分岐ミラーを有する光集積回路を形成することがで
き、製造工程が一層簡単になる。
The present inventor conducted various experiments and analyzes on the polymer optical material film formed on the substrate. As a result, when the polymer film was irradiated with an electron beam and subjected to thermal development or wet development, It has been found that there is a correspondence between the thickness of the polymer film to be removed and the dose of the irradiated electron beam. In other words, it was found that when the electron beam irradiation amount per unit time was small, it was removed shallowly, and when the electron beam irradiation amount was increased, it was removed from the surface to a deeper position. According to the results of this experiment, by changing the irradiation amount of the electron beam with respect to the area where the out-of-plane branch mirror is to be formed, the mirror surface at an arbitrary angle other than 90 ° with respect to the normal to the substrate is obtained. Can be formed. The present invention is based on such recognition, and irradiates an area in which an optical circuit element such as an optical waveguide or an optical modulator of an optical integrated circuit is not formed with an electron beam having a temporally constant irradiation amount. On the other hand, in the area constituting the out-of-plane mirror, the electron beam irradiation amount is changed with time. In this case, the dose of the electron beam can be changed by changing the scanning speed of the electron beam, or can be changed by keeping the scanning speed constant and changing the dose itself over time. With this configuration, an optical integrated circuit having an out-of-plane branch mirror can be formed by one electron beam irradiation process, and the manufacturing process is further simplified.

【0009】本発明による面外分岐ミラーを有する光集
積回路の製造方法の実施例は、電子線のビーム走査工程
において、照射される電子線の照射量を段階的に変化さ
せて、回折格子状の面外分岐ミラーを形成することを特
徴とする。電子線照射量を時間的に段階的に変化させる
ことにより、階段状の面外分岐ミラー、すなわち回折格
子状の面外分岐ミラーを形成することができる。
An embodiment of a method of manufacturing an optical integrated circuit having an out-of-plane branching mirror according to the present invention is a method of scanning an electron beam by changing the irradiation amount of the irradiated electron beam in a stepwise manner. Out-of-plane branch mirror is formed. By changing the irradiation amount of the electron beam stepwise with time, a step-like out-of-plane branch mirror, that is, a diffraction grating-like out-of-plane branch mirror can be formed.

【0010】本発明による面外分岐ミラーを有する光集
積回路の製造方法の実施例は、電子線のビーム走査工程
において、照射する電子線の単位時間当たりのエネルギ
ーの変化を2段階に変化させ、基板表面の法線に対して
互いに異なる角度の2個の面を形成することを特徴とす
る。このように、基板の法線に対する角度が異なる2個
のミラー面を形成することにより、光集積回路で処理さ
れた信号光を2本のビームに分割して出射させることが
できる。
According to an embodiment of the method of manufacturing an optical integrated circuit having an out-of-plane branching mirror according to the present invention, in the electron beam beam scanning step, the change in energy per unit time of the irradiated electron beam is changed in two stages, It is characterized in that two surfaces having different angles from each other with respect to the normal line of the substrate surface are formed. Thus, by forming two mirror surfaces having different angles with respect to the normal line of the substrate, the signal light processed by the optical integrated circuit can be split into two beams and emitted.

【0011】[0011]

