JPH11271242A - Internal form observation method for hollow elastic body and deformation test method - Google Patents

Internal form observation method for hollow elastic body and deformation test method

Info

Publication number
JPH11271242A
JPH11271242A JP10092273A JP9227398A JPH11271242A JP H11271242 A JPH11271242 A JP H11271242A JP 10092273 A JP10092273 A JP 10092273A JP 9227398 A JP9227398 A JP 9227398A JP H11271242 A JPH11271242 A JP H11271242A
Authority
JP
Japan
Prior art keywords
elastic body
ray
hollow
sectional image
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10092273A
Other languages
Japanese (ja)
Inventor
Michiharu Hikosaka
道治 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP10092273A priority Critical patent/JPH11271242A/en
Publication of JPH11271242A publication Critical patent/JPH11271242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To clearly observe the inside surface form of the hollow part of a nonmetallic hollow elastic body such as rubber or synthetic resin by providing the sectional image of the elastic body by use of a computer tomography utilizing non-biological physical characteristic. SOLUTION: An X-ray is projected from an X-ray tube 12 toward an elastic body 18 by an X-ray generating unit 22, and a rotary frame 12 is rotated. The X-ray multidirectionally projected to the elastic body 18 and transmitted by the elastic body 18 is detected as X-ray intensity signal by an X-ray detector 16, and the detection signal is digitized and transferred to a CPU 20. In the CPU 20, a calculation is performed according to an algorithm such as reverse projection and sucessive approximation according to a preset program to reconfigure the image from the resulting multidirectional X-ray transmission data, and the image data is stored in an external memory device 24 using a magnetic memory medium. As occasion demands, the data is displayed as the sectional image of the elastic body 18 so as to be visually confirmable by an external display device 26 such as CRT.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、中空構造を有する弾性体の内部
形状を明瞭に観察することの出来る新規な観察方法と、
そのような中空弾性体の荷重作用時における変形形状を
高精度に測定することの出来る新規な変形試験方法に関
するものである。
TECHNICAL FIELD The present invention relates to a novel observation method capable of clearly observing the internal shape of an elastic body having a hollow structure,
The present invention relates to a novel deformation test method capable of measuring a deformed shape of such a hollow elastic body under a load action with high accuracy.

【0002】[0002]

【背景技術】ゴムや合成樹脂等のエラストマ材からなる
弾性体は、従来から、防振連結体や防振支持体,衝撃吸
収体などとして、自動車等の車両や建築,電気機器等、
極めて広い分野で用いられているが、このような弾性体
では、目的とする性能等を安定して得るために、材質検
査の他、製品形状や寸法の検査等も必要とされる場合が
ある。また、外的荷重による変形量が大きい場合には、
荷重入力前の形状だけでなく、荷重入力による変形時の
形状の検査も重要となる場合があり、特に、変形形状が
耐荷重性能や耐久性等に与える影響が大きいことから、
変形形状の測定は、製品設計の際に重要なデータの一つ
となることが多い。
BACKGROUND ART An elastic body made of an elastomer material such as rubber or synthetic resin has been used as an anti-vibration connector, an anti-vibration support, a shock absorber, and the like for vehicles such as automobiles, architecture, electric equipment, and the like.
Although it is used in an extremely wide field, such an elastic body may require inspection of the product shape and dimensions in addition to material inspection in order to stably obtain desired performance and the like. . If the amount of deformation due to external load is large,
In addition to the shape before the load input, inspection of the shape at the time of deformation by the load input may be important, especially since the deformed shape has a large effect on load-bearing performance and durability.
The measurement of the deformed shape is often one of important data when designing a product.

【0003】ところで、中実構造の弾性体であれば、そ
の製品寸法や変形形状の観察および測定を、弾性体の外
面形状だけを対象として容易に行うことが出来るが、中
空構造の弾性体の場合、中空内面の形状が性能等に与え
る影響が大きいにも拘わらず、その中空内面の形状は、
外面形状から推定するしかなく、そのために、弾性体の
製品寸法や変形形状の観察および測定を、十分な精度を
もって行うことが難しかったのである。
[0003] By the way, if the elastic body has a solid structure, it is possible to easily observe and measure the product dimensions and deformed shape only for the outer surface shape of the elastic body. In the case, the shape of the hollow inner surface has a large effect on the performance, etc.
It has to be estimated from the outer surface shape, which makes it difficult to observe and measure the product dimensions and deformed shape of the elastic body with sufficient accuracy.

