JPH11271172A - Shock wind tunnel testing device - Google Patents

Shock wind tunnel testing device

Info

Publication number
JPH11271172A
JPH11271172A JP7917898A JP7917898A JPH11271172A JP H11271172 A JPH11271172 A JP H11271172A JP 7917898 A JP7917898 A JP 7917898A JP 7917898 A JP7917898 A JP 7917898A JP H11271172 A JPH11271172 A JP H11271172A
Authority
JP
Japan
Prior art keywords
nozzle
melting
alloy containing
wind tunnel
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7917898A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujiwara
力 藤原
Makoto Senda
誠 千田
Koichi Nakamura
康一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7917898A priority Critical patent/JPH11271172A/en
Publication of JPH11271172A publication Critical patent/JPH11271172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a nozzle that is extremely strong against cracks, has extremely small melting and shape deformation of a channel surface, and requires less expensive material costs by forming the nozzle for generating a supersonic flow using a Cu alloy containing Cr and Zr. SOLUTION: W, Mo, Ta-W, Cu-W and Cu alloy containing Cr and Zr are selected as candidates for metal material with improved ductility and melting resistance properly for avoiding the crack of a channel surface and the generation of melting, a ductility test is extended, and the melting resistance property is drawn with a specific expression being standardized by a melt point Tm, a density ρ, a specific heat c, and a thermal conductivity k as an index, and a metal with a high index value is selected as a candidate. A nozzle was manufactured using the candidate material and a shock wind tunnel test was made. As a result, the nozzle made of W and Mo with small elongation results in a crack by one shock wave and hence does not play a role as the nozzle. Also, the nozzle made of Cu was deformed. On the other hand, the nozzle made of Cu alloy containing Cr and Zr had less amount of weight reduction and did not cause any crack even after testing at least for ten times, the deformation of the shape of the channel surface in a candidate material was small, and the Cu alloy containing Cr and Zr was found to be optimum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極超音速流中の供
試体への流れの作用を測定する空力加熱試験等に使用さ
れる衝撃風洞試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock tunnel test apparatus used for an aerodynamic heating test for measuring the action of a flow on a specimen in a hypersonic flow.

【0002】[0002]

【従来の技術】従来から使用されている衝撃風洞試験装
置の代表的なものとしては、米国カリフォルニア工科大
学のT5,独国ドイツ航空宇宙研究所(DLR)のHE
G等がある。
2. Description of the Related Art A typical example of a conventional shock wind tunnel test apparatus is T5 of the California Institute of Technology in the United States, and HE of the German Aerospace Laboratory (DLR) of Germany.
G and the like.

【0003】このような衝撃風洞試験装置で極超音速流
を発生させるノズルには、百数十MPaにもなる高圧
と、数十MJ/kgにもなる高エンタルピーのよどみ点状
態の気体がノズル内に発生する。このノズルの稼働時間
は、衝撃波管によって得られる気体のよどみ点状態の持
続時間に依存し、風洞によっても異なるが、1〜3msec
と極めて短時間である。
[0003] In a nozzle for generating a hypersonic flow in such a shock wind tunnel test apparatus, a gas in a stagnation point state having a high pressure as high as one hundred and several tens of MPa and a high enthalpy as high as several tens MJ / kg is used. Occurs within. The operating time of this nozzle depends on the duration of the stagnation point state of the gas obtained by the shock tube, and varies depending on the wind tunnel.
It is an extremely short time.

【0004】しかしながら、通過する極超音速流からノ
ズルに伝達される入熱量が極めて大きいため、使用する
材料によってはノズルに溶融や割れを生じ、流路面形状
を保持できなくなることがあった。なお、従来のノズル
において使用されていた材料は、通常、30%Cu−
W,Mo等であった。
However, since the amount of heat input transmitted from the passing hypersonic flow to the nozzle is extremely large, the nozzle may be melted or cracked depending on the material used, and the shape of the flow channel surface may not be maintained. The material used in the conventional nozzle is usually 30% Cu-
W, Mo, etc.

