JPH11268163A - Building material with sound absorbing, sound isolating and acoustic characteristics - Google Patents

Building material with sound absorbing, sound isolating and acoustic characteristics

Info

Publication number
JPH11268163A
JPH11268163A JP10098334A JP9833498A JPH11268163A JP H11268163 A JPH11268163 A JP H11268163A JP 10098334 A JP10098334 A JP 10098334A JP 9833498 A JP9833498 A JP 9833498A JP H11268163 A JPH11268163 A JP H11268163A
Authority
JP
Japan
Prior art keywords
photocatalyst
sound
sound insulation
building material
sound absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10098334A
Other languages
Japanese (ja)
Inventor
Hidenori Kobayashi
秀紀 小林
Kazuya Tsujimichi
万也 辻道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP10098334A priority Critical patent/JPH11268163A/en
Publication of JPH11268163A publication Critical patent/JPH11268163A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/746Recycled materials, e.g. made of used tires, bumpers or newspapers

Abstract

PROBLEM TO BE SOLVED: To obtain a panel having a light weight, high strength, and desired sound absorbing, isolating acoustic characteristics by giving a photocatalyst and metallic ion to a surface of a molding molded by controlling a particle size blend of a waste glass material. SOLUTION: A molding 1 dispersively formed with a uniform density and obtained by forming a raw material containing waste glass on a granular spray body by spraying, filling the body in a mold, and press molding it is manufactured. At this time, since the molding 1 is molded at a low pressure, it becomes a porous state containing air gaps formed between particles. After the molding 1 is sufficiently dried by a dryer, a surface of the molding 1 is coated with a TiO2 sol by spraying to become, for example, a film thickness of 0.01 micron, and a photocatalyst layer 2 is formed only its surface. Thereafter, after the molding 1 having the layer 2 is baked, the surface of the layer 2 is coated with a solution of metallic ion 3 of Ag, emitted with an ultraviolet ray, fixed to the surface by a reducing power of the photocatalyst, thereby obtaining the porous building material having a photocatalytic function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沿道用資材、建築
物の外壁材、内壁材に使用される吸音、遮音、音響特性
を有する建材であり、防汚、有害ガス浄化機能を合わせ
持つ建材製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a building material having a sound absorbing, sound insulating and acoustic property used for roadside materials, building outer and inner wall materials, and having both antifouling and harmful gas purifying functions. About the product.

【0002】[0002]

【従来の技術】従来の吸音パネルとしては、素材にセラ
ミックス、陶磁器などの粉砕物を用いたものや、発泡廃
ガラス、焼却汚泥などを用いたものがあった。また、発
泡ガラスとガラス繊維の組み合わせからなる建材が存在
するが、これは、廃ガラスが球形で形状が揃っているた
め成形後に強度が出ず、ぞれを補強するために使用され
ているものである。
2. Description of the Related Art Conventional sound-absorbing panels include those using pulverized materials such as ceramics and ceramics as materials, and those using foamed waste glass, incinerated sludge and the like. In addition, there is a building material consisting of a combination of foamed glass and glass fiber, which is used to reinforce each piece because the waste glass has a spherical and uniform shape and does not have strength after molding. It is.

【0003】又、光触媒との組み合わせについては、特
開平9−209314にあるように、樹脂板を用いたシ
ート状のものである。
[0003] The combination with a photocatalyst is in the form of a sheet using a resin plate, as disclosed in JP-A-9-209314.

【0004】[0004]

【発明が解決しようとする課題】従来の多孔質セラミッ
クス吸音パネルでは、通常のセラミックス粉砕物例えば
ムライト、シリカ、陶磁器などが利用されているが、原
料そのものの比重が2.0以上の物であり、出来上がっ
た吸音板も重いという不具合点があった。
In a conventional porous ceramic sound absorbing panel, a usual ceramic pulverized material such as mullite, silica, porcelain or the like is used, but the specific gravity of the raw material itself is 2.0 or more. However, there was a problem that the completed sound absorbing plate was also heavy.

【0005】また、それにかわる原料として、廃ガラス
発泡体(Gライト)を利用した特許も出願されている
が、Gライトは粒が球状である為、そのまま成形すると
吸音板にできる気孔の大きさが、使用するGライトによ
り限定されるという問題点があった。また、Gライトが
球形であるためGライトだけで骨材が構成された場合、
成形時並びに製品の強度が弱いという問題点があった。
[0005] Further, a patent utilizing a waste glass foam (G-lite) has been filed as an alternative raw material. However, since G-lite is spherical, the size of the pores that can be formed in the sound-absorbing plate when molded as it is. However, there is a problem in that it is limited by the G light used. Also, if the aggregate is composed of only the G light because the G light is spherical,
There was a problem that the strength of the product was low during molding and also.

【0006】さらに、これらで出来あがった吸音パネル
は全て孔があいているため、沿道などで使用すると排気
ガス等の汚れが付着しやすく、景観を損なってしまう。
Furthermore, since the sound absorbing panels made of these are all perforated, when used along roadsides, dirt such as exhaust gas easily adheres, and the scenery is impaired.

【0007】本発明は上記課題を解決するためになされ
たもので、本発明の目的は、軽量で高強度であり、且つ
所望の吸音、遮蔽、音響特性を有するパネルを得ること
である。さらに沿道においてパネル自身の汚れを防止す
るだけでなく、太陽光などに含まれる紫外線を利用し、
大気中に含まれる有害ガス(NOx,SOx,ホルムア
ルデヒド、VOCなど)を浄化させる機能を合わせ持つ
建材を提供することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a panel which is lightweight, has high strength, and has desired sound absorbing, shielding, and acoustic characteristics. In addition to preventing dirt on the panel itself along the roadside, it also uses ultraviolet rays contained in sunlight,
An object of the present invention is to provide a building material having a function of purifying harmful gases (NOx, SOx, formaldehyde, VOC, etc.) contained in the atmosphere.