【0004】具体的には、例えば、軸方向に貫通した中
空孔が設けられた略円筒形状を有し、自動車の緩衝器
(ショックアブソーバ)のピストンロッドに外挿装着さ
れて、過大な衝撃的荷重が入力された際に軸方向に圧縮
変形せしめられることにより、サスペンション機構の底
付き感を緩和する、ゴム弾性体や発泡ポリウレタン(ウ
レタンフォーム)等の弾性材からなるバンプストッパに
おいては、優れた緩衝性能や耐久性を得るために、荷重
入力時における座屈的変形を防止すると共に、中空孔内
周面のピストンロッドへの干渉を防止することが、重要
である。ところが、バンプストッパにおける座屈的変形
やピストンロッドへの干渉の状態は、外部からの観察だ
けで認識することが極めて困難であるために、その性能
の把握や最適な設計が非常に難しいという問題があった
のである。
[0004] Specifically, for example, it has a substantially cylindrical shape provided with a hollow hole penetrating in the axial direction, and is externally mounted on a piston rod of a shock absorber (automobile shock absorber) of an automobile, so as to have an excessively large shock. An excellent bump stopper made of an elastic material such as a rubber elastic body or a polyurethane foam (urethane foam), which is compressed and deformed in the axial direction when a load is input, thereby reducing the feeling of bottoming of the suspension mechanism. In order to obtain cushioning performance and durability, it is important to prevent buckling deformation at the time of load input and to prevent the inner peripheral surface of the hollow hole from interfering with the piston rod. However, it is extremely difficult to recognize the state of buckling deformation and interference with the piston rod in the bump stopper only by external observation, so it is very difficult to grasp the performance and optimize the design. There was.

【0005】なお、このような問題に対処するために、
X線テレビやX線フィルム等のX線イメージングシステ
ムを用い、X線を一方向に透過させた透過X線によって
得られた、弾性体の一方向での透視像を利用することも
考えられる。ところが、かかるX線の透視像では、必ず
しも明瞭な外形線を得ることが出来ず、特に、周囲が同
一の弾性材で囲まれた中空部分は、周壁部の全体でX線
の吸収程度が略同じであるために、中空部分の内周面の
外形線を認識することが極めて困難で、満足できる実用
性が得られなかった。
[0005] In order to deal with such a problem,
It is also conceivable to use an X-ray imaging system such as an X-ray television or an X-ray film, and use a perspective image of the elastic body in one direction obtained by transmitted X-rays in which X-rays are transmitted in one direction. However, in such X-ray fluoroscopic images, it is not always possible to obtain a clear outline, and in particular, the hollow portion surrounded by the same elastic material has a degree of absorption of X-rays substantially in the entire peripheral wall portion. Because they are the same, it is extremely difficult to recognize the outline of the inner peripheral surface of the hollow portion, and satisfactory practicality has not been obtained.

【0006】[0006]

【解決課題】ここにおいて、本発明は、上述の如き事情
を背景として為されたものであって、その解決課題とす
るところは、ゴムや合成樹脂等の非金属の中空弾性体に
おける中空部の内周面形状を明瞭に観察することの出来
る新規な観察方法を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a hollow elastic body made of a nonmetallic hollow elastic material such as rubber or synthetic resin. An object of the present invention is to provide a novel observation method capable of clearly observing the inner peripheral surface shape.

【0007】また、本発明は、そのような非金属の中空
弾性体において、外的荷重の作用により変形した中空部
の内周面形状を、高精度に測定することの出来る新規な
変形試験方法を提供することも、目的とする。
Further, the present invention provides a novel deformation test method capable of measuring the shape of the inner peripheral surface of a hollow portion of such a nonmetallic hollow elastic body deformed by the action of an external load with high accuracy. The purpose is also to provide.

【0008】[0008]

【解決手段】そして、このような課題を解決するため
に、中空弾性体の内部形状観察方法に関する本発明の特
徴とするところは、中空構造を有する非金属弾性体の内
部形状を観察するに際して、非生物的な物理特性を利用
したコンピュータ断層撮影法を用いて、弾性体の断面像
を得ることにより、該弾性体の内部形状を観察すること
にある。
In order to solve such a problem, a feature of the present invention relating to a method for observing the internal shape of a hollow elastic body is that when observing the internal shape of a nonmetal elastic body having a hollow structure, An object of the present invention is to observe the internal shape of an elastic body by obtaining a cross-sectional image of the elastic body by using a computer tomography method utilizing abiotic physical characteristics.