【発明の実施の形態】始めに、本発明の基本思想をなす
実験結果について説明する。ガラス基板上にポリメチル
メタクリレート(PMMA)やポリアクリレート(商品
名「U−100」)のような高分子光学材料膜を0.5
〜2.5μmの厚さでコートし、この高分子膜に電子線
を照射し、その後現像処理を行い、高分子膜の現像深さ
を測定した。電子線照射の条件は以下の通りである。 電子線照射量:10〜30μC/cm2 (PMMA) ビーム電流:0.5nA ビーム径:0.1μm 加速電圧:25kV: この条件下において、PMMA膜について種々のエネル
ギーの電子ビームで走査した場合の現像深さと電子線ド
ーズ量との関係を図1に示す。図1において、横軸は電
子線のドーズ量を示し、縦軸は現像深さ(相対値)を示
す。図1の実験結果から明かなように、現像処理により
除去される高分子膜の厚さは照射電子線量にほぼ線形に
対応している。従って、照射する電子線の量を時間的に
変化させながら電子線走査を行うことにより基板の法線
に対して所望の角度の面外分岐ミラーを形成することが
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, experimental results forming the basic idea of the present invention will be described. A polymer optical material film such as polymethyl methacrylate (PMMA) or polyacrylate (trade name “U-100”) is formed on a glass substrate by 0.5.
The polymer film was coated with a thickness of about 2.5 μm, and the polymer film was irradiated with an electron beam, and then subjected to a development treatment, and the development depth of the polymer film was measured. The conditions of electron beam irradiation are as follows. Electron beam irradiation amount: 10 to 30 μC / cm 2 (PMMA) Beam current: 0.5 nA Beam diameter: 0.1 μm Accelerating voltage: 25 kV: Under these conditions, the PMMA film was scanned with electron beams of various energies. FIG. 1 shows the relationship between the development depth and the electron beam dose. In FIG. 1, the horizontal axis indicates the dose of the electron beam, and the vertical axis indicates the development depth (relative value). As is clear from the experimental results shown in FIG. 1, the thickness of the polymer film removed by the development processing substantially linearly corresponds to the irradiation electron dose. Therefore, by performing electron beam scanning while changing the amount of electron beam to be irradiated with time, an out-of-plane branch mirror having a desired angle with respect to the normal line of the substrate can be formed.

【0012】図2A及びBは、実際にPMMA膜に電子
線照射量を時間的に変えながら照射してミラー面を形成
した場合の断面を2500倍の顕微鏡で撮影した顕微鏡
写真を線図として示すものである。図2Aは45°と9
0°のミラー面を形成した際の顕微鏡写真の図である。
図2Aから明かなように、ほぼ45°及び90°のミラ
ー面が形成できることが確認された。また、図2Bは4
5°と45°の対向するミラー面を形成したときの図で
ある。この場合も同様に45°のミラー面が形成でき
た。
FIGS. 2A and 2B are micrographs taken by a microscope at a magnification of 2500 times as a diagram when a mirror surface is formed by actually irradiating the PMMA film while changing the amount of electron beam irradiation with time. Things. Figure 2A shows 45 ° and 9
It is a figure of a microscope photograph at the time of forming a 0 ° mirror surface.
As is clear from FIG. 2A, it was confirmed that approximately 45 ° and 90 ° mirror surfaces could be formed. Also, FIG.
It is a figure at the time of forming the mirror surface which opposes 5 degrees and 45 degrees. In this case as well, a 45 ° mirror surface could be formed.

【0013】図3は本発明による方法により製造した光
集積回路の一例の構成を示すものであり、図3Aは線図
的平面図、図3Bは図3AのI−I線断面図である。本
例では、光導波路と光変調器を有する光集積回路につい
て説明する。基板1上に高分子光導波路2及び光変調器
3を形成する。光導波路2はその両端に面外分岐ミラー
2a及び2bを有し、これら面外分岐ミラー2a及び2
bを介して変調すべき信号光を入射させると共に変調し
た光信号を出射させる。光変調器3は導波路部分3aと
その両側に形成した電極4a及び4bを有し、これらの
電極に信号源(図示せず)から供給される信号により光
導波路部分3aを伝播する光信号を変調する。
FIG. 3 shows an example of the configuration of an optical integrated circuit manufactured by the method according to the present invention. FIG. 3A is a schematic plan view, and FIG. 3B is a sectional view taken along line II of FIG. 3A. In this example, an optical integrated circuit having an optical waveguide and an optical modulator will be described. A polymer optical waveguide 2 and an optical modulator 3 are formed on a substrate 1. The optical waveguide 2 has out-of-plane branch mirrors 2a and 2b at both ends thereof.
The signal light to be modulated is made incident via b, and the modulated optical signal is emitted. The optical modulator 3 has a waveguide section 3a and electrodes 4a and 4b formed on both sides of the waveguide section 3a. The optical signal propagating through the optical waveguide section 3a is supplied to these electrodes by a signal supplied from a signal source (not shown). Modulate.

