JPH11271483A - Treatment method of nuclear fusion furnace exhaust gas - Google Patents

Treatment method of nuclear fusion furnace exhaust gas

Info

Publication number
JPH11271483A
JPH11271483A JP10071997A JP7199798A JPH11271483A JP H11271483 A JPH11271483 A JP H11271483A JP 10071997 A JP10071997 A JP 10071997A JP 7199798 A JP7199798 A JP 7199798A JP H11271483 A JPH11271483 A JP H11271483A
Authority
JP
Japan
Prior art keywords
exhaust gas
reaction
hydrogen
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10071997A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Konishi
哲之 小西
Toshihiko Yamanishi
敏彦 山西
Tomoyoshi Maruyama
智義 丸山
Yoshinori Kawamura
繕範 河村
Yasunori Iwai
保則 岩井
Masataka Nishi
正孝 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP10071997A priority Critical patent/JPH11271483A/en
Publication of JPH11271483A publication Critical patent/JPH11271483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To positively deal with intermittent exhaust gas supply, and efficiently collect fuel constituent with less amount of a reaction object, by using an electrochemical reaction device for continuously performing oxidation reaction and reduction reaction. SOLUTION: For a process for collecting a hydrogen isotope that is a fuel constituent from the exhaust gas of a nuclear fusion furnace, for example, a solid electrolyte tube with oxygen ion permeability is provided, and an electrochemical reaction device 2 is used, where the electrochemical reaction device simultaneously performs oxidation reaction for supplying oxygen to a reaction object and reduction reaction for eliminating the oxygen from it. In this process, for example, when methane and vapor are supplied from an inlet 1, the mixture gas of hydrogen and carbon dioxide is discharged from the outlet of the electrochemical reaction device 2. The gas is sent to a palladium hydrogen permeation device 3 for separating into the hydrogen and non-permeation gas containing no hydrogen. When a reaction rate is insufficient, retreatment can be made. In that case, a tank for preventing mixture is used, thus improving collection efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化合物からの水素同位
体の回収に関するものであって、核融合炉排ガスを処理
して燃料成分を回収するプロセスに利用するものであ
る。他にも、水素製造プロセスに応用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the recovery of hydrogen isotopes from compounds, and is used in a process for treating a fusion reactor exhaust gas to recover a fuel component. In addition, it can be applied to a hydrogen production process.

【0002】[0002]

【従来の技術】重水素とトリチウムの核融合反応を利用
する核融合炉の排ガスには、燃料成分の酸素や炭素との
化合物、すなわち水及び炭化水素が含まれ、これらを分
解して燃料として再利用可能な水素の形で回収する必要
がある。この目的のため、従来はこの化合物成分を一旦
触媒によって酸化して水として回収し、次にこれを電気
分解して水素を得ていた。しかしながらこの方法は、水
の形および触媒に吸着されて装置内に滞留するトリチウ
ムの量が大きく、また数個の化学装置を連結して運転す
るため操作が煩雑になる欠点があった。
2. Description of the Related Art The exhaust gas of a fusion reactor utilizing the fusion reaction of deuterium and tritium contains a compound of oxygen and carbon as fuel components, that is, water and hydrocarbons, which are decomposed and used as fuel. It must be recovered in the form of reusable hydrogen. For this purpose, conventionally, this compound component was once oxidized by a catalyst and recovered as water, and then electrolyzed to obtain hydrogen. However, this method has the disadvantage that the form of water and the amount of tritium adsorbed by the catalyst and staying in the apparatus are large, and the operation is complicated because several chemical apparatuses are connected and operated.