【0005】[0005]

【発明が解決しようとする課題】従来の衝撃風洞試験装
置においては、前記のように、ノズルの溶融や割れによ
り流路面形状が変形することがあるため、下流側に発生
させる極超音速流が所要のマッハ数に達することができ
ず、風洞試験ができなくなる、あるいは、計測データが
信頼性の低いものとなることがあった。
In the conventional shock wind tunnel test apparatus, the flow path surface shape may be deformed due to the melting or cracking of the nozzle as described above. In some cases, the required Mach number could not be reached and the wind tunnel test could not be performed, or the measurement data became unreliable.

【0006】また、ノズルの溶融や割れに伴い、ノズル
をひんぱんに交換する必要があった。更に、使用されて
いた30%Cu−W,Mo製のノズルは、素材費が高
く、衝撃風洞試験費の経費アップの要因となっていた。
本発明は上記の課題を解決しようとするものである。
In addition, the nozzle has to be frequently replaced due to melting or cracking of the nozzle. In addition, the 30% Cu-W, Mo nozzle used was expensive in material cost, which increased the cost of shock wind tunnel test costs.
The present invention seeks to solve the above problems.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、高温
・高圧の気体により超音速流を発生させるノズルを有す
る衝撃風洞試験装置において、CrとZrとを含有する
Cu合金によりノズルを形成したことを特徴としてい
る。
According to a first aspect of the present invention, there is provided an impact wind tunnel test apparatus having a nozzle for generating a supersonic flow by a high-temperature and high-pressure gas, wherein the nozzle is formed of a Cu alloy containing Cr and Zr. It is characterized by doing.

【0008】本発明は、まず、流路面の割れと溶融の発
生を回避するため、延性と耐溶融性に優れた金属材料の
候補を数種類選定した後、この候補材料を用いてノズル
を製作し、製作したノズルを衝撃風洞試験に供すること
により好適な金属材料を見出したものである。
According to the present invention, first, in order to avoid cracking and melting of the flow path surface, several types of metal materials having excellent ductility and melting resistance are selected, and then a nozzle is manufactured using the candidate materials. A suitable metal material was found by subjecting the manufactured nozzle to a shock wind tunnel test.

【0009】本発明に係るノズルの形成に用いるCrと
Zrとを含有するCu合金は、純Cuの耐割れ性、耐溶
融性を損なうことなく降伏強度を向上させた材料であ
り、安価な材料である。
The Cu alloy containing Cr and Zr used for forming the nozzle according to the present invention is a material having improved yield strength without impairing the cracking resistance and melting resistance of pure Cu, and is a low-cost material. It is.

【0010】そのため、従来の30%Cu−Wあるいは
Moを用いたノズルと比較し、割れに対して格段に強い
上に、流路面の溶融や形状変形も極めて小さく、また、
素材費も非常に安価なノズルの実現が可能となる。
Therefore, as compared with the conventional nozzle using 30% Cu-W or Mo, the nozzle is remarkably resistant to cracking, and the melting and shape deformation of the channel surface are extremely small.
It is possible to realize a nozzle with a very low material cost.

【0011】[0011]

【発明の実施の形態】本発明の実施の一形態に係る衝撃
風洞試験装置について、図1乃至図3により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A shock wind tunnel test apparatus according to an embodiment of the present invention will be described with reference to FIGS.

【0012】図1乃至図3により説明する本実施形態に
係る衝撃風洞試験装置においては、0〜1.0重量%の
Crと、0〜1.0重量%のZrとを含有するCu合金
によりノズルを形成している。
In the shock tunnel test apparatus according to the present embodiment described with reference to FIGS. 1 to 3, a Cu alloy containing 0 to 1.0% by weight of Cr and 0 to 1.0% by weight of Zr is used. A nozzle is formed.

【0013】本実施形態において、ノズルの形成用材料
に0〜1.0重量%のCrと0〜1.0重量%のZrを
含有するCu合金を用いるものとしたのは、候補材料の
選定と試験による材料の絞り込みを行ったことによるも
のであり、以下、その内容を説明する。
In this embodiment, the reason why a Cu alloy containing 0 to 1.0% by weight of Cr and 0 to 1.0% by weight of Zr is used as a material for forming a nozzle is to select a candidate material. This is because the materials were narrowed down by the test.

