JPH11269132A - Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid - Google Patents

Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid

Info

Publication number
JPH11269132A
JPH11269132A JP7553098A JP7553098A JPH11269132A JP H11269132 A JPH11269132 A JP H11269132A JP 7553098 A JP7553098 A JP 7553098A JP 7553098 A JP7553098 A JP 7553098A JP H11269132 A JPH11269132 A JP H11269132A
Authority
JP
Japan
Prior art keywords
acid
crystallization
ethylenediamine
edds
aspartic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7553098A
Other languages
Japanese (ja)
Inventor
Katsufumi Kujira
勝文 鯨
Mitsuko Yabe
晃子 矢部
Hiroshi Iwane
寛 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7553098A priority Critical patent/JPH11269132A/en
Publication of JPH11269132A publication Critical patent/JPH11269132A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply producing a high-purity product of a chelate compound having the biodegradability in high recovery ratio. SOLUTION: The crystallization is carried out in the presence of methanol by adding an inorganic acid thereto in a method for reacting L-aspartic acid with a dihaloethane in the presence of a basic metal compound in an aqueous solvent, producing a metal salt of (S,S)-ethylenediamine-N,N'-succinic acid and providing the (S,S)-ethylenediamine-N,N'-succinic acid from an aqueous solution of the resultant metal salt by the crystallization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は下記構造式(I)で
示される(S,S)−エチレンジアミン−N,N′−ジ
コハク酸(以下、エチレンジアミン−N,N′−ジコハ
ク酸をEDDSと略記することがある)の製造方法に関
する。
TECHNICAL FIELD The present invention relates to (S, S) -ethylenediamine-N, N'-disuccinic acid represented by the following structural formula (I) (hereinafter, ethylenediamine-N, N'-disuccinic acid is abbreviated as EDDS). The manufacturing method).

【0002】[0002]

【化1】 Embedded image

【0003】詳しくは、L−アスパラギン酸とジハロエ
タンとを塩基性水性媒体中で反応させて得られた(S,
S)−エチレンジアミン−N,N′−ジコハク酸金属塩
の水溶液から(S,S)−エチレンジアミン−N,N′
−ジコハク酸を晶析させる方法の改良に関する。EDD
Sは、実用的なキレート力と生分解性を併せ持ち、毒性
もなく、例えば洗剤用ビルダーとして用いられる。
[0003] Specifically, it is obtained by reacting L-aspartic acid and dihaloethane in a basic aqueous medium (S,
(S, S) -Ethylenediamine-N, N 'from an aqueous solution of S) -ethylenediamine-N, N'-disuccinic acid metal salt
The present invention relates to an improvement in a method for crystallizing disuccinic acid. EDD
S has both practical chelating power and biodegradability, has no toxicity, and is used, for example, as a detergent builder.

【0004】[0004]

【従来の技術】従来より知られているキレート化合物と
して、例えばトリポリリン酸ナトリウムは優れたキレー
ト力を有し、洗剤ビルダーに用いられてきたが、リンを
含有するため河川又は湖沼の富栄養化を招く一因となり
現在は使用されていない。現在使用されている洗剤ビル
ダーとしてはゼオライトが多く用いられているが、キレ
ート力が弱く、また無機物であるため生分解性が無く、
水にも不溶のため排水管等への固着といった問題点があ
る。一般に最も知られたキレート化合物としてはエチレ
ンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NT
A)がある。これらは極めて安定したキレート力を有す
るが、例えばEDTAは生分解性に乏しく環境中に放出
されたとき、生体に有害な重金属を可溶化してしまうの
で、環境中に蓄積されてしまうことが懸念される。また
NTAは生分解性は有してはいるが、そのものの毒性が
懸念され使用には注意を要する。
2. Description of the Related Art As a conventionally known chelating compound, for example, sodium tripolyphosphate has excellent chelating ability and has been used as a detergent builder. However, since it contains phosphorus, eutrophication of rivers or lakes is promoted. It is not currently used to contribute to the invite. Zeolite is often used as a detergent builder currently used, but it has low chelating power, and it is an inorganic substance and has no biodegradability,
Since it is insoluble in water, it has a problem of sticking to a drain pipe or the like. The most commonly known chelating compounds are ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NT
A). Although these have extremely stable chelating power, for example, when EDTA is poorly biodegradable and is released into the environment, it solubilizes heavy metals that are harmful to living organisms, so there is a concern that EDTA will be accumulated in the environment. Is done. Although NTA has biodegradability, it must be used with caution due to its toxicity.