【0008】[0008]

【課題を解決するための手段】本発明は廃ガラス素材を
使用し、この廃ガラス素材の粒度配合を制御することで
気孔径をコントロールし、所望の吸音、遮蔽、音響特性
を持つ成形体を成形する。又、この成形体の表面に光触
媒や金属イオンを付与して、建材を作製する。
SUMMARY OF THE INVENTION The present invention uses a waste glass material, controls the pore size by controlling the particle size composition of the waste glass material, and obtains a molded article having desired sound absorption, shielding and acoustic characteristics. Molding. Further, a photocatalyst and metal ions are applied to the surface of the molded body to produce a building material.

【0009】[0009]

【発明の実施の形態】ビンガラス等の廃ガラスを50%
以上含んだ廃ガラス原料を、又は廃ガラス原料と他の原
料を混合した混合原料を、通常のタイル原料を成形する
ようにスプレー噴霧させて顆粒状のスプレーはい土を作
成する。このスプレーはい土は、必要に応じてローラー
圧延、プレスなどにて加圧し原料の密度を高くさせても
よい。又、スプレーはい土を予め焼成して発泡させた
後、使用することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION 50% of waste glass such as bottle glass
The waste glass raw material containing the above or a mixed raw material obtained by mixing the waste glass raw material and other raw materials is spray-sprayed so as to form a normal tile raw material, thereby producing a granular sprayed earth. This sprayed earth may be pressurized by roller rolling, pressing, or the like, as necessary, to increase the density of the raw material. Further, the sprayed earth can be used after firing and foaming.

【0010】廃ガラス原料としては、ビンガラス等を粉
砕したもの、市販の廃ガラス多孔体(通称:Gライト)
等を使用することができる。
[0010] Waste glass raw materials include crushed bottle glass and the like, and commercially available porous waste glass (commonly known as G light).
Etc. can be used.

【0011】他の原料としては、SiC,CaCO3
Si34などの焼成時に空気中の酸素と反応し酸化して
体積が大きくなる素材等の少なくとも1種類、又はセラ
ミックス屑、陶磁器屑などの粉砕、分級物を使用するこ
とができる。これらの廃ガラス原料、他の原料、スプレ
ーはい土等の表面に、さらに、ガラスフリット、廃ガラ
ス微粉、粘土、CMCなどの糊剤等の溶融材をコーティ
ングしたものを使用することもできる。
Other raw materials include SiC, CaCO 3 ,
At least one kind of material, such as Si 3 N 4, which reacts with oxygen in the air during sintering and oxidizes to increase its volume, or a crushed or classified material such as ceramic waste or ceramic waste can be used. It is also possible to use a material obtained by coating the surface of these waste glass raw materials, other raw materials, sprayed earth, and the like, with a melting material such as a paste such as glass frit, waste glass fine powder, clay, and CMC.

【0012】こうして出来上がった廃ガラス原料スプレ
ーはい土を、通常のタイルを成形するように成形型内に
充填させ、通常のタイル成形圧力(20〜30MPa)
よりも低圧(10〜20MPa)でプレス成形すること
により、成形体を得る。このようにして形成された廃ガ
ラスを利用した成形体は、通常のセラミックスや陶磁器
屑よりも軽いことから、他の原料との混合条件を変化さ
せることで、成形体自体を、軽量かつ高強度にすること
ができる。
The thus-produced sprayed waste glass material is filled in a mold so as to form a normal tile, and is subjected to a normal tile forming pressure (20 to 30 MPa).
Press molding is performed at a lower pressure (10 to 20 MPa) to obtain a molded body. Since the formed body using waste glass formed in this way is lighter than ordinary ceramics and ceramic waste, by changing the mixing conditions with other raw materials, the formed body itself can be reduced in weight and strength. Can be

【0013】この時、スプレーはい土が互いに接触する
ことで所望の形状に成形されるが、低圧で成形するた
め、完全に隣の粒子と密着するのではなく、粒子間に空
隙を形成した状態で成形される。又、プレス時の圧力を
低圧で調整制御したり、粒子粒径の調節や、粒子自体の
密度や、粒子の粒配を調整制御したり、これらを組み合
わせることで、成形体の吸音領域をコントロール出来る
ため、所望の吸音、遮音、音響特性を有する成形体を簡
単な手段で得ることができる。更に、内部と表面の密度
や透水係数、吸水率などを変えることで表面の防汚性、
有害ガス浄化性能を向上させることができる。
At this time, the sprayed earth is formed into a desired shape by contact with each other. However, since it is formed at a low pressure, it does not completely adhere to the adjacent particles but forms a void between the particles. Molded. In addition, the pressure at the time of pressing can be adjusted and controlled at low pressure, the particle size can be adjusted, the density of the particles themselves, and the particle arrangement can be adjusted and controlled. As a result, a molded article having desired sound absorption, sound insulation, and acoustic characteristics can be obtained by simple means. Furthermore, by changing the density and water permeability, water absorption, etc. of the inside and the surface, the antifouling property of the surface,
The harmful gas purification performance can be improved.

