JPH11268916A - High-purity antimony pentachloride and its production - Google Patents

High-purity antimony pentachloride and its production

Info

Publication number
JPH11268916A
JPH11268916A JP7710498A JP7710498A JPH11268916A JP H11268916 A JPH11268916 A JP H11268916A JP 7710498 A JP7710498 A JP 7710498A JP 7710498 A JP7710498 A JP 7710498A JP H11268916 A JPH11268916 A JP H11268916A
Authority
JP
Japan
Prior art keywords
antimony pentachloride
arsenic
antimony
chlorine
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7710498A
Other languages
Japanese (ja)
Inventor
Hideo Arai
秀夫 荒井
Noriyasu Saito
記庸 齋藤
Tetsuo Kobayashi
哲夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7710498A priority Critical patent/JPH11268916A/en
Publication of JPH11268916A publication Critical patent/JPH11268916A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high-purity antimony pentoxide with low residual concentrations of chlorine and arsenic. SOLUTION: The chlorinating reaction of antimony trichloride is made to progress at a temperature not lower than the boiling point of arsenic trichloride and not higher than the boiling point of the antimony pentachloride (130-140 deg.C under atmospheric pressure) and an inert gas or gaseous carbon dioxide, etc., is then introduced into the melt to drive off the residual chlorine to the outside of the system. Thereby, high-purity antimony pentachloride at <=0.1 wt.% chlorine concentration and <=1 ppm arsenic concentration is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は砒素および塩素の残
留量が格段に少ない高純度の五塩化アンチモンとその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity antimony pentachloride having an extremely small residual amount of arsenic and chlorine and a method for producing the same.

【0002】[0002]

【従来の技術】五塩化アンチモンは、医薬や農薬の原料
あるいは塩素化触媒などに広く用いられている。五塩化
アンチモンの工業的な製法としては、金属アンチモンに
塩素ガスを接触させて三塩化アンチモンを生成させ、こ
の三塩化アンチモンの融液に更に塩素ガスを導入して五
塩化アンチモンを製造している。
2. Description of the Related Art Antimony pentachloride is widely used as a raw material for medicines and agricultural chemicals or as a chlorination catalyst. As an industrial method of producing antimony pentachloride, antimony pentachloride is produced by contacting chlorine gas with antimony metal to generate antimony trichloride and further introducing chlorine gas into the melt of antimony trichloride. .

【0003】この五塩化アンチモンの製造においては、
通常、原料の金属アンチモンには同族元素の砒素が30
0〜500ppm混入しているため、三塩化アンチモンを
塩素化して得た五塩化アンチモンを200℃程度で減圧
蒸留を行って砒素を揮発除去させる。この減圧蒸留によ
り、融液の約1/3程度の初留では砒素が200ppm程度に
減少し、更に約2/3程度の本留では砒素濃度が10ppm前
後の五塩化アンチモンが得られる。
In the production of antimony pentachloride,
Usually, the raw material antimony contains 30% of arsenic, a homologous element.
Since 0 to 500 ppm is mixed, antimony pentachloride obtained by chlorinating antimony trichloride is subjected to vacuum distillation at about 200 ° C. to volatilize and remove arsenic. By this distillation under reduced pressure, arsenic is reduced to about 200 ppm in about the first third of the melt, and antimony pentachloride having an arsenic concentration of about 10 ppm is obtained in the main stream of about 2/3.

【0004】以上のような従来の製造方法においては、
五塩化アンチモン製造後にさらに精留(蒸留)工程を必要
とするので装置構成上および製造コスト上の負担とな
る。また、精留工程において砒素濃度が高い初留は三塩
化アンチモンの塩素化工程等に戻して再利用されるが、
製品となるのは約2/3程度の本留であるため製造効率が
低い。また、精留後の五塩化アンチモン中の砒素濃度は
10ppm前後に減少するが、これ以上に砒素濃度を減少
させるのが難しい。さらに、三塩化アンチモンを塩素化
する際に、未反応部分が残留するのを避けるために塩素
を過剰に導入するのが一般的であるが、このため五塩化
アンチモンの塩素残留量が高くなる。
In the conventional manufacturing method as described above,
A further rectification (distillation) step is required after the production of antimony pentachloride, which imposes a burden on the equipment configuration and production cost. Also, in the rectification step, the first distillation having a high arsenic concentration is returned to the chlorination step of antimony trichloride and the like, and is reused.
The production efficiency is low because only about two-thirds of the product is the main product. Further, the arsenic concentration in the antimony pentachloride after rectification is reduced to about 10 ppm, but it is difficult to further reduce the arsenic concentration. Further, when chlorinating antimony trichloride, it is common to introduce excessive chlorine in order to avoid the unreacted portion from remaining. However, the residual amount of chlorine in antimony pentachloride increases.