【0003】従来法による核融合炉排ガスを処理して燃
料成分を回収する方法の例を図1に示す。図において、
メタン及び水蒸気を原料とし、製品として水素ガスを得
るプロセスを示す。原料は入口1より供給され、触媒塔
2で酸化して炭化水素成分を水と2酸化炭素とした後、
水分吸着装置3により燃料成分を水として捕集する一
方、燃料を含まない2酸化炭素を排ガスとして流出す
る。水分吸着装置は複数(3、4)を使用し、水分捕集
に使用する水分吸着装置3に対し、水分吸着装置4では
加熱などにより捕集した水分を再生し、電解槽5に送っ
て水蒸気を還元して燃料成分である水素を6より回収す
る一方、酸素を電解質反対側より副生成物として7より
取り出す。水素は、他のガスと混在しているため、パラ
ジウム透過装置8によって燃料成分を透過により9に回
収する一方、排ガスを10より排出するか、または残留
する燃料成分を回収するため11よりプロセス入口に戻
す。
FIG. 1 shows an example of a conventional method for treating a fusion reactor exhaust gas to recover a fuel component. In the figure,
A process for obtaining hydrogen gas as a product using methane and steam as raw materials will be described. The raw material is supplied from the inlet 1 and oxidized in the catalyst tower 2 to convert the hydrocarbon components into water and carbon dioxide.
While the fuel component is collected as water by the water adsorption device 3, carbon dioxide containing no fuel flows out as exhaust gas. A plurality (3, 4) of moisture adsorbers are used. In contrast to the moisture adsorber 3 used for collecting water, the moisture adsorber 4 regenerates the collected water by heating or the like, and sends the collected water to the electrolytic cell 5 to transmit the water vapor. Is reduced to recover hydrogen as a fuel component from 6, while oxygen is extracted from 7 as a by-product from the opposite side of the electrolyte. Since hydrogen is mixed with other gases, the palladium permeation device 8 recovers the fuel components to 9 by permeation, while discharging the exhaust gas from 10 or recovering the remaining fuel components from the process inlet 11 to recover the remaining fuel components. Return to

【0004】燃料成分を含む化合物を酸化処理と還元処
理とで別々に処理し、これらの処理を同時に利用するこ
とはないためにこのような多数の装置構成となる。ま
た、触媒塔2や水分吸着装置3、4には比較的多量の燃
料(トリチウム)成分が吸着して常に残留する問題があ
った。さらには、触媒塔2に於ける酸化のための酸素の
供給、吸着装置3、4の再生周期などのプロセス運転上
の問題から、変動する1からの排ガスの量、濃度、組成
には対応が困難であった。
[0004] Since a compound containing a fuel component is separately treated in an oxidation treatment and a reduction treatment, and these treatments are not used at the same time, a large number of such apparatuses are used. Further, there is a problem that a relatively large amount of fuel (tritium) component is adsorbed and always remains in the catalyst tower 2 and the water adsorption devices 3 and 4. Further, due to problems in the process operation such as supply of oxygen for oxidation in the catalyst tower 2 and regeneration cycle of the adsorption devices 3 and 4, it is necessary to cope with the amount, concentration and composition of the fluctuating exhaust gas from 1. It was difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、この
水と炭化水素を分解して水素ガスを得る方法について、
従来不可避であった触媒反応や吸着反応を廃し、また酸
化反応による水の生成に伴う燃料成分の滞留量を極めて
少なくし、また使用する化学装置の個数を減少して運転
を容易にし、特に間欠的に供給される排ガスを処理する
に適した方法を提供することである。
An object of the present invention is to provide a method for obtaining hydrogen gas by decomposing water and hydrocarbons.
Catalytic and adsorption reactions, which were inevitable in the past, are eliminated.The amount of fuel components that accumulate due to the generation of water by the oxidation reaction is extremely reduced.Moreover, the number of chemical devices used is reduced to facilitate operation. It is an object of the present invention to provide a method suitable for treating exhaust gas that is supplied in a specific manner.

【0006】即ち、本発明は、核融合炉の排ガスを処理
して燃料成分を回収する方法に関するものであって、酸
化反応と還元反応を連続して行う電気化学反応装置に水
と水素の同位体交換反応を行う交換反応塔を組み合わせ
ることにより、高い効率、少ない反応物滞留量で間欠的
に供給される排ガスを処理するに適した運転方法を得る
ことを目的としたものである。
That is, the present invention relates to a method for recovering fuel components by treating the exhaust gas of a nuclear fusion reactor. The present invention relates to a method for isolating water and hydrogen in an electrochemical reactor for continuously performing an oxidation reaction and a reduction reaction. An object of the present invention is to obtain an operation method suitable for treating an intermittently supplied exhaust gas with high efficiency and a small amount of retained reactant by combining an exchange reaction column for performing a body exchange reaction.