【0014】得られた成形体の表面に、酸化チタン等の
光触媒機能を有する材料を、スプレーなどにて表面上か
ら塗布し、光触媒層を形成する。この時、光触媒として
は市販のTiO2ゾル、あるいはアルコキシドを使用す
る。この光触媒を塗布した成形体を、従来のタイルやセ
ラミックスよりも300〜400℃低い800〜900
℃の温度にて焼成し、光触媒機能を有する多孔質建材を
得る。光触媒を表面もしくは内部までコーティングする
ことにより、さらに防汚機能(セルフクリーニング機
能)を向上させることができ、道路周辺で発生する有害
ガスを太陽光に含まれる紫外線により浄化させることも
できる。光触媒をコーティングする方法として、基材表
面にスプレーで多量に表面から吹き付けるか、あるいは
これを光触媒溶液中にディッピングする方法がある。
又、基材及び製品が焼成された後、同様なコーティング
又はディッピングを行うこともできる。この場合は、光
触媒機能が劣化しない温度(1000℃未満)にて再焼
成すればよい。
A material having a photocatalytic function, such as titanium oxide, is applied on the surface of the obtained molded body by spraying or the like to form a photocatalytic layer. At this time, a commercially available TiO 2 sol or alkoxide is used as the photocatalyst. The molded body coated with the photocatalyst is 800 to 900 ° C. lower than conventional tiles and ceramics by 300 to 400 ° C.
Firing at a temperature of ° C. to obtain a porous building material having a photocatalytic function. By coating the photocatalyst on the surface or inside, the antifouling function (self-cleaning function) can be further improved, and the harmful gas generated around the road can be purified by ultraviolet rays contained in sunlight. As a method of coating the photocatalyst, there is a method of spraying a large amount from the surface with a spray on the surface of the substrate, or dipping this in a photocatalyst solution.
Similar coating or dipping can also be performed after the substrate and product have been fired. In this case, re-firing may be performed at a temperature at which the photocatalytic function does not deteriorate (less than 1000 ° C.).

【0015】焼成した後、Ag,Cu、Pd、Rh、A
u,Pt等の金属イオンを光触媒の還元力で表面に固定
化することもできる。金属層を含む光触媒層の膜厚は、
0.01〜1ミクロンであればよい。金属イオンを光触
媒層表面に還元固定させることで、紫外線量の少ない場
所であっても、防汚機能効果を得ることができる。以
下、実施例に従って説明していく。
After firing, Ag, Cu, Pd, Rh, A
Metal ions such as u and Pt can be immobilized on the surface by the reducing power of the photocatalyst. The thickness of the photocatalyst layer including the metal layer is
It may be 0.01 to 1 micron. By reducing and fixing metal ions to the surface of the photocatalyst layer, an antifouling function effect can be obtained even in a place where the amount of ultraviolet light is small. Hereinafter, description will be made in accordance with embodiments.

【0016】[0016]

【実施例1】図1(a)に示すように、ビンガラス等の
廃ガラスを50%以上含んだ原料を、スプレーにより顆
粒状のスプレーはい土に形成にする。出来上がったスプ
レーはい土を、成形型内に充填させ、10〜20MPa
の圧力で、300×300×20(厚み)mmの大きさ
の成形体になるようプレス成形し、スプレーはい土が均
一密度で分散形成された成形体1を作製した。この時、
原料は互いに接触することで所望の形状に成形される
が、成形体1は、低圧で成形するため、完全に隣の粒子
と密着するのではなく、粒子間に空隙を形成した多孔質
状態となる。又、得られた成形体1は、通常のセラミッ
クスでできた多孔体と比べ、ガラスが50%以上混入し
ているのでその比重差の分(アルミナ約4に比べてガラ
ス約2程度)軽量化された物となり、焼成後の製品の嵩
比重は1.7であった。
EXAMPLE 1 As shown in FIG. 1 (a), a raw material containing at least 50% of waste glass such as bottle glass is formed into a granular spray blast by spraying. The finished spraying earth is filled into the mold and 10-20MPa
Under a pressure of 300 mm to form a compact having a size of 300 × 300 × 20 (thickness) mm, to produce a compact 1 in which sprayed earth was dispersed and formed at a uniform density. At this time,
The raw materials are formed into a desired shape by contacting each other. However, since the molded body 1 is molded at a low pressure, the molded body 1 does not completely adhere to adjacent particles but has a porous state in which voids are formed between particles. Become. In addition, the obtained molded body 1 contains 50% or more of glass as compared with a porous body made of ordinary ceramics, so the difference in specific gravity (about 2 glass compared to about 4 alumina) is reduced in weight. The product after firing had a bulk specific gravity of 1.7.

【0017】この成形体1を、60℃以上の乾燥機で、
十分に乾燥させた後、図1(b)に示すように、TiO
2ゾルをスプレーにより、膜厚0.01ミクロンとなる
ように成形体1の表面上から塗布し、表面上にだけ光触
媒層2を形成する。その後、この光触媒層2を有する成
形体1を800〜900℃の温度にて焼成し、焼成後、
光触媒層2の表面上にAgの金属イオン溶液を塗布し、
紫外線を照射させて光触媒の還元力で表面に固定化し
て、光触媒機能を有する多孔質建材を得た。
The molded body 1 is dried in a dryer at 60 ° C. or higher.
After being sufficiently dried, as shown in FIG.
2 The sol is applied from the surface of the molded body 1 by spraying so as to have a thickness of 0.01 μm, and the photocatalyst layer 2 is formed only on the surface. Thereafter, the molded body 1 having the photocatalyst layer 2 is fired at a temperature of 800 to 900 ° C.
A metal ion solution of Ag is applied on the surface of the photocatalyst layer 2,
The porous building material having a photocatalyst function was obtained by irradiating ultraviolet rays and fixing the photocatalyst on the surface by the reducing power of the photocatalyst.