【0005】これらのキレート化合物に比べEDDS
は、実用的なキレート力、生分解性を持ち毒性もなく、
今後の需要増大が期待される。EDDSには二個の不斉
炭素が存在し、三種の光学異性体が存在する。これらの
異性体のうちS,S体は優れた生分解性を有している
が、R,R体は生分解性に乏しくEDTAと同様環境問
題の懸念があり、またR,S体はS,S体に比べ生分解
の速度が遅く容易に生分解する化合物とは言い難い。
[0005] Compared to these chelate compounds, EDDS
Has practical chelating power, biodegradability and no toxicity,
The demand is expected to increase in the future. EDDS has two asymmetric carbons and three optical isomers. Among these isomers, the S and S isomers have excellent biodegradability, but the R and R isomers are poor in biodegradability and have environmental concerns similar to EDTA. , Is not a compound that has a slower biodegradation rate than the S-isomer and easily biodegrades.

【0006】EDDSを製造する方法については従来か
ら、いろいろな提案がなされている。例えばラセミ体の
EDDS製造方法としては、エチレンジアミンにマレイ
ン酸を付加する方法(Zhurnal Obshche
i Khinii.,49,659(1978))が知
られている。またS,S−EDDSを製造する方法とし
てはジブロモエタンにL−アスパラギン酸を付加する方
法(Inorg.Chem.,7.2405(196
8))、ジクロロエタンにL−アスパラギン酸を付加す
る方法(Chem.Zvesti.,20,414(1
966))又はジカルボニル化合物(グリオキザール)
とアミノカルボン酸(L−アスパラギン酸)からシッフ
塩基を生成させた後、還元反応により製造する方法(W
O96/32371号公報)等が知られている。
Various proposals have been made for a method of manufacturing an EDDS. For example, as a method of producing a racemic EDDS, a method of adding maleic acid to ethylenediamine (Zhurn Obshche)
i Khinii. , 49, 659 (1978)). As a method for producing S, S-EDDS, a method of adding L-aspartic acid to dibromoethane (Inorg. Chem., 7.2405 (196)
8)), a method of adding L-aspartic acid to dichloroethane (Chem. Zvesti., 20, 414 (1)
966)) or dicarbonyl compound (glyoxal)
A method for producing a Schiff base from carboxylic acid and aminocarboxylic acid (L-aspartic acid) followed by a reduction reaction (W
O96 / 32371) and the like.

【0007】これらの方法で得られたEDDS金属塩は
通常、反応液に塩酸等の無機酸を添加し特定pH域で析
出する結晶を取り、晶析、精製を行う。但し、高純度の
EDDSを単離するのは難しく、多くの場合は晶析を数
度繰り返し実施している。この晶析に関しては、EDD
S金属塩濃度を低く設定したり、60℃加温下で酸析し
室温まで冷却する方法(WO96/01803号公報)
が提案されている。
[0007] The EDDS metal salt obtained by these methods is usually subjected to crystallization and purification by adding an inorganic acid such as hydrochloric acid to the reaction solution, collecting crystals precipitated in a specific pH range. However, it is difficult to isolate high-purity EDDS, and in many cases, crystallization is repeated several times. Regarding this crystallization, EDD
A method in which the S metal salt concentration is set low or acid precipitation is carried out while heating at 60 ° C. and cooled to room temperature (WO96 / 01803).
Has been proposed.

【0008】[0008]

【発明が解決しようとする課題】上述したように、従来
の方法により高純度EDDSを得ようとすれば、煩雑な
晶析工程が必要であったり、また繰り返し晶析を行う等
の方法が必要となり、結局EDDS回収率も低下してし
まう等、工業的製法としては問題がある。本発明は、簡
便なプロセスにより、(S,S)−EDDSに夾雑し易
い、原料L−アスパラギン酸を殆んど含まない高純度な
(S,S)−EDDSを高回収率(高収率)で得る工業
的製法を提供することを目的とする。
As described above, if a high-purity EDDS is to be obtained by a conventional method, a complicated crystallization step is required, or a method such as repeated crystallization is required. As a result, there is a problem as an industrial production method, for example, the EDDS recovery rate also decreases. The present invention provides a high-recovery (high-yield) high-purity (S, S) -EDDS which is easy to contaminate (S, S) -EDDS and contains almost no raw material L-aspartic acid by a simple process. ) Is intended to provide an industrial production method.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる事
情に鑑み鋭意検討した結果、(S,S)−EDDSの晶
析をメタノールの存在下、無機酸を加えて行うことによ
り前記課題を解決し得ることを見出し、本発明を完成す
るに至った。即ち、本発明の要旨は、水性溶媒中、塩基
性金属化合物の存在下、L−アスパラギン酸をジハロエ
タンと反応させて(S,S)−エチレンジアミン−N,
N′−ジコハク酸金属塩を生成せしめ、この金属塩の水
溶液から晶析により(S,S)−エチレンジアミン−
N,N′−ジコハク酸を得る方法において、晶析をメタ
ノールの存在下、無機酸を添加することにより行うこと
を特徴とする(S,S)−エチレンジアミン−N,N′
−ジコハク酸の製造方法、にある。以下、本発明を詳細
に説明する。
Means for Solving the Problems The inventors of the present invention have made intensive studies in view of the above-mentioned circumstances, and as a result, have found that the crystallization of (S, S) -EDDS is carried out by adding an inorganic acid in the presence of methanol. Was found to be able to be solved, and the present invention was completed. That is, the gist of the present invention is to react L-aspartic acid with dihaloethane in an aqueous solvent in the presence of a basic metal compound to obtain (S, S) -ethylenediamine-N,
A metal salt of N'-disuccinic acid is produced, and (S, S) -ethylenediamine-
A method for obtaining N, N'-disuccinic acid, characterized in that crystallization is carried out by adding an inorganic acid in the presence of methanol, and comprising (S, S) -ethylenediamine-N, N '.
A method for producing disuccinic acid. Hereinafter, the present invention will be described in detail.