【0005】[0005]

【発明の解決課題】本発明は、従来の製造方法における
上記問題を解決したものであって、砒素および塩素の残
留濃度が格段に少ない高純度の五塩化アンチモンと、こ
れを収率よく得ることができる製造方法を提供するもの
である。
An object of the present invention is to solve the above-mentioned problems in the conventional production method, and to provide high-purity antimony pentachloride in which the residual concentrations of arsenic and chlorine are extremely low, and to obtain the same in good yield. It is intended to provide a manufacturing method capable of performing the following.

【0006】[0006]

【課題を解決する手段】すなわち、本発明は、(1)塩素
濃度が0.1wt%以下、砒素濃度が1ppm以下であること
を特徴とする高純度五塩化アンチモンに関する。
That is, the present invention relates to (1) a high-purity antimony pentachloride having a chlorine concentration of 0.1 wt% or less and an arsenic concentration of 1 ppm or less.

【0007】さらに、本発明は、(2)三塩化アンチモン
の融液に塩素ガスを導入して五塩化アンチモンを製造す
る際に、三塩化砒素の沸点以上であって五塩化アンチモ
ンの沸点以下の温度で塩素化反応を進行させることによ
り砒素を揮発除去し、この塩素化反応終了後、更に五塩
化アンチモンに対して反応性のないガスを融液中に導入
して液中の残留塩素を上記ガスによって系外に追い出
し、砒素および塩素の含有量を低減した高純度の五塩化
アンチモンを得ることを特徴とする五塩化アンチモンの
製造方法に関する。
Further, the present invention relates to (2) a method for producing antimony pentachloride by introducing chlorine gas into a melt of antimony trichloride, wherein the temperature is higher than the boiling point of arsenic trichloride and lower than the boiling point of antimony pentachloride. Arsenic is volatilized and removed by allowing the chlorination reaction to proceed at a temperature. After the chlorination reaction is completed, a gas having no reactivity with antimony pentachloride is further introduced into the melt to remove the residual chlorine in the liquid. The present invention relates to a method for producing antimony pentachloride, which is driven out of the system by a gas to obtain high-purity antimony pentachloride with reduced contents of arsenic and chlorine.

【0008】本発明の上記製造方法は、(3)五塩化アン
チモンの沸点以上の温度で塩素化反応を開始させた後、
三塩化砒素の沸点以上であって五塩化アンチモンの沸点
以下の温度に制御して塩素化反応を進行させる製造方法
を含む。また、上記製造方法には、(4)脱塩素工程に用
いるガスが不活性ガスまたは炭酸ガスである製造方法、
(5)脱塩素工程を室温にて行う製造方法、(6)得られた
五塩化アンチモン中の塩素濃度が0.1wt%以下、砒素
濃度が1ppm以下である製造方法が含まれる。
[0008] The production method of the present invention comprises: (3) starting a chlorination reaction at a temperature not lower than the boiling point of antimony pentachloride;
Includes a production method in which the chlorination reaction is advanced by controlling the temperature to a temperature not lower than the boiling point of arsenic trichloride and not higher than the boiling point of antimony pentachloride. Further, in the above production method, (4) a production method in which the gas used in the dechlorination step is an inert gas or carbon dioxide gas,
(5) A production method in which the dechlorination step is performed at room temperature, and (6) a production method in which the obtained antimony pentachloride has a chlorine concentration of 0.1 wt% or less and an arsenic concentration of 1 ppm or less.