【0018】この光触媒機能を有する多孔質建材につい
て、吸音特性を見ると、図2の細線(実施例1)に示さ
れるものであった。NOx濃度を測定した結果、図3に
示すように、NOx濃度が大きく低下していた。これに
より、有害ガス浄化機能があることが解かる。又、図4
に示すように、防汚性能も高いものであった。
The sound absorption characteristics of the porous building material having a photocatalytic function are shown by the thin lines (Example 1) in FIG. As a result of measuring the NOx concentration, as shown in FIG. 3, the NOx concentration was greatly reduced. As a result, it is understood that there is a harmful gas purifying function. Also, FIG.
As shown in the figure, the antifouling performance was also high.

【0019】[0019]

【実施例2】実施例1に用いた廃ガラスを混入した素地
中に、SiCを約0.01〜5%添加し、原料粉砕用の
湿式のミル中で粉砕、混合したものを、スプレー噴霧さ
せてスプレーはい土を作製する。この工程で出来上がっ
た粒子は0.1〜5mmであった。これを実施例1と同
様に、成形し、光触媒をコーティングした後、焼成す
る。焼成後の基材には実施例1と同様にしてCuの金属
イオンをコーティングした。得られた多孔質建材は、重
量が実施例1に比べてさらに軽く、実施例1の約0.7
倍の重量で嵩比重が1.2であった。吸音特性は、図2
の波線(実施例2)に示されるものであった。ここでの
吸音特性は、焼成前の粒子径に幅があり、焼成後の基材
の気孔径に幅ができるため低周波から高周波にかけて均
一な吸音特性を示した。また、有害ガス浄化性能、防汚
性能については、図3及び図4に示す実施例1と同等で
あった。
Example 2 About 0.01 to 5% of SiC was added to a base material mixed with waste glass used in Example 1, and the mixture was pulverized and mixed in a wet mill for raw material pulverization. Then, make spray earth. The particles produced in this step were between 0.1 and 5 mm. This is molded, coated with a photocatalyst and fired in the same manner as in Example 1. The baked substrate was coated with Cu metal ions in the same manner as in Example 1. The weight of the obtained porous building material was even lighter than that of Example 1, and was about 0.7% of that of Example 1.
The bulk specific gravity was 1.2 at twice the weight. The sound absorption characteristics are shown in FIG.
(Example 2). Here, the sound absorption characteristics showed a uniform sound absorption characteristic from low frequency to high frequency because the particle size before firing varied and the pore diameter of the base material after firing varied. The harmful gas purification performance and antifouling performance were equivalent to those of Example 1 shown in FIGS.

【0020】[0020]

【実施例3】実施例2で使用したスプレーはい土を焼成
用のサヤバチに入れて、トンネルキルンを使用して50
0〜1100℃で焼成し、予めスプレーはい土を発泡さ
せておく。この時、出来上がった発泡粒は、嵩比重が約
0.5〜1となり、通常のセラミックス、陶磁器素材に
比べて約1/2〜1/4程度である。この発泡粒を粒度
0.1〜3mmに分級し、さらに溶融材(ガラスフリッ
ト、廃ガラス微粉、粘土、CMCなどの糊剤)を表面コ
ーティングした後、これを実施例1と同様に成形し、光
触媒をコーティングした後、焼成する。焼成後の基材に
は実施例1と同様にしてAgの金属イオンをコーティン
グした。得られた多孔質建材は、重量が実施例2と同等
で、嵩比重が1.2であった。吸音特性を見ると、図2
の細線(実施例3)に示されるものであり、実施例1と
略同じ曲線上に示された。また、有害ガス浄化性能、防
汚性能については、図3及び図4に示す実施例1と同等
であった。
EXAMPLE 3 The sprayed earth used in Example 2 was put into a bee for firing, and was then used in a tunnel kiln.
It is fired at 0 to 1100 ° C. and foamed in advance with sprayed earth. At this time, the resulting expanded granules have a bulk specific gravity of about 0.5 to 1, which is about 1/2 to 1/4 of that of ordinary ceramics and ceramic materials. After classifying the foamed particles to a particle size of 0.1 to 3 mm and further surface-coating a molten material (glass frit, waste glass fine powder, clay, glue such as CMC), this was molded in the same manner as in Example 1, After coating the photocatalyst, it is fired. The baked substrate was coated with Ag metal ions in the same manner as in Example 1. The obtained porous building material had a weight equivalent to that of Example 2 and a bulk specific gravity of 1.2. Looking at the sound absorption characteristics, Fig. 2
(Example 3), which is shown on the same curve as in Example 1. The harmful gas purification performance and antifouling performance were equivalent to those of Example 1 shown in FIGS.

【0021】[0021]