【0009】また、前述の如き課題を解決するために、
中空弾性体の変形試験方法に関する本発明の特徴とする
ところは、中空構造を有する非金属弾性体の変形試験方
法であって、弾性体に外的荷重を及ぼした状態で、非生
物的な物理特性を利用したコンピュータ断層撮影法によ
って得られた該弾性体の断面像を用い、かかる弾性体の
変形形状を測定することにある。
Further, in order to solve the above-mentioned problems,
A feature of the present invention relating to a deformation test method for a hollow elastic body is a deformation test method for a non-metal elastic body having a hollow structure, wherein a non-living physical property is applied in a state where an external load is applied to the elastic body. An object of the present invention is to measure a deformed shape of the elastic body by using a cross-sectional image of the elastic body obtained by a computer tomography method using characteristics.

【0010】なお、本発明方法において、観察乃至は測
定の対象となる中空弾性体としては、コンピュータ断層
撮影法によって中空内面形状の撮影が可能な材質であれ
ば良く、一般に、ゴム弾性体や合成樹脂等の材質からな
る弾性体に対して、本発明方法が好適に適用される。ま
た、コンピュータ断層撮影法としては、中空弾性体の中
空内面形状を出来るだけ明瞭に撮影できるように、弾性
体の材質等を考慮して、従来から公知の非生物的な物理
特性、例えば物質のX線等の電磁波吸収特性や原子の磁
気系の共鳴特性を利用したコンピュータ断層撮影法が、
適宜に選択されて採用される。具体的には、本発明にお
けるコンピュータ断層撮影は、例えば、医療分野で実用
化されているX線CT(X−ray computed tomography)
や磁気共鳴CT(magnetic resonance imaging) が、そ
れらの装置を、略そのまま用いて実施することが可能で
あり、特に、強磁性材等を一部に有するような場合等に
は、X線CT法が有利に採用される。
[0010] In the method of the present invention, the hollow elastic body to be observed or measured may be any material capable of photographing the shape of the hollow inner surface by computer tomography. The method of the present invention is suitably applied to an elastic body made of a material such as a resin. In addition, as computed tomography, a conventionally known abiotic physical property, such as a substance, is used in consideration of the material and the like of the elastic body so that the hollow inner surface shape of the hollow elastic body can be photographed as clearly as possible. Computed tomography using the absorption characteristics of electromagnetic waves such as X-rays and the resonance characteristics of the magnetic system of atoms,
It is appropriately selected and adopted. Specifically, the computer tomography according to the present invention is, for example, an X-ray computed tomography (X-ray CT) practically used in the medical field.
And magnetic resonance imaging (magnetic resonance imaging) can be carried out using these devices substantially as they are. In particular, when there is a ferromagnetic material or the like in a part, the X-ray CT method is used. Is advantageously employed.

【0011】すなわち、このような本発明は、非金属の
弾性体の中空内面形状を観察するに際して、弾性体の物
理特性を利用したコンピュータ断層撮影が有利に採用さ
れ得ることを、新たに見い出したことに基づいて為され
たものであり、それにより、一方向でのX線の透過像で
は明瞭な断面形状線を得ることができなかった中空部の
内面の断面形状も、コンピュータ断層撮影法に従って画
像データを記憶・蓄積し、それを再編成処理することに
よって、極めて明瞭な形状線を有する断面形状として得
ることが出来るのである。それ故、かかるコンピュータ
断層撮影法によって得られた断面像を利用することによ
り、弾性体の内部形状を容易に且つ高精度に観察や測定
することが可能となるのである。
That is, the present invention has newly found that when observing the shape of the hollow inner surface of a nonmetallic elastic body, computed tomography utilizing the physical characteristics of the elastic body can be advantageously employed. Therefore, the cross-sectional shape of the inner surface of the hollow portion, for which a clear cross-sectional shape line could not be obtained in a transmission image of X-rays in one direction, is also calculated according to computed tomography. By storing and accumulating the image data and performing a reorganization process, it is possible to obtain a cross-sectional shape having a very clear shape line. Therefore, it is possible to observe and measure the internal shape of the elastic body easily and with high accuracy by using the cross-sectional image obtained by the computed tomography.

【0012】なお、本発明に従う中空弾性体の内部形状
観察方法では、中空弾性体を、外的荷重が及ぼされてい
ない状態でも、或いは外的荷重が及ぼされて弾性変形せ
しめられた状態でも、その中空内部形状を観察すること
ができる。
In the method for observing the internal shape of a hollow elastic body according to the present invention, the hollow elastic body can be elastically deformed under an external load or under an external load. The hollow internal shape can be observed.