【0009】[0009]

【発明の実施形態】以下に本発明の製造方法を詳しく説
明する。(I)塩素化工程 三塩化アンチモン結晶を常圧にて融点(約73℃)以上に加
熱して溶融した融液に乾燥塩素ガスを吹き込み塩素化す
る。この塩素化反応を三塩化砒素の沸点以上であって五
塩化アンチモンの沸点以下の温度範囲で行う。三塩化砒
素は、塩素化反応により五塩化砒素となるが、反応温度
80℃以上では分解し、系内には三塩化砒素の状態で存
在すると考えられる。常圧での三塩化砒素の沸点は13
0℃であり、五塩化アンチモンの沸点は140℃であ
る。従って、本発明の製造方法は、常圧で130℃〜1
40℃の温度範囲で塩素化反応を行う。この塩素化反応
は常圧で行えば良いが、減圧下で行っても良い。減圧下
の沸点は常圧下より低くなるのでこれに対応して反応温
度を制御する。出発材料の三塩化アンチモンは金属アン
チモンの塩素化工程から直接に導入したものや溶融状態
のものを直接に用いても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention will be described below in detail. (I) Chlorination Step An antimony trichloride crystal is heated to a melting point (about 73 ° C.) or higher at normal pressure, and dry molten chlorine gas is blown into the melt to perform chlorination. This chlorination reaction is carried out in a temperature range not lower than the boiling point of arsenic trichloride and not higher than the boiling point of antimony pentachloride. Arsenic trichloride is converted to arsenic pentachloride by a chlorination reaction, but is decomposed at a reaction temperature of 80 ° C. or higher, and is considered to be present in the system as arsenic trichloride. The boiling point of arsenic trichloride at normal pressure is 13
0 ° C. and the boiling point of antimony pentachloride is 140 ° C. Therefore, the production method of the present invention is carried out at 130 ° C. to 1
The chlorination reaction is performed in a temperature range of 40 ° C. The chlorination reaction may be performed at normal pressure, but may be performed under reduced pressure. Since the boiling point under reduced pressure is lower than that under normal pressure, the reaction temperature is controlled accordingly. As the starting material, antimony trichloride may be directly introduced from the chlorination step of antimony metal or in the molten state.

【0010】上記温度範囲内で塩素化反応を行うことに
より、三塩化アンチモンに混入している三塩化砒素は揮
発して系外に除去される。また、砒素と共に鉛が不純物
として混在している場合も多いが、この塩素化反応によ
って生じる四塩化鉛(沸点110℃)および塩素ガスの導入
によって生じる塩化水素(共沸点110℃)なども上記反応
温度下で揮発し系外に除去される。この塩素化工程にお
いて、液中の砒素濃度は1ppm以下に減少し、鉛の残留
濃度も1ppm以下に低減される。
By performing the chlorination reaction within the above temperature range, arsenic trichloride mixed in antimony trichloride volatilizes and is removed from the system. In addition, lead is often mixed with arsenic as an impurity, but lead tetrachloride (boiling point 110 ° C) generated by this chlorination reaction and hydrogen chloride (azeotropic point 110 ° C) generated by introduction of chlorine gas are also subjected to the above reaction. Volatile under temperature and removed out of the system. In this chlorination step, the arsenic concentration in the liquid is reduced to 1 ppm or less, and the residual concentration of lead is also reduced to 1 ppm or less.

【0011】反応初期は三塩化アンチモン(沸点221℃)
が大部分であるので液温が140℃以上でも融液は沸騰
しない。従って、三塩化砒素を確実に系外に除去するた
め、反応初期には上記温度範囲内で出来るだけ高い温度
で塩素化を行うと良い。すなわち、五塩化アンチモンの
沸点以上(常圧140℃以上)の温度で塩素化反応を開始さ
せた後に、三塩化砒素の沸点以上であって五塩化アンチ
モンの沸点以下(常圧130℃〜140℃)の温度に制御して塩
素化反応を進行させると良い。
The initial stage of the reaction is antimony trichloride (boiling point 221 ° C.)
, The melt does not boil even at a liquid temperature of 140 ° C. or higher. Therefore, in order to surely remove arsenic trichloride out of the system, it is preferable to perform chlorination at a temperature as high as possible within the above temperature range at the beginning of the reaction. That is, after starting the chlorination reaction at a temperature higher than the boiling point of antimony pentachloride (normal pressure 140 ° C. or higher), it is higher than the boiling point of arsenic trichloride and lower than the boiling point of antimony pentachloride (normal pressure 130 ° C. to 140 ° C.). The temperature is preferably controlled to allow the chlorination reaction to proceed.