【0007】[0007]

【課題を解決するための手段】本発明者は、この目的達
成のため、酸化反応と還元反応を連続して行う電気化学
反応装置によって、酸化処理を要する炭化水素成分、還
元処理を要する水成分を単一の装置内で同時に処理でき
ることに着目して研究した結果、単純なプロセス構成で
上記目的を達成する方法の考案に到達した。即ち、 (1) 核融合炉排ガスを、酸化反応と還元反応を連続
して行う電気化学反応装置に導き、排ガス中の炭化水素
を酸化して水と2酸化炭素とし、ついで同一装置内で核
融合炉排ガス中の水と前記炭化水素の酸化により発生し
た水を還元して水素を得る。
In order to achieve this object, the present inventor has proposed that an electrochemical reaction apparatus for continuously performing an oxidation reaction and a reduction reaction uses a hydrocarbon component requiring an oxidation treatment and a water component requiring a reduction treatment. As a result of focusing on the fact that can be simultaneously processed in a single device, a method for achieving the above object with a simple process configuration has been devised. That is, (1) the fusion reactor exhaust gas is led to an electrochemical reaction device that continuously performs an oxidation reaction and a reduction reaction, and the hydrocarbons in the exhaust gas are oxidized to water and carbon dioxide, and then the nuclear reactor in the same device. Hydrogen is obtained by reducing water in the fusion reactor exhaust gas and water generated by the oxidation of the hydrocarbon.

【0008】装置内に於ける酸素量の過不足は電気化学
反応装置の酸素収支制御能力によって自動的に調節され
るため、常に水蒸気と炭化水素の濃度およびその比率に
関わらず、炭化水素の酸化と水の還元は完全に行われ
る。
[0008] The excess or deficiency of the amount of oxygen in the apparatus is automatically adjusted by the oxygen balance control ability of the electrochemical reaction apparatus, so that the oxidation of hydrocarbons is always performed regardless of the concentration of steam and hydrocarbons and their ratio. And the water is completely reduced.

【0009】(2) 電気化学反応装置での反応で生じ
た水素は、その下流に設置された水素透過膜を有する装
置による透過によって精製、回収され、燃料成分として
再使用される。透過しない2酸化炭素などの電気化学反
応装置出口ガスはほとんど燃料成分を含有しないため、
排ガス処理システムへ送られる。
(2) Hydrogen generated by the reaction in the electrochemical reaction device is purified and recovered by permeation by a device having a hydrogen permeable membrane provided downstream thereof, and is reused as a fuel component. Since the gas at the outlet of the electrochemical reactor such as carbon dioxide that does not permeate contains almost no fuel component,
It is sent to an exhaust gas treatment system.

【0010】かくして、核融合排ガスに化合物として含
まれている燃料成分は、ほぼ完全に燃料として再使用さ
れる一方、燃料に含有されることが望ましくないHe、
C、Oなどの元素は、燃料を含まない気流の形で排出さ
れる。実験によるこのプロセスの回収効率は99.9%
に達することが確認されている。
Thus, the fuel component contained as a compound in the fusion exhaust gas is almost completely reused as a fuel, while He, which is undesirable to be contained in the fuel,
Elements such as C and O are discharged in the form of a fuel-free air flow. Experimental recovery of this process is 99.9%
Has been confirmed to reach.

【0011】(3) 燃料成分の回収率によっては、水
素透過膜を透過しない2酸化炭素などの電気化学反応装
置出口ガスは、再度の処理のために入口へ戻し、再度電
気化学反応装置にて処理することによって、燃料成分の
回収効率を改善することができる。かくして、本発明に
よる核融合炉排ガスの処理プロセスでは、燃料成分の1
回通過当たり99.9%の回収、あるいはそれより低い
効率でのワンススルー処理による回収、または2回以上
の処理によるより高い回収効率を選択して運転すること
が可能である。このような循環処理は、上記の間欠的な
排ガスの供給に対して適している。
(3) Depending on the recovery rate of the fuel component, the gas at the outlet of the electrochemical reaction device such as carbon dioxide which does not permeate the hydrogen permeable membrane is returned to the inlet for another treatment, and is again returned to the electrochemical reaction device. By performing the treatment, the recovery efficiency of the fuel component can be improved. Thus, in the process for treating a fusion reactor exhaust gas according to the present invention, one of the fuel components
It is possible to select and operate a 99.9% recovery per pass or recovery with a once-through process with lower efficiency or a higher recovery efficiency with two or more processes. Such a circulation process is suitable for the intermittent supply of the exhaust gas.