【0013】また、本発明に従う中空弾性体の変形試験
方法では、外部からの観察が極めて困難な荷重条件下で
も、弾性体の変形状態下における中空内部形状を容易に
測定することが出来るのであり、その測定結果を設計等
に利用することによって、より好適な設計に基づく弾性
体の性能向上が容易に実現可能となるのである。
Further, the method for testing the deformation of a hollow elastic body according to the present invention makes it possible to easily measure the internal shape of the hollow body under the deformed state of the elastic body even under a load condition where observation from the outside is extremely difficult. By using the measurement results for design and the like, it is possible to easily realize an improvement in the performance of the elastic body based on a more suitable design.

【0014】特に、本発明に従う中空弾性体の変形試験
方法では、例えば、弾性体の中空部分に他部材が装着さ
れるものであって、かかる弾性体に対する他部材の装着
状態で得られた、コンピュータ断層撮影法による断面像
を用いることも、可能である。これにより、従来では極
めて困難であった、弾性体の変形時における他部材への
影響や干渉等も、容易に且つ明瞭に測定することが出来
るのであり、その測定結果が設計等に有利に利用され得
るのである。
In particular, in the method for testing the deformation of a hollow elastic body according to the present invention, for example, another member is mounted on a hollow portion of the elastic body, and the other member is mounted on the elastic body. It is also possible to use a cross-sectional image by computer tomography. This makes it possible to easily and clearly measure the influence and interference with other members when the elastic body is deformed, which was extremely difficult in the past, and the measurement results are advantageously used for design and the like. It can be done.

【0015】[0015]

【発明の実施の形態・実施例】以下、本発明を更に具体
的に明らかにするために、本発明の実施形態について、
図面を参照しつつ、詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described.
This will be described in detail with reference to the drawings.

【0016】先ず、図1には、本発明方法に用いられる
コンピュータ断層撮影装置の構成概略が示されている。
このコンピュータ断層撮影装置10は、医療機器分野に
おいてX線CT装置と称される断層撮影装置の一種であ
って、物質に固有のX線透過特性を利用して得られた複
数方向からの投影データをデジタル化してコンピュータ
により処理することで、断面像を再構成するものであ
る。
First, FIG. 1 shows a schematic configuration of a computer tomography apparatus used in the method of the present invention.
The computed tomography apparatus 10 is a kind of tomography apparatus called an X-ray CT apparatus in the field of medical equipment, and is projection data from a plurality of directions obtained by using an X-ray transmission characteristic inherent to a substance. Is digitized and processed by a computer to reconstruct a cross-sectional image.

【0017】より詳細には、かかるコンピュータ断層撮
影装置10は、円環状の回転架台12を備えており、こ
の回転架台12によって、X線を発生するX線管14
と、該X線管14から投射されたX線を検出するX線検
出器16が、互いに対向位置して支持されている。そし
て、図示されているように、被観察体としての弾性体1
8を、回転架台12内におけるX線管14とX線検出器
16の対向面間に位置決め配置した後、外部の操作パネ
ル等の操作装置17で測定開始信号を入力すると、CP
U20により、予め設定されたプログラムに従って、高
圧発生ユニットやX線制御ユニット等からなるX線発生
ユニット22によってX線管12から弾性体18に向か
ってX線が投射されると共に、回転架台12が回転せし
められる。これにより、複数の方向から弾性体18に投
射されて、弾性体18を透過したX線が、X線検出器1
6によって、X線強度信号として検出され、この検出信
号が収集されてデジタル信号化された後に、CPU20
に転送される。そして、CPU20で、予め設定された
プログラムに従い、例えば逆投影法や逐次近似法,フー
リエ変換法,フィルタ補正逆投影法,重畳積分法等の公
知のアルゴリズムに従って計算が行われることにより、
得られた複数方向のX線透過データから、画像が再構成
され、この画像データが、磁気記憶媒体等を利用した外
部記憶装置24に記憶されると共に、必要に応じてCR
T等の外部表示装置26によって、弾性体18の断面画
像として視認可能に表示されるようになっている。
More specifically, the computed tomography apparatus 10 includes an annular rotating base 12, and the rotating base 12 causes an X-ray tube 14 that generates X-rays.
And an X-ray detector 16 for detecting X-rays projected from the X-ray tube 14 are supported at positions facing each other. Then, as shown in FIG.
8 is positioned between the opposing surfaces of the X-ray tube 14 and the X-ray detector 16 in the rotating gantry 12, and when a measurement start signal is input by an operation device 17 such as an external operation panel, CP
According to U20, X-rays are projected from the X-ray tube 12 toward the elastic body 18 by the X-ray generation unit 22 including a high-pressure generation unit and an X-ray control unit according to a preset program, and the rotating gantry 12 is It is rotated. As a result, the X-rays projected onto the elastic body 18 from a plurality of directions and transmitted through the elastic body 18 are reflected by the X-ray detector 1.
6, the signal is detected as an X-ray intensity signal, and the detected signal is collected and converted into a digital signal.
Is forwarded to Then, the CPU 20 performs the calculation according to a preset algorithm, for example, according to a known algorithm such as a back projection method, a successive approximation method, a Fourier transform method, a filtered back projection method, and a convolution method.
An image is reconstructed from the obtained X-ray transmission data in a plurality of directions, and this image data is stored in an external storage device 24 using a magnetic storage medium or the like, and a CR
A cross-sectional image of the elastic body 18 is visibly displayed by an external display device 26 such as T.