【実施例4】実施例1で使用するスプレーはい土を所望
の大きさに(1〜7mmの異形状図1参照)形成させ、
500〜1300℃にて焼成し、軽量の粒子をあらかじ
めつくる。或いはタイルをつくった後、粉砕、分級し所
望サイズの粒子にする。このとき望まれる粒子のサイズ
は、出来上がりの多孔体の吸音特性を決めるものであ
る。ここでは粒度0.1〜0.3mmものを用いた。こ
こで細かな粒子を選択するのは、吸音特性において、こ
のサイズの粒子が低周波における吸音効率を高めるから
である。この粒子表面に、実施例3と同様に溶融材、粘
土などをコーティングし、実施例1と同様に低圧にて成
形した後、光触媒コーティング、焼成する。焼成後の基
材には実施例1と同様にしてCuの金属イオンをコーテ
ィングした。出来上がった多孔質建材の重量は、実施例
3とほぼ同じで嵩比重1.25、有害ガス浄化性能、防
汚性能については、実施例1と同等であった。吸音特性
は、図2の太線(実施例4)に示される曲線上となっ
た。
Example 4 The spray blasting soil used in Example 1 was formed into a desired size (1 to 7 mm irregular shape drawing 1).
It is fired at 500 to 1300 ° C to produce light-weight particles in advance. Alternatively, after making a tile, it is crushed and classified into particles of a desired size. The desired particle size at this time determines the sound absorption characteristics of the resulting porous body. Here, those having a particle size of 0.1 to 0.3 mm were used. The reason why fine particles are selected here is that particles of this size enhance sound absorption efficiency at low frequencies in sound absorption characteristics. The surface of these particles is coated with a molten material, clay or the like as in Example 3, molded at a low pressure as in Example 1, and then coated with photocatalyst and fired. The baked substrate was coated with Cu metal ions in the same manner as in Example 1. The weight of the completed porous building material was almost the same as in Example 3, and the bulk specific gravity was 1.25, and the harmful gas purification performance and the antifouling performance were the same as those in Example 1. The sound absorption characteristics were on the curve shown by the thick line (Example 4) in FIG.

【0022】[0022]

【実施例5】市販の廃ガラス多孔体(通称:Gライト)
をそのまま、もしくは粉砕にて粒径0.1〜4mmにし
たものを10〜100%、それ以外の骨材(セラミック
ス屑、陶磁器屑などの粉砕、分級物)を0〜90%混合
し、実施例3、4と同様に、この粒子表面に溶融材と粘
土などをコーティングした後、実施例1と同様に低圧に
て成形し、光触媒コーティングの後、焼成する。焼成後
の基材には実施例1と同様にしてAgの金属イオンをコ
ーティングした。出来上がった多孔質建材の重量は、実
施例3とほぼ同じで、嵩比重1.2となり、吸音特性
は、図2の細線(実施例5)に示されるものであり、実
施例1と略同じ曲線上に示された。有害ガス浄化性能、
防汚性能についても、実施例1と同等であった。このよ
うにセラミック屑、陶磁器屑などを粉砕、分級したもの
に後でフリット、粘土などを表面コーティングし、再生
する製法は、上記実施例1から3で製造された製品、他
の建築廃材、陶磁器屑、タイル屑、セラミックス屑など
を使用しても同等の物が得られ、これら製品のリサイク
ル、再利用にも適した手段である。
Embodiment 5 Commercially available porous waste glass (commonly known as G light)
10 to 100% as it is or pulverized to a particle size of 0.1 to 4 mm, and 0 to 90% of other aggregates (crushed and classified materials such as ceramic waste and ceramic waste) are mixed. As in Examples 3 and 4, the surfaces of the particles are coated with a melting material, clay, and the like, molded in a low pressure as in Example 1, coated with a photocatalyst, and then fired. The baked substrate was coated with Ag metal ions in the same manner as in Example 1. The weight of the completed porous building material was almost the same as in Example 3, the bulk specific gravity was 1.2, and the sound absorption characteristics were those shown by the thin line (Example 5) in FIG. Shown on the curve. Noxious gas purification performance,
The antifouling performance was also the same as in Example 1. As described above, the method of pulverizing and classifying ceramic waste, ceramic waste, and the like, followed by surface coating with a frit, clay, and the like, and regenerating the product, the products manufactured in the above Examples 1 to 3, other building waste materials, and ceramics Even if scraps, tile scraps, ceramic scraps and the like are used, equivalent products can be obtained, and this is a suitable means for recycling and reusing these products.

【0023】[0023]