【0012】上記のような酸化還元を同時に行う電気化
学反応装置では、排ガス中の化合物が理想的には適当な
比率でなければ反応を完了することができない。例え
ば、メタンと水蒸気の反応系では、CH4┼2H2O→4
2┼CO2の反応となるため、排ガス組成がメタン:水
蒸気=1:2で丁度酸素の過不足なく反応が完了し、そ
れによりメタンが多い場合には酸素が不足してメタンを
完全に酸化できず、一方、水(水蒸気)が多い条件では
水(水蒸気)の分解により生ずる酸素が蓄積して反応を
継続することができなくなる。
In the above-described electrochemical reaction apparatus that simultaneously performs oxidation and reduction, the reaction cannot be completed unless the compounds in the exhaust gas are ideally in an appropriate ratio. For example, in a reaction system of methane and steam, CH 4 ┼2H 2 O → 4
Since the reaction becomes H 2 ┼CO 2, the reaction is completed without excess or deficiency of oxygen when the exhaust gas composition is methane: steam = 1: 2. On the other hand, under conditions where there is a large amount of water (steam), oxygen generated by the decomposition of water (steam) is accumulated and the reaction cannot be continued.

【0013】この問題を解決する一例として、酸素の供
給量を制御するために電気化学反応装置に新たに酸素イ
オン透過性の固体電解質管を設置し、電解質管の一方の
側に反応化合物を通じ、その他側に既知の酸素濃度のガ
スを通じ、酸素透過によって酸素を供給又は除去するこ
とによって酸素濃度を制御すること等が行われる。
As an example of solving this problem, a new solid electrolyte tube permeable to oxygen ions is installed in an electrochemical reactor to control the supply amount of oxygen, and a reaction compound is passed through one side of the electrolyte tube. The oxygen concentration is controlled by supplying or removing oxygen by passing oxygen through a gas having a known oxygen concentration on the other side.

【0014】[0014]

【本発明の実施の形態】(本発明の一実施形態)本発明
による核融合炉排ガスの処理方法を、図2によって説明
する。図においては、メタン及び水蒸気を原料とし、製
品として水素ガスを得るプロセスを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (One Embodiment of the Present Invention) A method for treating fusion reactor exhaust gas according to the present invention will be described with reference to FIG. The figure shows a process for obtaining hydrogen gas as a product using methane and steam as raw materials.

【0015】原料ガスは入口1より供給され、電気化学
反応装置2において酸化還元処理を受けて出口より水素
と2酸化炭素の混合ガスとして排出される。このガスは
パラジウム水素透過装置3に送られ、そこで純粋な燃料
成分として水素が4から回収される一方、未透過の燃料
を含まないガスは5から排出される。反応率が十分でな
い場合、排ガスは再度の処理のために6から入口へ戻
る。
A raw material gas is supplied from an inlet 1, undergoes an oxidation-reduction process in an electrochemical reactor 2, and is discharged as a mixed gas of hydrogen and carbon dioxide from an outlet. This gas is sent to a palladium hydrogen permeator 3 where hydrogen is recovered from 4 as a pure fuel component, while unpermeated fuel-free gas is discharged from 5. If the conversion is not sufficient, the exhaust gas returns from 6 to the inlet for reprocessing.