【0014】まず、候補材料の選定では、従来のノズル
において問題となっていた流路面の割れと溶融の発生を
回避するため、延性と耐溶融性に優れた金属材料を数種
類選定することとした。
First, in selecting candidate materials, several types of metal materials having excellent ductility and melting resistance were selected in order to avoid the occurrence of cracks and melting of the flow path surface, which were problems in conventional nozzles. .

【0015】延性については、伸びを指標とし、耐溶融
性については融点(Tm),密度(ρ),比熱(c),
熱伝導率(k)で規格化したTm(ρck)1/2 を指標
として図1を作成し、これらの指標が高い値を示す金属
材料を候補として選定した。
For ductility, elongation is used as an index. For melting resistance, melting point (Tm), density (ρ), specific heat (c),
FIG. 1 was created using Tm (ρck) 1/2 normalized by the thermal conductivity (k) as an index, and a metal material having a high value of these indexes was selected as a candidate.

【0016】この図1をもとに候補として選定された金
属材料は、W,Mo,Ta−2.5W,30%Cu−
W,Cr及びZrを含有するCu合金であった。なお、
図1中のTi,Fe,Alは、その位置付けを参考とし
て記載したものである。
The metal materials selected as candidates based on FIG. 1 are W, Mo, Ta-2.5 W, 30% Cu-
It was a Cu alloy containing W, Cr and Zr. In addition,
Ti, Fe, and Al in FIG. 1 are described with reference to their positioning.

【0017】この材料選定においては、耐溶融性指標T
m(ρck)1/2 を導入することにより、融点だけでな
く、密度,比熱,熱伝導率を加味した材料選定が可能と
なった。
In this material selection, the melting resistance index T
By introducing m (ρck) 1/2 , it became possible to select a material in consideration of not only the melting point but also the density, specific heat, and thermal conductivity.

【0018】次に、試験による材料の絞り込みでは、試
験の実施に先立って、上記候補として選定した金属材料
により図2に示す衝撃風洞用ノズルを製作し、これを衝
撃風洞試験装置に取付け、45MPa,23MJ/kgの
極超音速流を発生させて衝撃風洞試験を実施した。
Next, in narrowing down the materials by the test, prior to the test, a nozzle for an impact wind tunnel shown in FIG. 2 is manufactured from the metal material selected as the above candidate, and this nozzle is attached to an impact wind tunnel test device, and is subjected to 45 MPa. , 23 MJ / kg hypersonic flow was generated and a shock wind tunnel test was performed.

【0019】この試験は、試験前後の重量減少量の測定
を行うとともに、流路面の電子顕微鏡による溶融、欠損
の確認を行うものであり、図3はそれぞれの材料につい
ての重量減少量の測定結果を示している。
In this test, the weight loss before and after the test is measured, and melting and loss of the flow path surface are confirmed by an electron microscope. FIG. 3 shows the measurement results of the weight loss of each material. Is shown.

【0020】図3に示すように、Ta−2.5W,30
%Cu−Wは、試験回数を重ねると、重量減少量が大き
くなっていった。特に、30%Cu−Wでは、Cu部が
優先的に溶融飛散し、試験回数を重ねると、流路面が粗
くなる傾向のあることが分かった。
As shown in FIG. 3, Ta-2.5 W, 30
As for% Cu-W, the weight loss increased as the number of tests increased. In particular, it was found that in the case of 30% Cu-W, the Cu portion was preferentially melted and scattered, and when the number of tests was repeated, the flow path surface tended to be rough.

【0021】また、耐溶融性の指標であるTm(ρc
k)1/2 が大きくても、耐割れ性の指標である伸びが小
さい材料のW及びMoは、1回の高エネルギー衝撃波に
より割れが発生してしまい、ノズルとしての機能を果た
せないことが分かった。
Also, Tm (ρc
k) Even if the value of 1/2 is large, W and Mo, which are materials having small elongation, which are indicators of crack resistance, may not be able to function as a nozzle because cracks are generated by a single high-energy shock wave. Do you get it.