【0012】この塩素化反応により発熱するので、反応
系の温度は反応の進行に応じて制御するのが好ましい。
なお、従来の製造方法では、反応系を水冷して三塩化ア
ンチモンの融点(73℃)〜100℃の温度範囲で塩素化反
応を行っているが、本発明の製造方法は従来よりもかな
り高い温度範囲で塩素化反応を行う。
Since heat is generated by the chlorination reaction, the temperature of the reaction system is preferably controlled according to the progress of the reaction.
In the conventional production method, the reaction system is cooled with water and the chlorination reaction is performed in the temperature range of the melting point of antimony trichloride (73 ° C.) to 100 ° C., but the production method of the present invention is considerably higher than before. Perform chlorination reaction in the temperature range.

【0013】塩素化反応の進行につれて三塩化アンチモ
ンは五塩化アンチモンに変わる。反応終了時は、未反応
の塩素ガスが系外に排出された時点で塩素ガスの吹き込
みを終了すれば良い。なお、未反応の三塩化アンチモン
が残らないように、塩素ガスは反応当量よりやや過剰に
導入される。塩素ガスの吹き込み量は五塩化アンチモン
1kgに対して0.24kg程度であれば良い。
As the chlorination reaction proceeds, antimony trichloride is converted to antimony pentachloride. At the end of the reaction, the blowing of chlorine gas may be terminated when unreacted chlorine gas is discharged out of the system. Note that chlorine gas is introduced in a slightly excessive amount than the reaction equivalent so that unreacted antimony trichloride does not remain. The blowing amount of chlorine gas may be about 0.24 kg per 1 kg of antimony pentachloride.

【0014】(II)脱塩素工程上記塩素化反応によって五
塩化アンチモンを製造した後に、塩素ガスに代えて不活
性ガスを液中に吹き込む。この不活性ガスのバブリング
によって液中に残留する塩素を系外に追い出す。不活性
ガスの吹き込み量は五塩化アンチモン1kgに対して6リッ
トル程度であれば良い。この脱塩素により液中の塩素濃度
は0.1%程度に減少する。なお、このバブリングに用
いるガスは不活性ガスに限らず、炭酸ガスなどの五塩化
アンチモンと反応せず乾燥状態のガスであれば良い。ま
た、これらのガスは塩素ガスの吹き込み終了後に、反応
容器内に塩素ガスを導入した供給管を利用して吹き込め
ば良い。脱塩素工程の温度は室温〜120℃が望まし
い。なお、120℃以上で脱塩素工程を実施すると、生
成した五塩化アンチモンも系外に排出されるので好まし
くない。
(II) Dechlorination Step After producing antimony pentachloride by the chlorination reaction, an inert gas is blown into the liquid instead of chlorine gas. By the bubbling of the inert gas, chlorine remaining in the liquid is driven out of the system. The blowing amount of the inert gas may be about 6 liters per 1 kg of antimony pentachloride. By this dechlorination, the chlorine concentration in the liquid is reduced to about 0.1%. The gas used for bubbling is not limited to an inert gas, and may be any gas that does not react with antimony pentachloride such as carbon dioxide gas and is in a dry state. Further, these gases may be blown into the reaction vessel using a supply pipe into which the chlorine gas has been introduced after the blowing of the chlorine gas is completed. The temperature of the dechlorination step is preferably room temperature to 120 ° C. If the dechlorination step is carried out at 120 ° C. or higher, the generated antimony pentachloride is also undesirably discharged outside the system.

【0015】以上の製造方法により、塩素濃度が0.1w
t%以下、砒素濃度が1ppm以下であって鉛の含有量も少
ない高純度五塩化アンチモンが得られる。因みに、従来
の五塩化アンチモンの砒素、塩素および鉛の含有量は、
一例として、砒素50ppm、塩素2.0wt%、鉛3ppmで
あるが、本発明の製造方法に係る五塩化アンチモンの不
純物量は砒素1ppm以下、塩素0.1wt%、鉛1ppm以下
であり、不純物が大幅に低減された高純度の五塩化アン
チモンである。
According to the above manufacturing method, the chlorine concentration is 0.1 w
High-purity antimony pentachloride having an arsenic concentration of 1 ppm or less and a low lead content is obtained. By the way, the content of arsenic, chlorine and lead of conventional antimony pentachloride is as follows:
As an example, arsenic is 50 ppm, chlorine is 2.0 wt%, and lead is 3 ppm. However, the impurity amount of antimony pentachloride according to the production method of the present invention is 1 ppm or less of arsenic, 0.1 wt% of chlorine, and 1 ppm or less of lead. Highly purified high purity antimony pentachloride.