【実施例6】市販の廃ガラス多孔体(通称:Gライト)
を、ジョウクラッシャーやロールクラッシャーなどにて
粉砕して粒径を調整した後、所望の粒度0.1〜1mm
と1〜5mmに分級して、2種類の粒子を作製する。こ
の粒子を別々に実施例3、4と同様に表面に溶融材と粘
土などをコーティングする。まず、成形型内に粒度1〜
5mmに分級された粒子を充填し、その上に粒度0.1
〜0.5mmに分級された粒子を充填した後、10〜2
0MPaの圧力でプレス成形し、図5(a)に示すよう
な、内部6に大きい粒径の粒子、表面層5に小さい粒径
の粒子で構成された、300×300×20(厚み)m
mの大きさの成形体4を形成させる。ここで表面には粒
度0.1〜0.5mmものを用いた。ここで細かな粒子
を選択するのは、吸音特性において、このサイズの粒子
が低周波における吸音効率を高めるからである。その
後、図5(b)に示すように成形体4の表面に光触媒を
コーティングさせて光触媒層2を形成させた後、800
〜900℃の温度にて焼成する。焼成後、光触媒層2の
表面上にCuの金属を載置させ、紫外線を照射させて光
触媒の還元力で表面に固定化して、光触媒機能を有する
多孔質建材を得た。この光触媒機能を有する多孔質建材
について、吸音特性を見ると、図2の太線(実施例6)
に示されるものであった。重量は実施例4とほぼ等しく
嵩比重1.3、有害ガス浄化性能、防汚性能について
も、実施例1と同等であり基材の水の接触角は光触媒の
加工により約20度低下しおよそ10度であった。ま
た、表面から約20mmの表面層6は吸水率が0.01
%、透水係数0.05cm/secが、嵩比重が1.0
〜1.5 、気孔率が0.2〜0.4、吸湿量が0%
で、内部5はそれぞれ吸水率1.0%、透水係数1.2
cm/sec嵩比重が0.3〜0.6、気孔率0.8〜
1.2、吸湿量が1%であった。
Embodiment 6 Commercially available porous waste glass (commonly known as G light)
Is crushed with a jaw crusher or a roll crusher to adjust the particle size, and then the desired particle size is 0.1 to 1 mm.
And 1 to 5 mm to produce two types of particles. These particles are separately coated on the surface with a molten material and clay as in Examples 3 and 4. First, the particle size 1
5 mm of the classified particles are filled, and a particle size of 0.1
After filling the particles classified into ~ 0.5 mm, 10 ~ 2
Press-molded at a pressure of 0 MPa, 300 × 300 × 20 (thickness) m composed of particles having a large particle diameter in the inside 6 and particles having a small particle diameter in the surface layer 5 as shown in FIG.
A molded body 4 having a size of m is formed. Here, the surface used had a particle size of 0.1 to 0.5 mm. The reason why fine particles are selected here is that particles of this size enhance sound absorption efficiency at low frequencies in sound absorption characteristics. Thereafter, as shown in FIG. 5B, the surface of the molded body 4 is coated with a photocatalyst to form the photocatalyst layer 2, and then 800
Baking at a temperature of ~ 900 ° C. After firing, a metal of Cu was placed on the surface of the photocatalyst layer 2 and irradiated with ultraviolet rays to be fixed on the surface by the reducing power of the photocatalyst, thereby obtaining a porous building material having a photocatalytic function. Looking at the sound absorption characteristics of the porous building material having a photocatalytic function, the thick line in FIG. 2 (Example 6)
Was shown. The weight is almost the same as in Example 4, the bulk specific gravity is 1.3, the harmful gas purification performance and the antifouling performance are also the same as those in Example 1, and the contact angle of the water of the base material is reduced by about 20 degrees due to the processing of the photocatalyst. It was 10 degrees. The surface layer 6 having a water absorption of about 20 mm from the surface has a water absorption of 0.01%.
%, Permeability coefficient 0.05 cm / sec, bulk specific gravity 1.0
~ 1.5, porosity 0.2 ~ 0.4, moisture absorption 0%
The inside 5 has a water absorption of 1.0% and a water permeability of 1.2, respectively.
cm / sec bulk specific gravity 0.3-0.6, porosity 0.8-
1.2, the moisture absorption was 1%.

【0024】[0024]

【実施例7】上記の実施例1から6において、光触媒を
コーティングする前に、予め基材を焼成させて製品を作
製し、これを光触媒溶液中にディッピングする。その
後、光触媒機能が劣化しない温度(1000℃未満)に
て再焼成する。焼成後の基材には実施例1と同様にして
金属イオンをコーティングした。ディッピングでコーテ
ィングされたものは図1(c)、図5(c)のように光
触媒が内部まで浸透し、固定化されたものであった。機
能については、上記実施例1から6と同等であった。
Embodiment 7 In the above-mentioned Embodiments 1 to 6, before coating the photocatalyst, the substrate is preliminarily baked to produce a product, which is dipped in a photocatalyst solution. Thereafter, re-firing is performed at a temperature at which the photocatalytic function is not deteriorated (less than 1000 ° C.). The fired substrate was coated with metal ions in the same manner as in Example 1. As shown in FIG. 1 (c) and FIG. 5 (c), the one coated by dipping had the photocatalyst penetrated to the inside and was fixed. The functions were equivalent to those of the first to sixth embodiments.

【0025】[0025]

【発明の効果】本発明である、プレス時の圧力を低圧で
調整制御したり、粒子粒径の調節や、粒子自体の密度
や、粒子の粒配を調整制御したり、これらを組み合わせ
ることで、成形体の吸音領域をコントロール出来るた
め、所望の吸音、遮音、音響特性を有する成形体を簡単
に得ることができる。原料に廃ガラスを利用すること
で、吸音、遮蔽、音響特性を持つ成形体自体を軽量とす
ることができるため、建材の大型化が可能となる。
According to the present invention, the pressure at the time of pressing can be adjusted and controlled at a low pressure, the particle diameter can be adjusted, the density of the particles themselves, and the particle arrangement can be adjusted and controlled. Since the sound absorbing region of the molded article can be controlled, a molded article having desired sound absorption, sound insulation, and acoustic characteristics can be easily obtained. By using the waste glass as a raw material, the compact itself having sound absorption, shielding, and acoustic characteristics can be reduced in weight, so that the size of the building material can be increased.

【0026】又、光触媒を表面、内部にコーティングし
ているので紫外線をエネルギーにして抗菌効果や親水性
による防汚、セルフクリーニング、有害ガス浄化機能が
ある。他の原料との混合条件を変化させることで、高強
度な建材を得ることができ、内部と表面の密度や透水係
数、吸水率などを変えることで、建材表面の防汚性、有
害ガス浄化性能を向上させることができる。リサイクル
素材である廃ガラスを使用しており、結果として焼成温
度を低くすることができ、LCAが低減できる環境に優
しい、エコマーク製品を得ることができる。
Further, since a photocatalyst is coated on the surface and inside, it has an antibacterial effect by utilizing ultraviolet rays as energy, has antifouling due to hydrophilicity, self-cleaning, and a harmful gas purifying function. By changing the mixing conditions with other raw materials, high-strength building materials can be obtained, and by changing the internal and surface densities, water permeability, and water absorption, the antifouling properties of building materials and harmful gas purification Performance can be improved. Since waste glass, which is a recycled material, is used, the firing temperature can be lowered, and an eco-friendly eco-mark product that can reduce LCA can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関する実施例1から実施例5により形
成した成形体
FIG. 1 is a diagram showing a molded article formed according to Examples 1 to 5 of the present invention.