【0022】一方、図1に示すようにW及びMoと同様
にTm(ρck)1/2 の高い純Cuでは、割れや溶融は
発生しなかったが、衝撃波通過時にノズルが変形してし
まい、空力的に狙った形状を維持できないことが分かっ
た。これは降伏強度が不足しているためである。
On the other hand, as shown in FIG. 1, in the case of pure Cu having a high Tm (ρck) 1/2 like W and Mo, cracking and melting did not occur, but the nozzle was deformed during the passage of the shock wave. It turned out that the target shape could not be maintained aerodynamically. This is because the yield strength is insufficient.

【0023】これに対し、CrとZrを含有するCu合
金は、重量減少量が最も少なく、かつ10回の試験を行
った後も割れが発生せず、試験回数を重ねると、表面が
滑らかになる傾向が認められ、候補材料中で最も流路面
形状の変形が小さかった。
On the other hand, the Cu alloy containing Cr and Zr has the smallest weight loss, does not crack even after 10 tests, and has a smooth surface when the number of tests is repeated. The deformation of the channel surface shape was the smallest among the candidate materials.

【0024】以上より、純Cuの耐割れ性、耐溶融性を
損なうことなく、降伏強度を向上させた材料であるCr
及びZrを微量添加したCu合金が、衝撃風洞試験装置
に好適であることが分かった。
As described above, Cr which is a material having improved yield strength without impairing the crack resistance and melting resistance of pure Cu
It has been found that a Cu alloy containing a small amount of Zr and Zr is suitable for a shock wind tunnel test apparatus.

【0025】[0025]

【発明の効果】本発明は、高温・高圧の気体により極超
音速流を発生するノズルを有する衝撃風洞試験装置にお
いて、上記ノズルがCrとZrとを含有するCu合金に
より形成されたものとしたことによって、純Cuの耐割
れ性、耐溶融性を損なうことなく降伏強度を向上させ得
るため、従来の30%Cu−WあるいはMoを用いたノ
ズルと比較し、割れに対して格段に強い上に、流路面の
溶融や形状変形も極めて小さく、また、1/5〜1/1
0と非常に安価なノズルの実現が可能となる。
According to the present invention, there is provided an impact wind tunnel test apparatus having a nozzle for generating a hypersonic flow by a high-temperature and high-pressure gas, wherein the nozzle is formed of a Cu alloy containing Cr and Zr. As a result, the yield strength can be improved without impairing the cracking resistance and melting resistance of pure Cu. Therefore, compared to a conventional nozzle using 30% Cu-W or Mo, it is much more resistant to cracking. In addition, melting and shape deformation of the flow channel surface are extremely small, and 1/5 to 1/1.
It is possible to realize a very inexpensive nozzle of 0.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る衝撃風洞試験装置
に用いるノズルの材料の説明図である。
FIG. 1 is an explanatory diagram of a material of a nozzle used in a shock wind tunnel test device according to an embodiment of the present invention.

【図2】上記一実施形態に係る衝撃風洞試験装置に用い
るノズルの形状の説明図で、(a)は正面図、(b)は
(a)のA−A矢視図である。
FIGS. 2A and 2B are explanatory views of the shape of a nozzle used in the shock wind tunnel test apparatus according to the embodiment, wherein FIG. 2A is a front view and FIG. 2B is a view taken along the line AA of FIG.

【図3】上記一実施形態に係る衝撃風洞試験における各
材料の重量減少量の説明図である。
FIG. 3 is an explanatory diagram of a weight reduction amount of each material in a shock wind tunnel test according to the embodiment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温・高圧の気体により超音速流を発生
させるノズルを有する衝撃風洞試験装置において、Cr
とZrとを含有するCu合金によりノズルを形成したこ
とを特徴とする衝撃風洞試験装置。
An impact wind tunnel test apparatus having a nozzle for generating a supersonic flow by a high-temperature and high-pressure gas, comprising:
Wind tunnel testing device, wherein a nozzle is formed of a Cu alloy containing Zr and Zr.
JP7917898A 1998-03-26 1998-03-26 Shock wind tunnel testing device Pending JPH11271172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7917898A JPH11271172A (en) 1998-03-26 1998-03-26 Shock wind tunnel testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7917898A JPH11271172A (en) 1998-03-26 1998-03-26 Shock wind tunnel testing device