【0010】[0010]

【発明の実施の形態】[EDDS金属塩の製造]EDD
S金属塩の製造はジハロエタン、L−アスパラギン酸及
び金属化合物を原料とし、水性溶媒中で行う。ジハロエ
タンとしては1,2−ジクロロエタン、1,2−ジブロ
モエタンが好ましく使用できるが、価格、毒性等の点か
ら1,2−ジクロロエタンが好ましい。
DETAILED DESCRIPTION OF THE INVENTION [Production of EDDS Metal Salt] EDD
The S metal salt is produced in an aqueous solvent using dihaloethane, L-aspartic acid and a metal compound as raw materials. As the dihaloethane, 1,2-dichloroethane and 1,2-dibromoethane can be preferably used, but 1,2-dichloroethane is preferable from the viewpoint of price, toxicity and the like.

【0011】ジハロエタンは、L−アスパラギン酸1モ
ルに対し0.5〜0.7モル用いることが好ましく、若
干過剰に用いることが、より好ましい。0.5モルより
も少ないと、L−アスパラギン酸が反応液中に大量に残
存し晶析での精製効率を著しく低下させ、またコスト的
にも不利であり、0.7モルよりも多くても特に効果は
なく、副生成物の増加や、コストアップに繋がり好まし
くない。水性溶媒としては、水が好ましく、有機溶媒を
併用することができる。例えば、晶析の際に共存させる
メタノールを予め添加しておいても差し支えない。但
し、メタノールの添加は反応速度を若干促進するが、ま
た一方で反応液量の増大や、反応圧力上昇を招くため通
常は水単独溶媒で行うことが、好ましい。その他グリコ
ール類(例えばエチレングリコール等)を用いるとやは
り反応速度は向上するが、回収が困難であり、添加しな
いほうが好ましい。水性溶媒の量は原料であるL−アス
パラギン酸ジアルカリ塩濃度が5〜50重量%になるよ
うに使用することが好ましい。
The dihaloethane is preferably used in an amount of 0.5 to 0.7 mol per 1 mol of L-aspartic acid, and more preferably in a slight excess. When the amount is less than 0.5 mol, L-aspartic acid remains in a large amount in the reaction solution, significantly lowering the purification efficiency in crystallization, and is disadvantageous in cost. Is also not particularly effective, leading to an increase in by-products and an increase in cost, which is not preferable. As the aqueous solvent, water is preferable, and an organic solvent can be used in combination. For example, methanol coexisting during crystallization may be added in advance. However, the addition of methanol slightly accelerates the reaction rate, but on the other hand, it is usually preferable to carry out the reaction with a single solvent of water because it causes an increase in the amount of the reaction solution and an increase in the reaction pressure. When other glycols (such as ethylene glycol) are used, the reaction rate is still improved, but recovery is difficult, and it is preferable not to add them. The amount of the aqueous solvent is preferably used such that the concentration of the dialkali L-aspartate as a raw material is 5 to 50% by weight.