【図2】本発明に関する吸音特性を示すFIG. 2 shows sound absorption characteristics according to the present invention.

【図3】本発明に関するNOx浄化機能結果を示すFIG. 3 shows a result of a NOx purification function according to the present invention.

【図4】本発明に関する屋外暴露による汚れ試験結果を
示す
FIG. 4 shows the results of a soil test by outdoor exposure according to the present invention.

【図5】本発明に関する実施例6により形成した成形体FIG. 5 is a molded article formed according to Example 6 of the present invention.

【符号の説明】[Explanation of symbols]

1、4…成形体 2…光触媒層 3…金属イオン 5…内部 6…表面層 1, 4: molded body 2: photocatalyst layer 3: metal ion 5: inside 6: surface layer

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 基材表面または内部に光触媒の薄膜また
は光触媒を含有する薄膜を形成してなる吸音、遮音、音
響特性を有する建材
1. A building material having sound absorption, sound insulation, and acoustic characteristics by forming a thin film of a photocatalyst or a thin film containing a photocatalyst on the surface or inside of a base material.
【請求項2】 基材原料としてセラミックス、陶磁器、
ガラス、タイルなどの粉砕物およびそれらの廃棄物の粉
砕物からなる請求項1記載の吸音、遮音、音響特性を有
する建材
2. Ceramics, porcelain,
The building material having sound absorption, sound insulation, and acoustic properties according to claim 1, comprising a crushed product of glass, tile, and the like and a crushed product of the waste.
【請求項3】 請求項2記載の原料を90%以下、廃ガ
ラス又はその他ガラス、天然ガラスの発泡体を10%以
上含む基材からなる、請求項1記載の吸音、遮音、音響
特性を有する建材
3. The material according to claim 1, comprising a base material containing 90% or less of the raw material according to claim 2 and 10% or more of waste glass or other glass or natural glass foam. Building materials
【請求項4】 廃ガラス50%以上の原料からなる請求
項1記載の吸音、遮音、音響特性を有する建材
4. The building material having sound absorption, sound insulation and acoustic characteristics according to claim 1, wherein the material is composed of a raw material containing at least 50% of waste glass.
【請求項5】 表面から厚み方向に20mmまでの基材
の吸水率が、20mmより裏面までの内部吸水率よりも
0.1%以上低いことを特徴とする請求項1から4の何
れかに記載の吸音、遮音、音響特性を有する建材
5. The method according to claim 1, wherein the water absorption of the substrate from the front surface to the thickness direction up to 20 mm is 0.1% or more lower than the internal water absorption ratio from the surface to the back surface from 20 mm. Building materials with the described sound absorption, sound insulation and acoustic properties
【請求項6】 表面から厚み方向に20mmまでの基材
の気孔率と、20mmより裏面までの内部気孔率の差が
0.1%以上あることを特徴とする請求項1から4の何
れかに記載の吸音、遮音、音響特性を有する建材
6. The method according to claim 1, wherein the difference between the porosity of the substrate from the front surface to the thickness direction up to 20 mm and the internal porosity from the 20 mm surface to the back surface is 0.1% or more. Construction materials having the sound absorption, sound insulation, and acoustic characteristics described in 1.
【請求項7】 表面から厚み方向に20mmまでの基材
の透水係数と、20mmより裏面までの内部透水係数の
差が0.1cm/sec以上あることを特徴とする請求
項1から4の何れかに記載の吸音、遮音、音響特性を有
する建材
7. The method according to claim 1, wherein the difference between the water permeability of the substrate from the front surface to the thickness direction to 20 mm and the internal water permeability from the surface to the back surface from 20 mm is 0.1 cm / sec or more. Building materials with sound absorption, sound insulation and acoustic properties as described in Crab
【請求項8】 表面から厚み方向に20mmまでの基材
の吸湿量と、20mmより裏面までの内部吸湿量の差が
0.1%以上あることを特徴とする請求項1から4の何
れかに記載の吸音、遮音、音響特性を有する建材
8. The method according to claim 1, wherein the difference between the amount of moisture absorption of the base material from the front surface to the thickness direction up to 20 mm and the amount of internal moisture absorption from the surface surface to the back surface from 20 mm is 0.1% or more. Construction materials having the sound absorption, sound insulation, and acoustic characteristics described in 1.
【請求項9】 表面から厚み方向に20mmまでの基材
の嵩密度と、20mmより裏面までの内部嵩密度の差が
0.1以上あることを特徴とする請求項1から4の何れ
かに記載の吸音、遮音、音響特性を有する建材
9. The method according to claim 1, wherein the difference between the bulk density of the substrate from the front surface to 20 mm in the thickness direction and the internal bulk density from 20 mm to the back surface is 0.1 or more. Building materials with the described sound absorption, sound insulation and acoustic properties
【請求項10】 粒径が7mm以下の原料で構成された
請求項1から9の何れかに記載の吸音、遮音、音響特性
を有する建材
10. A building material having sound absorption, sound insulation and acoustic characteristics according to claim 1, wherein the building material is made of a raw material having a particle size of 7 mm or less.
【請求項11】 粒径が0.01mm〜7mmの原料で
構成された請求項1から9の何れかに記載の吸音、遮
音、音響特性を有する建材
11. A building material having sound absorption, sound insulation and acoustic characteristics according to claim 1, wherein the building material is made of a raw material having a particle size of 0.01 mm to 7 mm.
【請求項12】 請求項1記載の光触媒は、光照射によ
り光を励起し、触媒表面で活性酸素を生成する物質であ
る吸音、遮音、音響特性を有する建材
12. The photocatalyst according to claim 1, wherein the photocatalyst is a building material having sound absorption, sound insulation and acoustic properties, which is a substance that excites light by light irradiation and generates active oxygen on the surface of the catalyst.
【請求項13】 請求項1記載の光触媒は光照射により
光励起し、光照射後の水の接触角が光照射前の水の接触
角より5度〜30度低くなる物質である吸音、遮音、音
響特性を有する建材
13. The photocatalyst according to claim 1, wherein the photocatalyst is a substance that is photoexcited by light irradiation, and the contact angle of water after light irradiation is 5 to 30 degrees lower than the contact angle of water before light irradiation. Building materials with acoustic properties
【請求項14】 薄膜厚みが0.001〜1μmである
請求項1記載の吸音、遮音、音響特性を有する建材
14. The building material according to claim 1, having a thin film thickness of 0.001 to 1 μm.
JP10098334A 1998-03-25 1998-03-25 Building material with sound absorbing, sound isolating and acoustic characteristics Pending JPH11268163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10098334A JPH11268163A (en) 1998-03-25 1998-03-25 Building material with sound absorbing, sound isolating and acoustic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10098334A JPH11268163A (en) 1998-03-25 1998-03-25 Building material with sound absorbing, sound isolating and acoustic characteristics