【0016】[0016]

【実施例および比較例】実施例1〜5 表1に示す不純物量の三塩化アンチモン10kgを90
℃に加熱して溶融し、この融液の温度を表1に示す温度
(130℃〜150℃)に保ち、塩素ガスを0.5Kg/hの流量で
融液中に6.5時間吹き込んだ。その後、塩素ガスの導
入を止め、代わりに窒素ガスを5リットル/minの流量で融液
中に吹き込み、3時間バグリングさせた。なお、塩素ガ
スおよび窒素ガスの導入と共に容器内のガスを系外に排
出した。この製造工程によって五塩化アンチモンを得
た。この五塩化アンチモンの不純物量を表1に示した。
EXAMPLES AND COMPARATIVE EXAMPLES Examples 1 to 5 10 kg of antimony trichloride having the amount of impurities shown in Table 1 was added to 90
° C and melted, and the temperature of this melt is shown in Table 1.
(130 ° C. to 150 ° C.), and chlorine gas was blown into the melt at a flow rate of 0.5 kg / h for 6.5 hours. Thereafter, the introduction of chlorine gas was stopped, and instead nitrogen gas was blown into the melt at a flow rate of 5 L / min to cause bagling for 3 hours. The gas in the container was discharged out of the system together with the introduction of chlorine gas and nitrogen gas. Antimony pentachloride was obtained by this manufacturing process. Table 1 shows the amounts of impurities of this antimony pentachloride.

【0017】比較例1 従来の製法に従い、三塩化アンチモンの融液(10kg)を温
度90℃に保持し、この融液に塩素ガスを0.5kg/hの
流量で6.5時間吹き込み塩素化した。これを乾燥窒素
雰囲気中で、14mmHgまで真空ポンプにより減圧して精
製した。本留の沸点は68.5℃であった。この五塩化
アンチモンの不純物濃度を表1に対比して示した。
Comparative Example 1 According to a conventional production method, a melt of antimony trichloride (10 kg) was maintained at a temperature of 90 ° C., and chlorine gas was blown into the melt at a flow rate of 0.5 kg / h for 6.5 hours to perform chlorination. did. This was purified in a dry nitrogen atmosphere by reducing the pressure with a vacuum pump to 14 mmHg. The boiling point of this fraction was 68.5 ° C. The impurity concentration of antimony pentachloride is shown in comparison with Table 1.

【0018】比較例2 窒素ガスの導入を省略した以外は実施例と同様にして五
塩化アンチモンを製造した(比較例2)。この五塩化アン
チモンの不純物濃度を表1に対比して示した。
Comparative Example 2 Antimony pentachloride was produced in the same manner as in Example except that the introduction of nitrogen gas was omitted (Comparative Example 2). The impurity concentration of antimony pentachloride is shown in comparison with Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】表1に示すように、本発明の五塩化アン
チモンは、従来のものより砒素および塩素の残留濃度が
大幅に少なく、鉛の含有量も格段に低減された高純度の
五塩化アンチモンである。また、本発明の製造方法によ
れば、上記高純度五塩化アンチモンを容易に製造するこ
とができる。
As shown in Table 1, the antimony pentachloride of the present invention has a much lower residual concentration of arsenic and chlorine than the conventional antimony pentachloride, and a high-purity pentachloride with a significantly reduced lead content. It is antimony. Further, according to the production method of the present invention, the high-purity antimony pentachloride can be easily produced.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 塩素濃度が0.1wt%以下、砒素濃度が
1ppm以下であることを特徴とする高純度五塩化アンチ
モン。
1. A high-purity antimony pentachloride having a chlorine concentration of 0.1 wt% or less and an arsenic concentration of 1 ppm or less.
【請求項2】 三塩化アンチモンの融液に塩素ガスを導
入して五塩化アンチモンを製造する際に、三塩化砒素の
沸点以上であって五塩化アンチモンの沸点以下の温度で
塩素化反応を進行させることにより砒素を揮発除去し、
この塩素化反応終了後、更に五塩化アンチモンに対して
反応性のないガスを融液中に導入して液中の残留塩素を
上記ガスによって系外に追い出し、砒素および塩素の含
有量を低減した高純度の五塩化アンチモンを得ることを
特徴とする五塩化アンチモンの製造方法。
2. When chlorinating gas is introduced into a melt of antimony trichloride to produce antimony pentachloride, the chlorination reaction proceeds at a temperature higher than the boiling point of arsenic trichloride and lower than the boiling point of antimony pentachloride. To volatilize and remove arsenic,
After the completion of the chlorination reaction, a gas having no reactivity with antimony pentachloride was further introduced into the melt, and residual chlorine in the solution was driven out of the system by the gas to reduce the contents of arsenic and chlorine. A method for producing antimony pentachloride, which comprises obtaining high-purity antimony pentachloride.
【請求項3】 五塩化アンチモンの沸点以上の温度で塩
素化反応を開始させた後、三塩化砒素の沸点以上であっ
て五塩化アンチモンの沸点以下の温度に制御して塩素化
反応を進行させる請求項2に記載の製造方法。
3. The chlorination reaction is started at a temperature higher than the boiling point of antimony pentachloride, and then controlled to a temperature higher than the boiling point of arsenic trichloride and lower than the boiling point of antimony pentachloride. The method according to claim 2.
【請求項4】 脱塩素工程に用いるガスが不活性ガスま
たは炭酸ガスである請求項2または3に記載の製造方
法。
4. The method according to claim 2, wherein the gas used in the dechlorination step is an inert gas or a carbon dioxide gas.
【請求項5】 脱塩素工程を室温にて行う請求項2、3
または4に記載の製造方法。
5. The dechlorination step is performed at room temperature.
Or the production method according to 4.
【請求項6】 得られた五塩化アンチモン中の塩素濃度
が0.1wt%以下、砒素濃度が1ppm以下である請求項2
〜5のいずれかに記載の製造方法。
6. The obtained antimony pentachloride has a chlorine concentration of 0.1% by weight or less and an arsenic concentration of 1 ppm or less.
6. The production method according to any one of items 1 to 5,
JP7710498A 1998-03-25 1998-03-25 High-purity antimony pentachloride and its production Withdrawn JPH11268916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7710498A JPH11268916A (en) 1998-03-25 1998-03-25 High-purity antimony pentachloride and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7710498A JPH11268916A (en) 1998-03-25 1998-03-25 High-purity antimony pentachloride and its production