【0016】この一連の過程において、従来法における
ような多数の装置構成は必要なく、わずか2個の装置で
同様な効果が得られる。また、従来法にあったような触
媒塔や水分吸着装置がないため、燃料(トリチウム)成
分が吸着あるいは凝縮して残留しないので、燃料の滞留
量は極めて少なくなる。核融合炉ではこのトリチウム燃
料の滞留は、安全上、また燃料経済上重要な問題であ
り、本発明はこの点において優れている。さらには、電
気化学反応装置2では、酸素量の過不足は酸素収支制御
能力によって自動的に調節されるため、酸化のための酸
素の供給制御は必要なく、吸着装置の再生周期や切り替
えのプロセス運転上の問題もない。このため、1から供
給される核融合炉排ガスの量、濃度、組成が変動しても
対応が容易であり、ことに間欠的な排ガスの供給に対す
る対応に適している。
In this series of processes, a large number of devices are not required as in the conventional method, and the same effect can be obtained with only two devices. Further, since there is no catalyst tower or water adsorption device as in the conventional method, the fuel (tritium) component is not adsorbed or condensed and remains, so that the amount of retained fuel is extremely small. In a fusion reactor, the retention of tritium fuel is an important problem in terms of safety and fuel economy, and the present invention is excellent in this respect. Further, in the electrochemical reactor 2, the excess or deficiency of the oxygen amount is automatically adjusted by the oxygen balance control ability, so that there is no need to control the supply of oxygen for oxidation. No driving problems. Therefore, even if the amount, concentration, and composition of the fusion reactor exhaust gas supplied from 1 fluctuate, it is easy to cope with it, and it is particularly suitable for intermittent exhaust gas supply.

【0017】(本発明の他の実施形態)上記の核融合炉
の排ガスを処理して燃料成分を回収するプロセスにおい
て、排ガスを、その混合を防止する形式の容器により一
時回収したのち供給し、燃料回収後のガスを再循環させ
ることによって燃料成分の回収効率を向上することがで
きる。
(Other Embodiments of the Present Invention) In the above-described process of treating the exhaust gas of a fusion reactor to recover a fuel component, the exhaust gas is temporarily recovered by a container of a type for preventing the mixing thereof, and then supplied. By recirculating the gas after fuel recovery, the recovery efficiency of the fuel component can be improved.

【0018】第3図(a)、(b)は、図2の再循環に
よる処理を、それぞれ従来法のタンク7および混合を防
止する形式のタンク7によって行ったものである。容器
内での流れが(a)では完全混合であるのに対し、
(b)ではプラグ流となり、容器内での混合は起こらな
い。
FIGS. 3 (a) and 3 (b) show the recirculation process of FIG. 2 performed by a conventional tank 7 and a tank 7 of a type for preventing mixing, respectively. While the flow in the container is completely mixed in (a),
In (b), a plug flow occurs, and no mixing occurs in the container.

【0019】このときの燃料成分の回収率をη、タンク
の容量をV、ループの流量をF、燃料成分の濃度及び初
期濃度をそれぞれC、C0として、タンク内での成分濃
度を表すと、(a)では、濃度変化が C=C0exp(−ηVt/F) で表される。V=Ftとなる、すなわち循環する時間ご
との濃度を考えると、そのたびごとに濃度は、1/ηe
となる。
When the recovery rate of the fuel component at this time is η, the capacity of the tank is V, the flow rate of the loop is F, and the concentration and initial concentration of the fuel component are C and C 0 , respectively, the component concentration in the tank is represented. , (A), the change in density is represented by C = C 0 exp (−ηVt / F). Given that V = Ft, that is, the concentration at each circulating time, the concentration is 1 / ηe each time.
Becomes

【0020】今、簡単のためにタンク以外の部分の容積
を無視し、η=0.99とすると、この時間ごとに
(a)では約1/3になるのに対し、(b)は(0.9
9)nとなり、極めて早く燃料成分の回収が終了でき
る。したがって、同じ運転時間で、より高い効率で燃料
成分を回収し、排出ガス中の燃料成分の損失をへらすこ
とができる。たとえば、1からの原料ガスの供給が間欠
的で、各2周ずつ処理してからガスを排出することにす
ると、(a)では回収率が9 9.87%に満たないの
に対し、(b)では99.99%となり、燃料成分の損
失では約13倍の差がある。
For the sake of simplicity, ignoring the volume of the portion other than the tank and assuming that η = 0.99, (a) becomes about 1/3 every time, while (b) becomes ( 0.9
9) It becomes n , and the recovery of the fuel component can be completed very quickly. Therefore, the fuel component can be recovered with higher efficiency in the same operation time, and the loss of the fuel component in the exhaust gas can be reduced. For example, if the supply of the raw material gas from 1 is intermittent and the gas is discharged after processing two rounds each, the recovery rate in (a) is less than 99.87%, b) is 99.99%, and there is a difference of about 13 times in the loss of the fuel component.