【0018】なお、このようなコンピュータ断層撮影装
置10は、医療分野で用いられているものをそのまま用
いることも可能であるが、被観察体18の大きさ等を考
慮して、よりコンパクトな装置を用いることが可能であ
り、また、回転架台12を採用する代わりに、被観察体
18を一軸回りに回転させるようにしても良い。更に、
被観察体18の形状等を考慮し、簡単な形状であれば、
X線の投射方向を少なくしたり、画像再構成のためのア
ルゴリズムの簡略化等によって、装置構成の更なる簡略
化が図られ得る。或いは、被観察体18が、生体でな
く、X線被爆量を特に考慮する必要がないことから、明
瞭な断面像が得られる様に、投射X線の強度等を設定す
ることも可能である。
Although the computer tomography apparatus 10 used in the medical field can be used as it is, a more compact apparatus can be used in consideration of the size of the object 18 to be observed. Can be used, and instead of employing the rotating gantry 12, the observed object 18 may be rotated around one axis. Furthermore,
Considering the shape of the observed body 18 and the like, if the shape is simple,
The apparatus configuration can be further simplified by reducing the X-ray projection direction, simplifying an algorithm for image reconstruction, and the like. Alternatively, since the observation target 18 is not a living body and the X-ray exposure dose does not need to be particularly considered, it is also possible to set the intensity of the projected X-ray so that a clear cross-sectional image is obtained. .

【0019】因みに、上述の如き構造とされたX線CT
装置を用いて、自動車用のバンプストッパの弾性変形を
測定した場合の実施例について、説明する。バンプスト
ッパは、公知の如く、一般に略中空円筒形状を有してお
り、緩衝器のピストンロッドに外挿装着されるものであ
って、目的とする衝撃吸収特性や耐久性を安定して確保
するためには、荷重入力による弾性変形時における座屈
的変形を防止すると共に、中空孔内周面のピストンロッ
ドへの干渉を防止することが、重要である。そこで、図
2に示されているように、中空部としての挿通孔28が
軸方向に貫設されてなるバンプストッパ30を、実際に
装着される緩衝器のピストンロッドと同じ外形寸法を有
するロッド32に外挿装着し、該ロッド32の軸方向一
方の端部に第一の押圧板34をねじ止め固定する一方、
ロッド32の軸方向他方から第二の押圧板36を外挿
し、図示しないねじ送り機構で、該第二の押圧板36を
第一の押圧板34に向かって接近方向に変位させること
により、第一及び第二の押圧板34,36の互いに平行
な対向面38,40間で、バンプストッパ30に対し
て、実際の装着状態下で及ぼされる最大荷重を静的荷重
として軸方向に入力して弾性変形状態に保持せしめた。
そして、この弾性変形状態にあるバンプストッパ30
を、被観察体として、X線CT装置にセットし、断面像
を得た。なお、本実施例で用いたバンプストッパ30の
材質は、発泡ポリウレタンであり、ロッド32および第
一,第二の押圧板34,36の材質は、何れも、アクリ
ル樹脂である。得られた断面像を、図3に示す。
Incidentally, the X-ray CT having the structure as described above is used.
An embodiment in the case where the elastic deformation of a bump stopper for an automobile is measured using the apparatus will be described. As is well known, the bump stopper generally has a substantially hollow cylindrical shape, is externally mounted on the piston rod of the shock absorber, and stably secures the intended shock absorption characteristics and durability. For this purpose, it is important to prevent buckling deformation at the time of elastic deformation due to load input and to prevent interference of the inner peripheral surface of the hollow hole with the piston rod. Therefore, as shown in FIG. 2, a bump stopper 30 having an insertion hole 28 as a hollow portion penetrating in the axial direction is replaced with a rod having the same outer dimensions as a piston rod of a shock absorber to be actually mounted. 32, the first pressing plate 34 is screwed and fixed to one end in the axial direction of the rod 32,
By externally inserting the second pressing plate 36 from the other axial direction of the rod 32 and displacing the second pressing plate 36 toward the first pressing plate 34 by a screw feed mechanism (not shown), The maximum load applied to the bump stopper 30 under the actual mounting state is input as a static load in the axial direction between the mutually opposing surfaces 38, 40 of the first and second pressing plates 34, 36 as a static load. It was kept in an elastically deformed state.
Then, the bump stopper 30 in the elastically deformed state.
Was set in an X-ray CT apparatus as an object to be observed, and a cross-sectional image was obtained. The material of the bump stopper 30 used in the present embodiment is polyurethane foam, and the material of the rod 32 and the first and second pressing plates 34 and 36 is an acrylic resin. FIG. 3 shows the obtained cross-sectional image.