Publications (1)

Publication Number Publication Date
JPH11268163A true JPH11268163A (en) 1999-10-05

Family

ID=14217014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10098334A Pending JPH11268163A (en) 1998-03-25 1998-03-25 Building material with sound absorbing, sound isolating and acoustic characteristics

Country Status (1)

Country Link
JP (1) JPH11268163A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097970A1 (en) * 2000-06-21 2001-12-27 Fuji Photo Film B.V. Photocatalytic sheet or film and its manufacturing process
JP2002003283A (en) * 2000-06-16 2002-01-09 Nippon Parkerizing Co Ltd Method to give photocatalyst function to recycled tile
JP2003064606A (en) * 2001-08-27 2003-03-05 National Institute Of Advanced Industrial & Technology Sintered block
JP2003308075A (en) * 2002-04-17 2003-10-31 Showa Electric Wire & Cable Co Ltd Acoustic material and sound absorbing and vibration damping material
WO2010098882A3 (en) * 2009-02-27 2010-11-18 Skeeter Jane A Recycled glass structural and decorative barrier or building, lighting and furniture component
WO2018030442A1 (en) * 2016-08-12 2018-02-15 旭硝子株式会社 Porous body and sound insulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003283A (en) * 2000-06-16 2002-01-09 Nippon Parkerizing Co Ltd Method to give photocatalyst function to recycled tile
WO2001097970A1 (en) * 2000-06-21 2001-12-27 Fuji Photo Film B.V. Photocatalytic sheet or film and its manufacturing process
EP1166871A1 (en) * 2000-06-21 2002-01-02 Fuji Photo Film B.V. Photocalytic sheet of film and its manufacturing process
US6890645B2 (en) 2000-06-21 2005-05-10 Fuji Photo Film B.V. Photocatalytic sheet or film and its manufacturing process
JP2003064606A (en) * 2001-08-27 2003-03-05 National Institute Of Advanced Industrial & Technology Sintered block
JP2003308075A (en) * 2002-04-17 2003-10-31 Showa Electric Wire & Cable Co Ltd Acoustic material and sound absorbing and vibration damping material
WO2010098882A3 (en) * 2009-02-27 2010-11-18 Skeeter Jane A Recycled glass structural and decorative barrier or building, lighting and furniture component
WO2018030442A1 (en) * 2016-08-12 2018-02-15 旭硝子株式会社 Porous body and sound insulator

Similar Documents

Publication Publication Date Title
CN109133975A (en) A kind of high-strength light foamed ceramic plate and preparation method thereof
US20130316129A1 (en) Silicon carbide material, honeycomb structure, and electric heating type catalyst carrier
JP2005535544A (en) Ceramic molded object having a photocatalytic coating and method for producing the same
CN108264812A (en) A kind of nano thermal insulation coating
EP2895434A2 (en) Glass granule having a zoned structure
CN108410302A (en) A kind of nano anti-corrosive thermal insulation coatings
JPH11268163A (en) Building material with sound absorbing, sound isolating and acoustic characteristics
JP3776263B2 (en) NOx removal material
CN104098291B (en) Photocatalyst functional road material preparation method
JP3715669B2 (en) Inorganic hardened material used for air purification under ultraviolet irradiation
JP4906318B2 (en) Low frequency sound absorber made of closed cell glass foam
CN108316586B (en) Anti-fouling ceramic tile with sound absorption/adsorption functions and preparation method thereof
JPH04305048A (en) Inorganic soundproof material and production thereof
CA3199136A1 (en) Methods for producing seed for growth of hollow spheres
JP2001170498A (en) Photocatalyst and concrete structure for cleaning atmosphere using the same
KR100210249B1 (en) A seramic soundproofing panel and the production method of it
US20040031642A1 (en) Air purifying sound insulating wall and its applications
JPH10227085A (en) Sound absorbing plate for building material
JP2002316881A (en) Ceramic sound absorbing member and production method therefor
JPH10183812A (en) Sound absorbing material
JP2007153627A (en) Production method of zeolite building material
JP3932325B2 (en) Method for producing light-weight molded body with frost resistance
KR100414309B1 (en) Method for manufacturing ceramic materials with a sound absorption by using a foaming agent
JP3384550B2 (en) Composite recycled glass board of foam and communicating porous body and method for producing the same
JP2004052480A (en) Concrete sound absorption panel