【0021】[0021]

【本発明の効果】この例からわかるように、従来法にお
けるような多数の装置構成は必要なく、わずか2個の装
置で同様な効果が得られる。また、本発明においては、
燃料(トリチウム)成分の滞留量は極めて少なくなるの
で、装置の安全上、また燃料経済上優れている。
As can be seen from this example, a large number of devices are not required as in the conventional method, and similar effects can be obtained with only two devices. In the present invention,
Since the amount of retained fuel (tritium) components is extremely small, this is excellent in terms of safety of the apparatus and fuel economy.

【0022】さらには、本発明の電気化学反応装置で
は、酸素量の過不足は酸素収支制御能力によって自動的
に調節されるため、酸化のための酸素の供給制御は必要
なく、吸着装置の再生周期や切り替えのプロセス運転上
の問題もない。このため、核融合炉排ガスの量、濃度、
組成が変動しても対応が容易であり、ことに間欠的な供
給に対する対応に優れている。
Furthermore, in the electrochemical reaction apparatus of the present invention, the excess or deficiency of the oxygen amount is automatically adjusted by the ability to control the oxygen balance, so that there is no need to control the supply of oxygen for oxidation, and the regeneration of the adsorption apparatus is not required. There is no problem in the process operation of the cycle or switching. Therefore, the amount, concentration,
Even if the composition fluctuates, it is easy to cope with it, and particularly excellent in coping with intermittent supply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法による核融合炉排ガスの処理方法を示す
図である。
FIG. 1 is a view showing a conventional method for treating a fusion reactor exhaust gas.

【図2】本発明による核融合炉排ガスの処理方法を示す
図である。
FIG. 2 is a view showing a method for treating a fusion reactor exhaust gas according to the present invention.

【図3】図2の処理方法における再循環による処理を、
それぞれ、(a)従来法のタンクおよび(b)混合を防
止する形式のタンクによって行ったものを示す図であ
る。
FIG. 3 shows processing by recirculation in the processing method of FIG. 2;
It is a figure which shows what was performed by the tank of (a) conventional method and the tank of the type which prevents (b) mixing, respectively.

【符号の説明】[Explanation of symbols]

図1において 1 核融合炉排ガス入口 2 触媒塔 3 水分吸着装置(吸着中) 4 水分吸糟装置(再生中) 5 電解槽 6 電解槽出口ガス 7 電解槽副生物出口 8 パラジウム透過装置 9 回収燃料出口 10 排ガス出口 11 排出ガス戻り流 図2において 1 核融合炉排ガス入口 2 電気化学反応装置 3 パラジウム透過装置 4 回収燃料出口 5 排ガス出口 6 排出ガス戻り流 である。 図3において 1 核融合炉排ガス入口 2 電気化学反応装置 3 パラジウム透過装置 4 回収燃料出口 5 排ガス出口 6 排出ガス戻り流 7 (a)では完全混合タンク、(b)はプラグ流タン
In FIG. 1, 1 fusion reactor exhaust gas inlet 2 catalyst tower 3 moisture adsorption device (during adsorption) 4 moisture absorption device (during regeneration) 5 electrolytic tank 6 electrolytic tank outlet gas 7 electrolytic tank by-product outlet 8 palladium permeation device 9 recovered fuel Outlet 10 Exhaust gas outlet 11 Exhaust gas return flow In FIG. 2, 1 Fusion reactor exhaust gas inlet 2 Electrochemical reactor 3 Palladium permeation device 4 Recovered fuel outlet 5 Exhaust gas outlet 6 Exhaust gas return flow. In Fig. 3, 1 fusion reactor exhaust gas inlet 2 electrochemical reactor 3 palladium permeation device 4 recovered fuel outlet 5 exhaust gas outlet 6 exhaust gas return flow 7 (a) is a complete mixing tank, (b) is a plug flow tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河村 繕範 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 岩井 保則 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 西 正孝 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kawanori Nomura 2-4, Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki Pref. Japan Atomic Energy Research Institute Tokai Research Institute (72) Inventor Yasunori Iwai, Tokai-mura, Naka-gun, Ibaraki (2) Inventor Masataka Nishi 2-4, Shirane, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重水素とトリチウムの核融合反応を利用
する核融合炉の排ガス中の化合物を処理して燃料成分を
回収するプロセスにおいて、酸化反応と還元反応を連続
して行う電気化学反応装置によって化合物中の燃料成分
を再利用可能な水素に転換することを特徴とする処理方
法。
1. An electrochemical reaction apparatus for continuously performing an oxidation reaction and a reduction reaction in a process for treating a compound in an exhaust gas of a fusion reactor utilizing a nuclear fusion reaction between deuterium and tritium to recover a fuel component. And converting the fuel component in the compound into reusable hydrogen.
【請求項2】 上記の核融合炉の排ガスを処理して燃料
成分を回収するプロセスにおいて、燃料回収後の排ガス
を混合を防止する形式の容器において一時的に回収した
後に核融合炉の排ガスに供給することにより、燃料回収
後のガスを再循環させることによって燃料成分の回収効
率を向上することを特徴とする請求項1に記載の処理方
法。
2. In the above-mentioned process of treating the exhaust gas of a fusion reactor and recovering a fuel component, the exhaust gas after the fuel recovery is temporarily recovered in a container of a type for preventing mixing, and then recovered into the exhaust gas of the fusion reactor. 2. The processing method according to claim 1, wherein the supply of the fuel improves the recovery efficiency of the fuel component by recirculating the gas after the fuel recovery.
JP10071997A 1998-03-20 1998-03-20 Treatment method of nuclear fusion furnace exhaust gas Pending JPH11271483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10071997A JPH11271483A (en) 1998-03-20 1998-03-20 Treatment method of nuclear fusion furnace exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10071997A JPH11271483A (en) 1998-03-20 1998-03-20 Treatment method of nuclear fusion furnace exhaust gas