Publications (1)

Publication Number Publication Date
JPH11268916A true JPH11268916A (en) 1999-10-05

Family

ID=13624487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7710498A Withdrawn JPH11268916A (en) 1998-03-25 1998-03-25 High-purity antimony pentachloride and its production

Country Status (1)

Country Link
JP (1) JPH11268916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629486A (en) * 2017-11-06 2018-01-26 广西生富锑业科技股份有限公司 A kind of preparation method of ultrawhite antimony oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629486A (en) * 2017-11-06 2018-01-26 广西生富锑业科技股份有限公司 A kind of preparation method of ultrawhite antimony oxide
CN107629486B (en) * 2017-11-06 2020-05-15 广西生富锑业科技股份有限公司 Preparation method of super-white antimony trioxide

Similar Documents

Publication Publication Date Title
US20070248530A1 (en) Process for Producing Manganese Fluoride
US4543242A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
JP5341425B2 (en) Method for producing fluoride gas
JP5803098B2 (en) Method for producing phosphorus pentafluoride
JP2000044212A (en) Production of nitrogen trifluoride
JP2523099B2 (en) Method for synthesizing ferric chloride from ferrous chloride
KR100727272B1 (en) Preparation of high purity tungsten hexafluoride
JPS61151024A (en) Production of high purity lithium fluoride complex salt
JP3494344B2 (en) Method for producing lithium hexafluorophosphate
JPH11268916A (en) High-purity antimony pentachloride and its production
CN116254547B (en) Preparation method of nitrogen trifluoride
JP4765630B2 (en) Method and apparatus for producing carbonyl fluoride
US4698441A (en) Process for producing glyoxylic acid
US4910009A (en) Ultra high purity halides and their preparation
JP4166025B2 (en) Method for producing carbonyl difluoride
US5122356A (en) Process for purification of hydrochloric acid
JPH06345410A (en) Production of high-purity hydrochloric acid
JPS62153120A (en) Production of gallium trichloride
JP5036990B2 (en) Method for producing manganese fluoride
JPH06135715A (en) Production of high purity rare earth metal halide
US6673329B2 (en) Process for preparing fluorosulfonic acid having low contents of low-boiling compounds
JPS62256930A (en) Method for recovering ruthenium
JP2649422B2 (en) Production method of trichloroacetic acid
US20240175104A1 (en) Method of preparing scandium metal
JP2000239008A (en) Production of highly pure phosphoric acid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607