【0012】金属化合物としては、塩基性の金属化合物
であれば、特に限定されないが、アルカリ金属水酸化
物、アルカリ土類金属水酸化物が好ましく、より具体的
には、水酸化ナトリウム、水酸化カリウム、水酸化マグ
ネシウム、水酸化カルシウム又はこれらの混合物が挙げ
られる。この際アルカリ金属水酸化物とアルカリ土類金
属水酸化物を併用することが特に好ましい。金属化合物
の使用量は、アルカリ金属水酸化物であれば、L−アス
パラギン酸1モルに対し2.0〜4.0モルの範囲が好
ましい。2.0モルより少ないと、L−アスパラギン酸
の溶解が不十分となり、反応速度が低下する。また4.
0モルより多くても、副反応が起り易くなり好ましくな
い。
The metal compound is not particularly limited as long as it is a basic metal compound, and is preferably an alkali metal hydroxide or an alkaline earth metal hydroxide. Potassium, magnesium hydroxide, calcium hydroxide or mixtures thereof are mentioned. In this case, it is particularly preferable to use an alkali metal hydroxide and an alkaline earth metal hydroxide in combination. The use amount of the metal compound is preferably in the range of 2.0 to 4.0 mol per 1 mol of L-aspartic acid as long as it is an alkali metal hydroxide. If the amount is less than 2.0 mol, the dissolution of L-aspartic acid becomes insufficient, and the reaction rate decreases. Also 4.
If the amount is more than 0 mol, side reactions easily occur, which is not preferable.

【0013】尚、金属化合物の添加時期は、反応前であ
れば特に限定されるものではないが、L−アスパラギン
酸及び金属化合物を最初に反応器に導入し、L−アスパ
ラギン酸の金属塩としてから、ジハロエタンを導入する
方法を採用するのが、L−アスパラギン酸の溶解性向
上、発熱の防止の観点から好ましい。反応温度は50〜
140℃の範囲で行う。50℃よりも低温では反応速度
が著しく低下し、140℃よりも高温では選択性が低下
し、L−アスパラギン酸のラセミ化が懸念される。反応
圧力は温度にもよるが、常圧、若しくは加圧で行う。反
応時間はその他の条件にもよるが、L−アスパラギン酸
転化率が50%以上、好ましくは70%以上となるまで
行うが、通常は0.5〜50時間の範囲である。
The timing of adding the metal compound is not particularly limited as long as it is before the reaction, but L-aspartic acid and the metal compound are first introduced into the reactor, and the metal salt of L-aspartic acid is added as a metal salt. Therefore, it is preferable to adopt a method of introducing dihaloethane from the viewpoint of improving the solubility of L-aspartic acid and preventing heat generation. Reaction temperature is 50 ~
Perform at 140 ° C. At a temperature lower than 50 ° C., the reaction rate is remarkably reduced, and at a temperature higher than 140 ° C., the selectivity is reduced, and there is a concern that L-aspartic acid may be racemized. Although the reaction pressure depends on the temperature, the reaction is carried out at normal pressure or under pressure. Although the reaction time depends on other conditions, the reaction is carried out until the conversion of L-aspartic acid becomes 50% or more, preferably 70% or more, and is usually in the range of 0.5 to 50 hours.

【0014】[晶析]反応終了後、晶析前に反応液中の
未反応ジハロエタンを留去する。添加するメタノールは
反応液に対して10〜200重量%の範囲内で添加す
る。これよりも少ないと十分な効果が現れず、またこれ
以上添加しても効果はなく、ただ回収するメタノール量
のみが増加することになる。使用する無機酸としては、
塩酸又は硫酸が好ましく、反応液とメタノール混合液中
に少量ずつ添加していく。この際濃度が高い場合には発
熱が激しくメタノール蒸気の気散を招く等の安全性に問
題があるため、酸は水で3〜30重量%程度に希釈した
ものを使用することが好ましい。
[Crystallization] After completion of the reaction, unreacted dihaloethane in the reaction solution is distilled off before crystallization. Methanol to be added is added within a range of 10 to 200% by weight based on the reaction solution. If the amount is less than this, no sufficient effect is exhibited, and if added more, there is no effect, and only the amount of methanol to be recovered increases. As the inorganic acid used,
Hydrochloric acid or sulfuric acid is preferred, and is added little by little to the reaction mixture and the methanol mixture. At this time, if the concentration is high, there is a problem in safety such as excessive heat generation and vapor diffusion of methanol vapor. Therefore, it is preferable to use the acid diluted with water to about 3 to 30% by weight.

【0015】晶析温度は特に限定しないが、5〜50
℃、通常は室温付近で行えば問題ない。酸の添加により
発熱するが、その場合には酸添加量で調節可能であり、
冷却しながら酸を添加してもよい。酸の添加時間は0.
5〜10時間の範囲で行い、この際反応液は撹拌をして
おく。
The crystallization temperature is not particularly limited.
There is no problem if it is carried out at about ℃, usually around room temperature. Heat is generated by the addition of the acid, in which case it can be adjusted by the amount of acid added,
The acid may be added while cooling. The acid addition time is 0.
The reaction is performed for a period of 5 to 10 hours, and the reaction solution is kept stirring at this time.

