JPH11267229A - Bone forming device - Google Patents

Bone forming device

Info

Publication number
JPH11267229A
JPH11267229A JP10114098A JP11409898A JPH11267229A JP H11267229 A JPH11267229 A JP H11267229A JP 10114098 A JP10114098 A JP 10114098A JP 11409898 A JP11409898 A JP 11409898A JP H11267229 A JPH11267229 A JP H11267229A
Authority
JP
Japan
Prior art keywords
bone
laser beam
laser
irradiation
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10114098A
Other languages
Japanese (ja)
Inventor
Takeshi Nishisaka
剛 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10114098A priority Critical patent/JPH11267229A/en
Publication of JPH11267229A publication Critical patent/JPH11267229A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for promoting the treatment for a human being under the decrease of bone quantity or in the state of the possible occurrence of the decrease, for example, osteoporosis or bone fracture and for preventing the decrease in the bone quantity in the outer space where only few gravity is operated. SOLUTION: Concerning a device 1 for in radiating with laser beam at the bone forming device for forming the bone by irradiating a target part 3 with laser beam, in the case of a pulse wave oscillation laser device, the pulse width has several hundreds of microseconds to several picoseconds, the repeat frequency is 1 to 100 kHz, the wavelength is 400 nm to 11 μm and the irradiation energy is not more than 10J. In the case of a continuous wave laser device, the wavelength is similar to the pulse wave oscillation laser device, and the irradiation output is not more than 20 W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0001】本発明は,レーザ光による骨形成の促進に
かんする.本発明の一面は骨粗鬆症として知られる退化
骨疾患の治療にかんする.骨量減少が生じている,ある
いは生ずることが予想される状態にあるヒト,例えば骨
粗鬆症における骨量の減少を防止しあるいは増加させる
装置にかんする.骨折にあっては治癒促進を行わせる装
置にかんする.微小重力の作用する宇宙空間においては
骨量の減少を防止する装置にかんする.
The present invention relates to the promotion of bone formation by laser light. One aspect of the present invention relates to the treatment of degenerative bone disease known as osteoporosis. Humans in which bone loss is occurring or is expected to occur, for example, devices that prevent or increase bone loss in osteoporosis. In the case of a fracture, the device that promotes healing is used. In the space where microgravity acts, it is concerned with a device to prevent bone loss.

【従来の技術】[Prior art]

【0002】米国特許第453036にはトランスジュ
サーを介して患者の皮膚に印加されるパルス状無線周波
数信号を用いて,治療すべき骨損傷部に音波等を導くこ
とにより,骨折や偽関節症などの骨の損傷を治療する方
法が記載されている.当該特許は骨が圧電性を備えてい
るという事実をもとに発明が構成されている.また,特
開平7−8565において生体近くに置かれたコイル手
段における電流の変化によって,生体内に発生する過電
流によって骨を刺激し骨疾患を治療するための磁気刺激
装置が提案されている.いずれの方法においても体外か
ら発生させた機械的なエネルギーの伝達または直接的な
手段によって,骨の内部で電位ないし電流を発生せしめ
ることによって,骨疾患の治療を行わしめていることで
ある.あるいは特公平6−49655において見られる
ように薬剤によって,骨粗鬆症治療を行うことが提案さ
れている.あるいは又,運動療法などが行われている.
骨折の早期治癒には手術後電気刺激などが行われる.宇
宙空間にあっては骨量の低下は避けがたく,飛行体の中
で体操などの運動がおこなわれるにすぎない.
US Pat. No. 4,530,36 discloses a method for guiding fractures and pseudoarthritis by using a pulsed radio frequency signal applied to a patient's skin via a transducer to guide sound waves or the like to a bone lesion to be treated. Methods for treating bone injuries such as are described. This patent is based on the fact that bone has piezoelectricity, and the invention is constructed. Japanese Patent Application Laid-Open No. 7-8565 proposes a magnetic stimulator for treating a bone disease by stimulating a bone by an overcurrent generated in a living body due to a change in current in a coil means placed near the living body. In either case, bone disease is treated by generating electrical potential or current inside the bone by the transmission of mechanical energy generated externally or by direct means. Alternatively, it has been proposed to treat osteoporosis with drugs as seen in Japanese Patent Publication No. 6-49655. Alternatively, exercise therapy is being performed.
Electrical stimulation is used after surgery for early healing of fractures. In outer space, loss of bone mass is inevitable, and only exercises such as gymnastics are performed in the flying object.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0003】従来より公知たる骨損傷部へのパルス状無
線周波数による方法等は装置が大がかりであったり,あ
るいは可搬性に欠ける欠点を有していた.本発明に基づ
く弾性波,音響波の発生源となるレーザ光は使用可能な
波長帯域が広く,従って,本格的な治療を目的とする施
設,あるいは携帯的使用を可能とする小型装置あるいは
宇宙空間で使用可能な超小型の装置など,その使用条件
等に応じてレーザ光発生装置を選択することは容易であ
る.さらに,近年のレーザ小型化技術あるいは半導体レ
ーザの高出力化等様々のレーザ光源が容易に入手しうる
ようになった.いずれのレーザ骨形成装置においても必
要とする弾性波,音響波を生じしめるように,レーザ照
射条件をある特定の範囲に選択することで実現できる点
にある.
[0003] Conventionally known methods using a pulsed radio frequency for a bone injured portion have a drawback that the device is large-scale or lacks portability. The laser beam which is a source of the elastic wave and the acoustic wave according to the present invention has a wide usable wavelength band. Therefore, it is a facility for full-scale treatment, a small device which can be used portablely, or an outer space. It is easy to select a laser light generator according to the conditions of use, such as ultra-small devices that can be used in a computer. In addition, various laser light sources, such as recent laser miniaturization technology and high output of semiconductor laser, have become easily available. In any laser bone forming apparatus, it can be realized by selecting the laser irradiation conditions within a certain range so as to generate the necessary elastic waves and acoustic waves.