【0014】図4A〜Cは、図3に示す光集積回路を製
造する際の順次の製造工程を示す線図的断面図である。
図4Aに示すように、初めに基板10を用意し、この基
板10上に高分子光学材料膜11を形成する。基板とし
て、例えばガラス基板やサファイア基板を用いることが
でき、高分子光学材料として例えばポリメチルメタクリ
レートやポリカーボネートのような高分子光学材料を用
いることができる。
FIGS. 4A to 4C are schematic sectional views showing sequential manufacturing steps when manufacturing the optical integrated circuit shown in FIG.
As shown in FIG. 4A, first, a substrate 10 is prepared, and a polymer optical material film 11 is formed on the substrate 10. As the substrate, for example, a glass substrate or a sapphire substrate can be used, and as the polymer optical material, for example, a polymer optical material such as polymethyl methacrylate or polycarbonate can be used.

【0015】次に、この基板を電子線照射装置のチャン
バ内に配置し、電子線照射を行う。電子線照射に際し、
本発明では電子ビームを用いて基板10を2次元走査し
て光導波路や光変調器のような光回路素子を形成する。
電子ビーム走査において、光回路素子を構成しない区域
は、その後行う現像処理により高分子膜が完全に除去さ
れるエネルギー量で時間的に一定の照射量で照射し、光
導波路のように高分子膜が光導波路を構成する区域は電
子線を照射せず、面外分岐ミラーを構成する区域につい
ては基板の法線に対して所望の角度のミラー面が形成さ
れるように照射量を時間的に変化させながら行う。この
電子ビームによる走査は、コンピュータ制御により行う
ことができる。尚、照射量は、走査速度を時間的に変え
ることにより、又は走査速度を一定にして照射エネルギ
ー量を時間的に変えることにより行うことができる。
Next, the substrate is placed in a chamber of an electron beam irradiation apparatus, and electron beam irradiation is performed. When irradiating with electron beam,
In the present invention, an optical circuit element such as an optical waveguide or an optical modulator is formed by two-dimensionally scanning the substrate 10 using an electron beam.
In electron beam scanning, areas where optical circuit elements are not formed are irradiated with a constant amount of irradiation at an amount of energy at which the polymer film is completely removed by a subsequent development process. However, the area forming the optical waveguide is not irradiated with an electron beam, and the area forming the out-of-plane branching mirror is irradiated with light so that the mirror surface is formed at a desired angle with respect to the normal of the substrate. Perform while changing. The scanning by the electron beam can be performed by computer control. The irradiation amount can be changed by changing the scanning speed over time or by changing the irradiation energy amount over time while keeping the scanning speed constant.

【0016】図4Bは、図3Bに示す区域a〜eに沿っ
て電子ビームを照射する態様を示す。光学素子を構成し
ない区域aについては、最も高い照射量で時間的に一定
の照射量で照射しながら走査する。次に、面外分岐ミラ
ー2bを構成する区域bについては、電子線照射量を時
間的に徐々に低くなるように走査する。次に、光導波路
2に対応する区域cについては電子線照射を行わない。
次に、面外分岐ミラー2aを構成する区域dについては
電子線照射量を時間的に増大させながら走査する。さら
に、光学素子を構成しない区域eについては、最も高い
照射量で時間的に一定の照射量で照射しながら走査す
る。
FIG. 4B shows a mode in which the electron beam is irradiated along the areas a to e shown in FIG. 3B. For the area a where no optical element is formed, scanning is performed while irradiating with the highest irradiation amount at a temporally constant irradiation amount. Next, scanning is performed on the area b constituting the out-of-plane branching mirror 2b so that the irradiation amount of the electron beam gradually decreases with time. Next, the area c corresponding to the optical waveguide 2 is not irradiated with the electron beam.
Next, scanning is performed on the section d constituting the out-of-plane branching mirror 2a while increasing the irradiation amount of the electron beam with time. Further, the scanning is performed while irradiating the area e where the optical element is not formed with the temporally constant irradiation amount at the highest irradiation amount.