【0016】晶析はpHを確認しながら酸を加えてゆく
が、pH4.0〜5.0近辺で(S,S)−EDDSの
結晶が析出する。その後pHを保持するために、酸を少
量添加し、pHの上昇がなくなるまで行う。pHをより
酸性側にすれば未反応L−アスパラギン酸の析出量が増
加し、(S,S)−EDDS純度が低下する。メタノー
ル共存晶析ではpH4付近で(S,S)−EDDS回収
率はほぼ100%であり、それ以上の酸を添加する必要
はない。
In the crystallization, an acid is added while confirming the pH, but crystals of (S, S) -EDDS precipitate around pH 4.0 to 5.0. Thereafter, in order to maintain the pH, a small amount of an acid is added until the pH is no longer increased. When the pH is made more acidic, the amount of unreacted L-aspartic acid precipitated increases, and the purity of (S, S) -EDDS decreases. In methanol co-crystallization, the (S, S) -EDDS recovery rate is almost 100% at around pH 4, and it is not necessary to add more acid.

【0017】析出した結晶は、必要に応じて、加圧濾
過、減圧濾過、遠心分離等、通常の濾過方法で濾過を行
う。得られたケーキは、ほぼ同量の水で二、三回洗浄を
行うことが好ましい。その後、ほぼ同量のメタノールで
洗浄を行い、極力水切りを行う。このメタノール洗浄を
行えば、その後の乾燥時間が大幅に短縮され作業効率が
向上するばかりでなく、水と共に持ち込む不純物を削減
でき、結果として、(S,S)−EDDSの純度が向上
する。このように(S,S)−EDDS含有ケーキを晶
析で用いたものと同じメタノールで洗浄することによ
り、その後の乾燥作業効率が大幅に向上し、用いたメタ
ノールは水と共沸せず沸点も低く容易に回収再使用でき
る。濾過母液からは、使用したメタノールを減圧又は常
圧で容易に回収でき、回収されたメタノールは再使用す
ることができる。
The precipitated crystals are filtered as necessary by a conventional filtration method such as filtration under pressure, filtration under reduced pressure, and centrifugation. The obtained cake is preferably washed a few times with approximately the same amount of water. Thereafter, washing is performed with approximately the same amount of methanol, and draining is performed as much as possible. If this methanol washing is performed, not only the subsequent drying time is greatly shortened and the working efficiency is improved, but also impurities brought in with water can be reduced, and as a result, the purity of (S, S) -EDDS is improved. By washing the (S, S) -EDDS-containing cake with the same methanol as that used in the crystallization, the subsequent drying operation efficiency is greatly improved, and the used methanol does not azeotrope with water but has a boiling point of And it can be easily recovered and reused. From the filtered mother liquor, the used methanol can be easily recovered under reduced pressure or normal pressure, and the recovered methanol can be reused.

【0018】[0018]

【実施例】次に実施例及び比較例を挙げて本発明を更に
具体的に説明するが、本発明はその要旨を超えない限り
実施例に限定されるものではない。 実施例1 L−アスパラギン酸(和光純薬工業株式会社製)13.
3g(100ミリモル)と水酸化ナトリウム(和光純薬
工業株式会社製)8.3g(208ミリモル)を水30
mlに溶解させた水酸化ナトリウム水溶液を発熱に注意
しながら混合し、L−アスパラギン酸ジナトリウム塩を
合成する。この水溶液を100mlオートクレーブに仕
込み、次に水酸化マグネシウム(和光純薬工業株式会社
製)2.9g(50ミリモル)、1,2−ジクロロエタ
ン(和光純薬工業株式会社製)5.9g(60ミリモ
ル)を加え、撹拌しながら110℃で8時間反応した。
その時の圧力は約2kg/cm2 ・Gであった。
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the examples unless it exceeds the gist thereof. Example 1 L-aspartic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 13.
3 g (100 mmol) and 8.3 g (208 mmol) of sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in water 30
The sodium hydroxide aqueous solution dissolved in ml is mixed while paying attention to heat generation to synthesize disodium L-aspartate. This aqueous solution was charged into a 100 ml autoclave, and then 2.9 g (50 mmol) of magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) and 5.9 g (60 mmol) of 1,2-dichloroethane (manufactured by Wako Pure Chemical Industries, Ltd.) ) And reacted at 110 ° C. for 8 hours with stirring.
The pressure at that time was about 2 kg / cm 2 · G.