【0020】図3に示された実施例結果としての断面像
からも明らかなように、本発明方法によれば、極めて明
瞭な断面像を得ることが出来、外部からは視認不可能で
あると共に、X線の透視像を用いても検出が極めて困難
であった中空孔28の内周面形状も、外周面形状と略同
じ程度に極めて明瞭に観察することが出来る。それ故、
得られた断面像を用いることによって、バンプストッパ
30における座屈的変形の有無や発生のおそれ、更には
ピストンロッドへの緩衝の有無や緩衝のおそれ等を容易
に検討することが可能であり、不具合の発見や未然防
止、或いは設計へのフィードバックによる最適設計化等
が容易に実現され得るのである。また、得られた断面像
は、コンピュータ処理によって、実物との縮尺を適当に
設定することも出来ることから、この断面像によって、
寸法測定や、変形量等を測定する試験等も有利に実施さ
れ得る。
As is clear from the cross-sectional images obtained as a result of the embodiment shown in FIG. 3, according to the method of the present invention, a very clear cross-sectional image can be obtained. The shape of the inner peripheral surface of the hollow hole 28, which has been extremely difficult to detect even using the X-ray fluoroscopic image, can be observed very clearly to the same extent as the outer peripheral surface shape. Therefore,
By using the obtained cross-sectional image, it is possible to easily examine the presence or absence of buckling deformation in the bump stopper 30, the presence or absence of buffering on the piston rod, the possibility of buffering, and the like. It is possible to easily realize the discovery and prevention of defects, or the optimal design by feedback to the design. In addition, since the obtained cross-sectional image can be appropriately set to a reduced scale with the real thing by computer processing, the
Dimension measurement, a test for measuring the amount of deformation, and the like can also be advantageously performed.

【0021】以上、本発明の実施形態と具体的な実施例
について詳述してきたが、これらはあくまでも例示であ
って、本発明は、上述の具体的な記載によって、何等、
限定的に解釈されるものでない。
The embodiments and specific examples of the present invention have been described in detail above. However, these are merely examples, and the present invention is not limited to the above-described specific description.
It is not to be construed as limiting.

【0022】例えば、前記実施例では、コンピュータ断
層撮影法として、X線CT装置を採用した場合の一具体
例を示したが、その他、磁気共鳴CT装置等も、被観察
体の材質等に応じて、適宜に採用され得る。
For example, in the above-described embodiment, a specific example in which an X-ray CT apparatus is employed as a computer tomography method has been described. And can be adopted as appropriate.

【0023】また、本発明は、例示のバンプストッパに
限らず、各種の中空構造弾性体の内部形状観察や変形試
験に際して採用され得ることは、勿論であり、例えば、
内部に非圧縮性流体が封入された流体室や、空気が封入
された空気室等が形成された中空構造の弾性体におい
て、変形時における流体室や空気室の変形状態の観察や
測定等にも、本発明は、好適に採用され得る。
Further, the present invention is not limited to the illustrated bump stopper, but may be employed for observing the internal shape of various hollow structural elastic bodies or performing a deformation test.
For observing and measuring the deformation state of the fluid chamber and air chamber during deformation of a hollow elastic body with a fluid chamber filled with an incompressible fluid or an air chamber filled with air, etc. However, the present invention can be suitably adopted.