Publications (1)

Publication Number Publication Date
JPH11271172A true JPH11271172A (en) 1999-10-05

Family

ID=13682734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7917898A Pending JPH11271172A (en) 1998-03-26 1998-03-26 Shock wind tunnel testing device

Country Status (1)

Country Link
JP (1) JPH11271172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507203A (en) * 2011-11-03 2012-06-20 中国科学院力学研究所 Shockwave wind tunnel-based self-starting test device for hypersonic air inlet channel
US10120477B2 (en) 2012-09-28 2018-11-06 Murata Manufacturing Co., Ltd. Push amount detecting sensor and touch input device
CN113624440A (en) * 2021-08-05 2021-11-09 中国航空工业集团公司沈阳飞机设计研究所 Method for arranging pulsating pressure measuring points of high-speed buffeting test model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507203A (en) * 2011-11-03 2012-06-20 中国科学院力学研究所 Shockwave wind tunnel-based self-starting test device for hypersonic air inlet channel
US10120477B2 (en) 2012-09-28 2018-11-06 Murata Manufacturing Co., Ltd. Push amount detecting sensor and touch input device
CN113624440A (en) * 2021-08-05 2021-11-09 中国航空工业集团公司沈阳飞机设计研究所 Method for arranging pulsating pressure measuring points of high-speed buffeting test model
CN113624440B (en) * 2021-08-05 2024-02-23 中国航空工业集团公司沈阳飞机设计研究所 Method for arranging pulsating pressure measuring points of high-speed buffeting test model

Similar Documents

Publication Publication Date Title
Alves et al. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process
Taufiqurrahman et al. The effect of holding time on dissimilar resistance spot welding of stainless steel 316L and Ti6Al4V titanium alloy with aluminum interlayer
Dyson et al. Use of small specimen creep data in component life management: a review
Lippold Recent developments in weldability testing
Knezevic et al. Creep behaviour of thick-wall alloy 617 seamless pipes for 700 C power plant technology
JPH11271172A (en) Shock wind tunnel testing device
KR101308327B1 (en) Heat sink of a copper alloy
Reiser et al. Deep drawing of tungsten plates for structural divertor applications in future fusion devices
Hasegawa et al. Tensile behavior and microstructure of neutron-irradiated Mo-5% Re alloy
Kim et al. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method
DE102013003404B3 (en) Method for non-destructive thermographic testing of components to internal and surface defects, involves stimulating component by cold air flow from laval nozzle which is aligned to component to-be tested
Doubek et al. Analysis of the material properties in the vicinity of bi-material interface made by the laser cladded protective layer on the S960
Kondo et al. Tensile and impact properties changes of HASTELLOY X after exposure in high-temperature helium environment
Patterson Explosive bonding
Yamamoto et al. Study of evaluation method for liquation crack initiation in the HAZ of a laser weldment
Reheis et al. Industrial aspects in the fabrication of prototypes for different divertor concepts
Ling et al. Evolution of the interfacial microstructure in 316L/AlxCoCrFeNi composite material induced by high-velocity impact welding
Ghorani et al. Effect of Sensitization on Hydrogen Embrittlement in a 5083 Aluminum Alloy
Royals et al. Ignition resistance of hard (type III) anodized aluminum to particle impact
Dong et al. Study on nickel-based composite powders by plasma-arc surfacing
Yamagiwa et al. Effects of temperature and loading rate on fracture toughness of a low carbon steel at low temperatures between 4.2 K and 290 K
Sherman et al. Design development of segmented tungsten nosetips for high performance flight vehicles
Carpenter Explosion welding: a review
Faucett et al. Restitution of Impacting Projectiles in Ceramic Matrix Composites Subject to Foreign Object Damage
Sato et al. Recent R&D activities on plasma facing components at JAERI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Effective date: 20060612

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20061017

Free format text: JAPANESE INTERMEDIATE CODE: A02