【0019】反応終了後、反応液を抜き出し10mlの
水で容器を洗浄した。反応液を一部取り、高速液体クロ
マトグラフィーで分析したところ、L−アスパラギン酸
転化率は78%であり、(S,S)−EDDS収率は7
2%(L−アスパラギン酸基準)であった。その後、極
微量の未反応1,2−ジクロロエタンを減圧下留去を行
った。回収反応液は68gであり、(S,S)−EDD
S10.5g(15.4重量%)、L−アスパラギン酸
2.9g(3.7重量%)を含有した白濁溶液であっ
た。
After completion of the reaction, the reaction solution was withdrawn and the vessel was washed with 10 ml of water. An aliquot of the reaction solution was analyzed by high performance liquid chromatography to find that the conversion of L-aspartic acid was 78% and the (S, S) -EDDS yield was 7%.
2% (based on L-aspartic acid). Thereafter, a trace amount of unreacted 1,2-dichloroethane was distilled off under reduced pressure. The recovered reaction solution weighed 68 g and contained (S, S) -EDD
This was a cloudy solution containing 10.5 g (15.4% by weight) of S and 2.9 g (3.7% by weight) of L-aspartic acid.

【0020】100mlビーカーに前記反応で得られた
反応液20g(EDDS3.09g、L−アスパラギン
酸0.85g含有)を取り、メタノール20gを加え
た。撹拌しながらpHメーターによりpHを測定したと
ころ、9.89であった。この時の液温は22℃であっ
た。10重量%硫酸水溶液を加えていったところ、pH
4.8で白色の結晶が析出した。この時の液温は29℃
であった。その後10重量%硫酸を少量ずつ添加しなが
らpHを4.3〜4.8に保ち晶析を行った。pHの上
昇がなくなってから、更に30分間撹拌し晶析を継続
し、その後、吸引濾過により析出した結晶を濾過、分離
した。15mlの水でケーキを三回洗浄した後、15m
lのメタノールで三回洗浄し、(S,S)−EDDSケ
ーキ5.9gを回収した。約50℃、10mmHgの条
件で乾燥したところ、約2時間で恒量に達し、その重量
は3.09gであった。
In a 100 ml beaker, 20 g of the reaction solution obtained in the above reaction (containing 3.09 g of EDDS and 0.85 g of L-aspartic acid) was added, and 20 g of methanol was added. When the pH was measured with a pH meter while stirring, it was 9.89. The liquid temperature at this time was 22 ° C. 10% by weight sulfuric acid aqueous solution was added, pH
At 4.8, white crystals precipitated. The liquid temperature at this time is 29 ° C
Met. Thereafter, while adding 10% by weight of sulfuric acid little by little, the pH was kept at 4.3 to 4.8 to carry out crystallization. After the pH was no longer increased, the mixture was further stirred for 30 minutes to continue crystallization, and then the precipitated crystals were filtered and separated by suction filtration. After washing the cake three times with 15 ml of water, 15 m
After washing three times with 1 liter of methanol, 5.9 g of (S, S) -EDDS cake was recovered. When dried under the conditions of about 50 ° C. and 10 mmHg, the weight reached a constant weight in about 2 hours, and the weight was 3.09 g.

【0021】得られた結晶を液体クロマトグラフィーで
分析したところ、(S,S)−EDDSは3.03g
(晶析回収率98.1%)含有しており、純度は98.
1重量%であった。不純物として、0.7重量%(21
mg)のL−アスパラギン酸、1.7重量%の水分、5
0ppmのナトリウムが含有されていた。濾過母液より
メタノールが18.9g(回収率94.5%)回収され
た。
The obtained crystals were analyzed by liquid chromatography to find that (S, S) -EDDS was 3.03 g.
(Crystallization recovery rate: 98.1%), and the purity is 98.0%.
It was 1% by weight. 0.7% by weight (21
mg) L-aspartic acid, 1.7% water by weight, 5
It contained 0 ppm of sodium. From the filtered mother liquor, 18.9 g of methanol (recovery rate: 94.5%) was recovered.