【0017】電子線照射が完了した後、現像処理を行
い、電子線が照射された区域について電子線照射量に応
じて高分子光学材料を除去する。この現像処理として例
えば電子線照射が完了した基体を高分子光学材料のガラ
ス転移点付近まで加熱しその後リンス処理を行う熱現像
や湿式現像を行うことができる。前述したように、本発
明では、照射された電子線のエネルギー量に応じて高分
子光学材料を除去できるので、現像処理後に図4Cに示
す形態の光回路を形成することができる。
After the completion of the electron beam irradiation, a developing process is performed to remove the polymer optical material from the area irradiated with the electron beam according to the amount of the electron beam irradiation. As the development processing, for example, thermal development or wet development in which the substrate to which the electron beam irradiation has been completed is heated to near the glass transition point of the polymer optical material and then rinsed is performed. As described above, in the present invention, the polymer optical material can be removed in accordance with the energy amount of the irradiated electron beam, so that an optical circuit having the form shown in FIG. 4C can be formed after the development processing.

【0018】図5A及びBは本発明により形成した面外
分岐ミラーの変形例を示す線図的断面図である。図5A
に示す例においては、照射する電子線のドーズ量を時間
的にステップ状に変化させた場合に得られる面外分岐ミ
ラーを示す。この場合、面外分岐ミラーは回折格子のよ
うに形成される。図5Bに示す例において、ミラー面を
基板の法線に対する角度が互いに相異する2個の面で構
成される。この場合にも、電子線照射量の時間的な変化
を2段階で変化させることにより容易に形成することが
できる。このようなミラー面を形成することにより、信
号光を2本の光ビームとして出射させることができる。
FIGS. 5A and 5B are diagrammatic sectional views showing a modification of the out-of-plane split mirror formed according to the present invention. FIG. 5A
In the example shown in FIG. 1, an out-of-plane branching mirror obtained when the dose of the electron beam to be irradiated is changed stepwise over time is shown. In this case, the out-of-plane branch mirror is formed like a diffraction grating. In the example shown in FIG. 5B, the mirror surface is composed of two surfaces having different angles with respect to the normal line of the substrate. Also in this case, it can be easily formed by changing the temporal change of the electron beam irradiation amount in two stages. By forming such a mirror surface, the signal light can be emitted as two light beams.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は照射した電子線のドーズ量と現像深さと
の関係の実験結果を示すグラフである。
FIG. 1 is a graph showing an experimental result of a relationship between a dose amount of an irradiated electron beam and a developing depth.

【図2】図2は実際に本発明により製造された面外分岐
ミラーの構造形態を示す顕微鏡写真を表す線図的断面図
である。
FIG. 2 is a diagrammatic sectional view showing a micrograph showing the structure of an out-of-plane branch mirror actually manufactured according to the present invention.

【図3】図3は本発明により形成した光集積回路の一例
の構成を示す平面図及び線図的断面図である。
FIG. 3 is a plan view and a schematic cross-sectional view showing a configuration of an example of an optical integrated circuit formed according to the present invention.

【図4】図3に示す光集積回路の順次の製造工程を示す
線図的断面図である。
FIG. 4 is a schematic sectional view showing a sequential manufacturing process of the optical integrated circuit shown in FIG. 3;