Publications (1)

Publication Number Publication Date
JPH11271483A true JPH11271483A (en) 1999-10-08

Family

ID=13476636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10071997A Pending JPH11271483A (en) 1998-03-20 1998-03-20 Treatment method of nuclear fusion furnace exhaust gas

Country Status (1)

Country Link
JP (1) JPH11271483A (en)

Similar Documents

Publication Publication Date Title
KR101767894B1 (en) Nitrogen circulation type system and method for treating nitrogen oxide
JP3518112B2 (en) Fuel cell water treatment equipment
SU1440339A3 (en) Method of separating isotopes of hydrogen from inert gas
US7267710B2 (en) Method of and apparatus for regenerating adsorbent
JPH04190831A (en) Recycling system for carbon dioxide as renewable resource
JPH0833491B2 (en) Method and apparatus for decontaminating gaseous waste in a nuclear fuel cycle of a fusion reactor
JPS5843717B2 (en) Device for removing tritium from light and heavy water
JPS5982925A (en) Removal of hydrogen sulfide
WO2020233030A1 (en) Device and method for synergistic recover of sulfur and hydrogen resources from hydrogen sulfide acid gas
JP2008100211A (en) Mixed gas separation method and system
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
US7807040B2 (en) Recovery process
JP7181367B2 (en) A new tritium system and a new permeation system for separating tritium from radioactive waste
KR20190017475A (en) Method for Simultaneous Treating Nitrogen Oxides and Sulfur Oxides using Iron Ethylene diamine tetraacetic acid
JP2004174369A (en) Gas treatment method and system therefor
JP2009121939A (en) Tritium recovery system
JPH11271483A (en) Treatment method of nuclear fusion furnace exhaust gas
CN105833724A (en) Sintering flue gas synchronous desulfurization and denitration process based on optical-electric type fenton coupling regeneration
JPH07316571A (en) Energy recovery system
US4304645A (en) Process for removing helium and other impurities from a mixture containing deuterium and tritium, and a deuterium/tritium mixture when purified in accordance with such a process
CN108404615B (en) Method and device for preparing sulfuric acid and nitric acid by synchronously removing sulfur and nitrate
CN107789953B (en) Method and device for flue gas desulfurization
RU2500590C1 (en) Spacecraft regenerative life support system
GB2405989A (en) Process and plant for treating alkali metals charged with tritium or components contaminated with alkali metals charged with tritium
EP4238630A1 (en) Electrolytic regeneration of co2 rich alkaline absorbent for co2 recovery