【0022】比較例1 実施例1と同様の反応液20g(EDDS3.09g、
L−アスパラギン酸0.85g含有)を100mlビー
カーに取り、実施例1と同様に10重量%硫酸水溶液を
加えた。pH4.0で白色の結晶が析出した。この時の
液温は34℃であった。その後10重量%硫酸を少量ず
つ添加しながらpH3.5〜4.0に保ち晶析を行っ
た。その後pHの上昇がなくなってから、更に30分間
晶析を行った。この時反応液は高濃度スラリーで撹拌効
率はかなり悪い状態であった。析出した結晶を実施例1
と同様に吸引濾過を行い、15mlの水で三回洗浄した
後、ケーキを回収した。重量は6.6gで、約50℃、
10mmHgの条件で乾燥した。約2日間で恒量に達
し、秤量したところ、3.02gであった。
Comparative Example 1 20 g of the same reaction solution as in Example 1 (3.09 g of EDDS,
L-aspartic acid (containing 0.85 g) was placed in a 100 ml beaker, and a 10% by weight aqueous sulfuric acid solution was added as in Example 1. White crystals precipitated at pH 4.0. The liquid temperature at this time was 34 ° C. Thereafter, the pH was maintained at 3.5 to 4.0 while adding 10% by weight of sulfuric acid little by little, and crystallization was performed. Thereafter, after the pH was no longer increased, crystallization was further performed for 30 minutes. At this time, the reaction liquid was a high-concentration slurry and the stirring efficiency was in a considerably poor state. Example 1
After performing suction filtration in the same manner as described above and washing three times with 15 ml of water, the cake was recovered. Weight is 6.6g, about 50 ° C,
It was dried under the condition of 10 mmHg. It reached a constant weight in about 2 days, and when weighed, it weighed 3.02 g.

【0023】得られた結晶を液体クロマトグラフィーで
分析したところ、(S,S)−EDDS2.87g(晶
析回収率92.9%)含有しており、純度は95.0重
量%であった。不純物としては、2.1重量%(63m
g)のL−アスパラギン酸、5.2重量%の水分、80
ppmのナトリウムが含有されていた。
Analysis of the obtained crystals by liquid chromatography revealed that the crystals contained (S, S) -EDDS (2.87 g, crystallization recovery rate: 92.9%), and the purity was 95.0% by weight. . As impurities, 2.1% by weight (63 m
g) L-aspartic acid, 5.2% water by weight, 80
ppm of sodium.

【0024】比較例2 実施例1と同様の反応液20g(EDDS3.09g、
L−アスパラギン酸0.85g含有)を100mlビー
カーに取り、水20gを加えた。実施例1と同様に10
重量%硫酸水溶液を加えた。pH4.0で白色の結晶が
析出した。この時の液温は30℃であった。その後10
重量%硫酸を少量ずつ添加しながらpH3.5〜4.0
に保ち晶析を行った。その後pHの上昇がなくなってか
ら更に30分間晶析を行った。析出した結晶を実施例1
と同様に吸引濾過を行い、15mlの水で三回洗浄した
後、ケーキを回収した。重量は7.0gで、約50℃、
10mmHgの条件で乾燥した。約2日間で恒量に達
し、秤量したところ、2.98gであった。
Comparative Example 2 20 g of the same reaction solution as in Example 1 (3.09 g of EDDS,
L-aspartic acid (0.85 g) was placed in a 100 ml beaker, and 20 g of water was added. 10 as in the first embodiment.
A weight percent aqueous sulfuric acid solution was added. White crystals precipitated at pH 4.0. The liquid temperature at this time was 30 ° C. Then 10
PH 3.5 to 4.0 while adding little by weight of sulfuric acid.
And crystallization was performed. After that, the crystallization was further performed for 30 minutes after the increase in pH was stopped. Example 1
After performing suction filtration in the same manner as described above and washing three times with 15 ml of water, the cake was recovered. Weight is 7.0 g, about 50 ° C,
It was dried under the condition of 10 mmHg. It reached a constant weight in about 2 days, and when weighed, it weighed 2.98 g.

【0025】得られた結晶を液体クロマトグラフィーで
分析したところ、(S,S)−EDDS2.85g(晶
析回収率92.2%)含有しており、純度は95.6重
量%であった。不純物としては、1.6重量%(48m
g)のL−アスパラギン酸、2.9重量%の水分、70
ppmのナトリウムが含有されていた。
When the obtained crystals were analyzed by liquid chromatography, they contained 2.85 g of (S, S) -EDDS (crystallization recovery rate: 92.2%) and had a purity of 95.6% by weight. . 1.6 wt% (48 m
g) L-aspartic acid, 2.9% water by weight, 70%
ppm of sodium.