【0024】さらに、例示の如き、弾性体の中空部分に
対してロッド等の他部材が装着された状態に限らず、弾
性体単体の内部形状観察や変形試験等、或いは他部材の
内部に組み込まれた弾性体の観察や変形試験等に際して
も、本発明は、有利に採用され得る。
Further, the present invention is not limited to a state in which another member such as a rod is attached to the hollow portion of the elastic body as shown in the example. The present invention can be advantageously employed also in observation of a deformed elastic body, deformation test, and the like.

【0025】[0025]

【発明の効果】上述の説明から明らかなように、本発明
によれば、弾性体の中空内面形状を観察するに際して、
弾性体の物理特性を利用したコンピュータ断層撮影が極
めて有利に採用され得ることが、明らかとなったのであ
り、特に、本発明に係る中空弾性体の内部形状観察方法
においては、外部からは視認不可能であると共に、X線
の透視像を用いても認識が極めて困難であった中空構造
の内周面形状も、極めて明瞭な形状線をもって、外周面
形状と略同じ程度に観察することが出来るのである。
As is apparent from the above description, according to the present invention, when observing the hollow inner surface shape of the elastic body,
It has been clarified that computed tomography utilizing the physical properties of the elastic body can be employed very advantageously. In particular, in the method for observing the internal shape of a hollow elastic body according to the present invention, it is invisible from the outside. It is possible to observe the inner peripheral surface shape of the hollow structure, which was extremely difficult to recognize even using the X-ray fluoroscopic image, with a very clear shape line, to the same extent as the outer peripheral surface shape. It is.

【0026】また、本発明に係る中空弾性体の変形試験
方法においては、弾性変形状態にある中空構造の内周面
形状も、弾性変形前と同様な明瞭な形状線をもって認識
することが出来ることから、弾性変形時における不具合
の発見や未然防止、或いは設計へのフィードバックによ
る最適設計化等が容易に実現され得るのである。
In the method for testing the deformation of a hollow elastic body according to the present invention, the inner peripheral surface shape of the hollow structure in the elastically deformed state can be recognized with the same clear shape line as before the elastic deformation. Therefore, it is possible to easily find and prevent a defect at the time of elastic deformation, or to optimally design by feedback to the design.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に用いられ得るコンピュータ断層撮
影装置の一例の構成概略図である。
FIG. 1 is a schematic configuration diagram of an example of a computed tomography apparatus that can be used in the method of the present invention.

【図2】図1に示された構造のX線CT装置を用いた、
本発明方法に従う観察方法を説明するための説明図であ
る。
FIG. 2 shows an X-ray CT apparatus having the structure shown in FIG.
It is an explanatory view for explaining the observation method according to the method of the present invention.

【図3】図1に示された構造のX線CT装置を用いて得
られた断面像の一具体例を示す、図2に示されたバンプ
ストッパの図面代用X線写真である。
FIG. 3 is a drawing substitute X-ray photograph of the bump stopper shown in FIG. 2, showing a specific example of a cross-sectional image obtained by using the X-ray CT apparatus having the structure shown in FIG.

【符号の説明】[Explanation of symbols]

10 コンピュータ断層撮影装置 28 挿通孔 30 バンプストッパ 32 ロッド DESCRIPTION OF SYMBOLS 10 Computed tomography apparatus 28 Insertion hole 30 Bump stopper 32 Rod

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中空構造を有する非金属弾性体の内部形
状を観察するに際して、 非生物的な物理特性を利用したコンピュータ断層撮影法
を用いて、前記弾性体の断面像を得ることにより、該弾
性体の内部形状を観察することを特徴とする中空弾性体
の内部形状観察方法。
When observing the internal shape of a non-metal elastic body having a hollow structure, a cross-sectional image of the elastic body is obtained by using a computed tomography method utilizing abiotic physical characteristics. A method for observing the internal shape of a hollow elastic body, comprising observing the internal shape of the elastic body.
【請求項2】 中空構造を有する非金属弾性体の変形試
験方法であって、 前記弾性体に外的荷重を及ぼした状態で、非生物的な物
理特性を利用したコンピュータ断層撮影法によって得ら
れた該弾性体の断面像を用い、かかる弾性体の変形形状
を測定することを特徴とする中空弾性体の変形試験方
法。
2. A method for testing deformation of a non-metallic elastic body having a hollow structure, wherein the method is performed by a computer tomography method using an abiotic physical property in a state where an external load is applied to the elastic body. A method for testing the deformation of a hollow elastic body, comprising measuring a deformed shape of the elastic body using a cross-sectional image of the elastic body.
【請求項3】 前記弾性体の中空部分に他部材が装着さ
れるものであって、かかる弾性体に対する該他部材の装
着状態で得られた、前記コンピュータ断層撮影法による
断面像を用いる請求項2に記載の中空弾性体の変形試験
方法。
3. A cross-sectional image obtained by mounting the other member on the hollow portion of the elastic body, the cross-sectional image obtained by the computed tomography method obtained in a state where the other member is mounted on the elastic body. 3. The deformation test method for a hollow elastic body according to 2.
JP10092273A 1998-03-19 1998-03-19 Internal form observation method for hollow elastic body and deformation test method Pending JPH11271242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10092273A JPH11271242A (en) 1998-03-19 1998-03-19 Internal form observation method for hollow elastic body and deformation test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10092273A JPH11271242A (en) 1998-03-19 1998-03-19 Internal form observation method for hollow elastic body and deformation test method