【図5】本発明により形成される面外分岐ミラーの変形
例を示す線図的断面図である。
FIG. 5 is a schematic sectional view showing a modification of the out-of-plane split mirror formed according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路 2a,2b 面外分岐ミラー 3 光変調器 11 基板 12 高分子光学材料膜 DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical waveguide 2a, 2b Out-of-plane branching mirror 3 Optical modulator 11 Substrate 12 Polymer optical material film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 英樹 静岡県浜松市文丘町5−22 (72)発明者 都丸 尚紀 群馬県前橋市古市町558−3 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideki Nakayama 5-22 Bunkacho, Hamamatsu City, Shizuoka Prefecture (72) Inventor Naoki Tomaru 558-3 Furuichicho, Maebashi City, Gunma Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に面外分岐ミラーを有する光集積
回路を形成するに当たり、 基板上に、光回路素子を構成する高分子光学材料膜を形
成する工程と、 前記高分子光学材料膜を電子線ビームで直接2次元的に
走査する工程と、 現像処理により、光回路素子を構成しない区域の高分子
光学材料膜を除去する工程とを具え、 前記電子線ビームの走査工程において、光回路素子を構
成しない区域に対して時間的に一定のエネルギー照射量
で走査し、面外分岐ミラーを形成する予定の区域に対し
ては照射エネルギー量を時間的に変えながら走査するこ
とを特徴とする光集積回路の製造方法。
In forming an optical integrated circuit having an out-of-plane branching mirror on a substrate, a step of forming a polymer optical material film constituting an optical circuit element on the substrate; A step of directly two-dimensionally scanning with an electron beam; and a step of removing a polymer optical material film in an area where an optical circuit element is not formed by a developing process. It is characterized in that a region where no element is formed is scanned with a constant energy irradiation amount over time, and an area where an out-of-plane branch mirror is to be formed is scanned while changing the irradiation energy amount over time. A method for manufacturing an optical integrated circuit.
【請求項2】前記電子線ビームの走査工程において、電
子線の照射量を段階的に変化させて、階段状の面外分岐
ミラーを形成することを特徴とする請求項1に記載の光
集積回路の製造方法。
2. The optical integration according to claim 1, wherein in the electron beam scanning step, the irradiation amount of the electron beam is changed stepwise to form a step-like out-of-plane branching mirror. Circuit manufacturing method.
【請求項3】 前記電子線ビームの走査工程において、
照射する電子線の単位時間当たりのエネルギーの変化を
2段階に変化させ、基板表面の法線に対して互いに異な
る角度の2個の分岐ミラー面を形成することを特徴とす
る請求項1に記載の光集積回路の製造方法。
3. In the scanning step of the electron beam,
2. The method according to claim 1, wherein the energy of the irradiated electron beam per unit time is changed in two stages to form two branch mirror surfaces having different angles with respect to the normal to the substrate surface. Manufacturing method of an optical integrated circuit.
JP9225898A 1998-03-23 1998-03-23 Method of manufacturing optical integrated circuit having out-of-plane branch mirror Expired - Lifetime JP2942825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9225898A JP2942825B1 (en) 1998-03-23 1998-03-23 Method of manufacturing optical integrated circuit having out-of-plane branch mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9225898A JP2942825B1 (en) 1998-03-23 1998-03-23 Method of manufacturing optical integrated circuit having out-of-plane branch mirror

Publications (2)

Publication Number Publication Date
JP2942825B1 JP2942825B1 (en) 1999-08-30
JPH11271549A true JPH11271549A (en) 1999-10-08

Family

ID=14049397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9225898A Expired - Lifetime JP2942825B1 (en) 1998-03-23 1998-03-23 Method of manufacturing optical integrated circuit having out-of-plane branch mirror

Country Status (1)

Country Link
JP (1) JP2942825B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128899A (en) * 2007-11-27 2009-06-11 Samsung Electro-Mechanics Co Ltd Method of manufacturing optical board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128899A (en) * 2007-11-27 2009-06-11 Samsung Electro-Mechanics Co Ltd Method of manufacturing optical board
JP4635234B2 (en) * 2007-11-27 2011-02-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Optical substrate manufacturing method

Also Published As

Publication number Publication date
JP2942825B1 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
US4686162A (en) Optically structured filter and process for its production
Poleshchuk et al. Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile
JP4239082B2 (en) Pattern forming method and forming apparatus for periodic array structure
JP2010537258A (en) Lithographic method for continuous direct writing of images
JP2942825B1 (en) Method of manufacturing optical integrated circuit having out-of-plane branch mirror
JPS58124230A (en) Forming method for ultrafine pattern
JP3029524B2 (en) Manufacturing method of diffraction grating
JPH0456284B2 (en)
JPH0322601B2 (en)
JP2006227609A (en) Exposure method, method for forming irregular pattern, and method for manufacturing optical element
JPS61172101A (en) Formation of diffraction grating
JPH0823601B2 (en) Diffraction grating fabrication method
JPH0244545A (en) Production of master disk for optical disk
JP3061037B2 (en) Method of forming resist pattern
JPS6128940A (en) Method and device for forming fine pattern
JPS61138202A (en) Production of diffraction grating
JPH03237458A (en) Fine pattern forming method
JPS60170938A (en) Method for correction of defective part of pattern on optical mask
JPS6060725A (en) Forming method of pattern
KR100633594B1 (en) Method for curved surface on base plate by using microfabrication
JPH0822113A (en) Manufacture of phase shift mask
JPH01107528A (en) Forming method for pattern
JPH0331706A (en) Method for measuring film thickness
JPS6144627A (en) Preparation of fresnel microlens
JPS60123842A (en) Production of photomask

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990518

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term