【0026】[0026]

【発明の効果】本発明の方法によれば、簡便なプロセス
で、生分解性を持つ、キレート化合物(S,S)−ED
DSの高純度品を高回収率(高収率)で得ることができ
る。
According to the method of the present invention, a chelating compound (S, S) -ED having biodegradability by a simple process.
A high-purity DS product can be obtained at a high recovery rate (high yield).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水性溶媒中、塩基性金属化合物の存在
下、L−アスパラギン酸をジハロエタンと反応させて
(S,S)−エチレンジアミン−N,N′−ジコハク酸
金属塩を生成せしめ、この金属塩の水溶液から晶析によ
り(S,S)−エチレンジアミン−N,N′−ジコハク
酸を得る方法において、晶析をメタノールの存在下、無
機酸を添加することにより行うことを特徴とする(S,
S)−エチレンジアミン−N,N′−ジコハク酸の製造
方法。
1. An L-aspartic acid is reacted with a dihaloethane in an aqueous solvent in the presence of a basic metal compound to form a metal salt of (S, S) -ethylenediamine-N, N'-disuccinic acid. A method for obtaining (S, S) -ethylenediamine-N, N'-disuccinic acid by crystallization from an aqueous salt solution, characterized in that crystallization is carried out by adding an inorganic acid in the presence of methanol (S ,
A method for producing S) -ethylenediamine-N, N'-disuccinic acid.
【請求項2】 ジハロエタンが、ジクロロエタンである
ことを特徴とする請求項1に記載の(S,S)−エチレ
ンジアミン−N,N′−ジコハク酸の製造方法。
2. The method for producing (S, S) -ethylenediamine-N, N'-disuccinic acid according to claim 1, wherein the dihaloethane is dichloroethane.
【請求項3】 金属化合物が、アルカリ金属水酸化物で
あることを特徴とする請求項1又は2に記載の(S,
S)−エチレンジアミン−N,N′−ジコハク酸の製造
方法。
3. The method according to claim 1, wherein the metal compound is an alkali metal hydroxide.
A method for producing S) -ethylenediamine-N, N'-disuccinic acid.
JP7553098A 1998-03-24 1998-03-24 Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid Pending JPH11269132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7553098A JPH11269132A (en) 1998-03-24 1998-03-24 Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7553098A JPH11269132A (en) 1998-03-24 1998-03-24 Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid

Publications (1)

Publication Number Publication Date
JPH11269132A true JPH11269132A (en) 1999-10-05

Family

ID=13578879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7553098A Pending JPH11269132A (en) 1998-03-24 1998-03-24 Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid

Country Status (1)

Country Link
JP (1) JPH11269132A (en)

Similar Documents

Publication Publication Date Title
JP4603613B2 (en) Method for producing methylglycine-N, N-diacetic acid-trialkali metal salt with less by-product
KR20040022232A (en) Process for preparation of 5-methyl-1-phenyl-2(1h)-pyridinone
JP4822253B2 (en) Method for producing formate from carbon dioxide and hydrogen
JP2007308460A (en) Manufacturing method of 2-methyl-2-adamantanol and magnesium chloride salt thereof
JPH11269132A (en) Production, of (s,s)-ethylenediamine-n,n'-disuccinic acid
CN1208311C (en) Process for preparing alkylene diamine triacetic acid
JP3870448B2 (en) Process for producing aminodicarboxylic acid-N, N-diacetates
JPH09194448A (en) Production of diamine-type polyamino acid by connection of bimolecular amino acid and biodegradable chelating agent containing the same
JP2008074722A (en) Method for producing 2-amino-5-iodobenzoic acid
US7056450B2 (en) Highly concentrated aqueous solutions of N,N-dialkyl-glycines and process for preparation thereof
JP2000128838A (en) Crystal (s,s)-ethylenediamine-n,n'-disuccinic acid and its production
JP4423733B2 (en) Aminopolycarboxylate, process for its production and use thereof
JP4083526B2 (en) High concentration N, N-dialkylglycine aqueous solution and method for producing the same
JP4759809B2 (en) Dialkylethylenediamine dimalonic acids, process for producing the same and uses thereof
JP3312454B2 (en) Recovery method for optically active tartaric acid
WO2022169930A1 (en) Integrated process for making diastereopure ethylenediamine disuccinic acid (edds) from ethylene and aspartic acid using bromine as an intermediate
JP2000128839A (en) Production of crystal (s,s)-ethylenediamine-n,n-disuccinic acid
JP3780703B2 (en) Method for producing 2-butyloctanedioic acid
JP4362666B2 (en) Process for producing 5-hydroxyisophthalic acid
JP2001270853A (en) Method for producing (s,s)-ethylenediamine-n,n'-disuccinic acid (edds)
JP2001270852A (en) Method for producing aminopolycarboxylic acid
JP2006016341A (en) Method for producing ruthenium organic acid salt
JPH10218832A (en) Purification of acrylic acid
CN115872882A (en) Synthetic method of 3-chloro-alanine
JP2011016797A (en) Method of producing high-purity o-tolidinesulfone