Publications (1)

Publication Number Publication Date
JPH11271242A true JPH11271242A (en) 1999-10-05

Family

ID=14049804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10092273A Pending JPH11271242A (en) 1998-03-19 1998-03-19 Internal form observation method for hollow elastic body and deformation test method

Country Status (1)

Country Link
JP (1) JPH11271242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476401B (en) * 2012-12-28 2015-03-11 Nidec Read Corp X-ray inspection device and method of determining quality
CN106290410A (en) * 2016-08-26 2017-01-04 西安航天动力机械厂 A kind of bilayer mistake that realizes is away from the combination unit synchronizing ray detection
CN108168475A (en) * 2017-12-18 2018-06-15 中国航发贵州黎阳航空动力有限公司 The measuring method of transporter burner inner liner shaped air film hole Special angle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476401B (en) * 2012-12-28 2015-03-11 Nidec Read Corp X-ray inspection device and method of determining quality
CN106290410A (en) * 2016-08-26 2017-01-04 西安航天动力机械厂 A kind of bilayer mistake that realizes is away from the combination unit synchronizing ray detection
CN106290410B (en) * 2016-08-26 2019-01-11 西安航天动力机械厂 It is a kind of to realize the double-deck wrong combination unit away from synchronous ray detection
CN108168475A (en) * 2017-12-18 2018-06-15 中国航发贵州黎阳航空动力有限公司 The measuring method of transporter burner inner liner shaped air film hole Special angle

Similar Documents

Publication Publication Date Title
Buljac et al. Digital volume correlation: review of progress and challenges
Bart-Smith et al. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping
CN1880949B (en) Method for calculating absorber-specific weighting coefficients and method for improving a contrast-to-noise ratio
US5495771A (en) Elasticity measuring method and elasticity measuring apparatus
Jiroušek et al. Evaluation of strain field in microstructures using micro-CT and digital volume correlation
US8075183B2 (en) Method of evaluating the resolution of a volumetric imaging system and image phantom used during the resolution evaluation
Jun-Yan et al. Measurement of spatial resolution of the micro-CT system
US20130256559A1 (en) Method and apparatus for aligning a multi-modality imaging system
JP2006501007A (en) Diagnostic scan device
Lecomte-Grosbras et al. Three-dimensional investigation of free-edge effects in laminate composites using x-ray tomography and digital volume correlation
Cruz‐Bastida et al. Hi‐Res scan mode in clinical MDCT systems: experimental assessment of spatial resolution performance
CN102525496A (en) Method to determine the value of a tube voltage, x-ray device, computing program and data carrier
JPH11271242A (en) Internal form observation method for hollow elastic body and deformation test method
US9289126B2 (en) Subject information obtaining apparatus, subject information obtaining method, and program
CN109803587B (en) Rotary structure for radiation imaging instrument
US20020110268A1 (en) Method for determining distortions in an image and calibration object therefor
JPS61182170A (en) Method and apparatus for reconstructing mapping by computer
CA2480641A1 (en) Passive movement of a patient within a magnetic resonance tomograph
JP4576534B2 (en) Magnetic resonance imaging apparatus and imaging method
CN102885634B (en) There is the x-ray imaging equipment of vibration stabilizing means and operate its method
US6842501B2 (en) Substance hardness measuring instrument, biological tissue hardness measuring instrument, and recording medium for outputting hardness data on substance when data is inputted to it
Radebe et al. Evaluation procedures for spatial resolution and contrast standards for neutron tomography
RU2755098C1 (en) Device for determining the structure of a material or samples under uniaxial compression and method for its use
Smith et al. Experimental measurement of strains using digital volume correlation
Merken et al. Implementation, validation and application of a tool for the assessment of the modulation transfer function and noise power spectrum of dental CBCT scanners