【0004】本発明はレーザ光を照射することにより骨
粗鬆症における骨量の減少を防止し,骨再生の速度の維
持あるいは増加させることを,骨折にあっては治癒促
進,あるいは微小重力の作用する宇宙空間において骨量
の減少防止の実現を小型で簡便かつ安価に提供する方法
を提供するものである.
[0004] The present invention is intended to prevent a decrease in bone mass in osteoporosis by irradiating a laser beam, and to maintain or increase the speed of bone regeneration. The purpose of the present invention is to provide a small, simple and inexpensive method for realizing the prevention of bone loss in space.

【0005】本発明はレーザ光を生体に照射することに
よって,直接的には照射部位で発生する弾性波または音
響波が生体内に伝搬することで,治療すべき骨損傷部の
内部に電位ないし電流を発生せしめることにより,ある
いは又,レーザ光が前記弾性波ないしは音響波の発生に
寄与しない一部のレーザ光が体内に伝搬され,生体内組
織での散乱および透過をとうして,骨損傷部に伝搬さ
れ,かかるレーザ光が骨細胞,骨芽細胞や破骨細胞に照
射されることにより,骨の再生機構が活性化されること
をとうして,骨損傷部の治療を効果的に行わせるもので
ある.
The present invention irradiates a living body with a laser beam, whereby an elastic wave or an acoustic wave generated directly at an irradiated site is propagated into the living body, so that a potential or a potential is applied to the inside of a bone lesion to be treated. By generating an electric current, or by causing a part of the laser light, which does not contribute to the generation of the elastic wave or the acoustic wave, to be propagated into the body and scattering and transmitting through the tissue in the living body, the bone damage is caused. The bones, osteoblasts and osteoclasts are transmitted to the bone and the laser beam is irradiated to the bone, thereby activating the bone regeneration mechanism and effectively treating bone injuries. It is what is done.

【0006】本発明の目的は骨粗鬆症部などの骨量減少
部や骨損傷部の修復を促進するためのレーザ光照射によ
る弾性波または音響エネルギーを外科的,非侵襲的に利
用する方法および装置を提供するものである.
An object of the present invention is to provide a method and an apparatus for surgically and non-invasively utilizing elastic waves or acoustic energy by laser light irradiation for promoting repair of a bone loss part or a bone damage part such as an osteoporosis part. It is provided.

【0007】本発明の一般的な目的は患者が安全かつ簡
便に使用でき,安価で小型な装置を用いて上記の目的を
達成することである.
[0007] A general object of the present invention is to achieve the above object by using an inexpensive and small device which can be used safely and easily by a patient.

【課題を解決するための手段】[Means for Solving the Problems]

【0008】本発明はレーザ光を生体外表部に照射する
ことで,生体照射部に発生せしめた弾性波ないしは,又
は音響波によって,すくなくとも骨量減少部や骨損傷部
に隣接した身体組織に一箇所又は複数箇所にレーザ光を
照射することで,前記弾性波ないし音響エネルギーを外
科的,非侵襲的,経皮的に送出することにより上記目的
は達成される.あるいは,直接的には本発明は下肢,上
肢,脊柱において,骨量が低下していると診断,あるい
は見込まれる部位,例えば大腿骨頚部,上腕頚部,脊椎
骨に生体組織における透過性の良く,かつ,照射部にお
いては弾性波またはあるいは音響波の発生を容易ならし
めるレーザ照射条件を具備したレーザ光を上記部位の近
傍に皮膚の上から照射することにより,骨量の減少を防
止したり,骨再生の速度の維持や骨量増加を図ること
で,上記の目的は達成される.
According to the present invention, at least a body tissue adjacent to a bone loss part or a bone damage part is irradiated with a laser beam by irradiating an extracorporeal surface part with an elastic wave or an acoustic wave generated in a living body irradiation part. The above-mentioned object is achieved by irradiating a site or a plurality of sites with a laser beam and transmitting the elastic wave or acoustic energy surgically, non-invasively, and percutaneously. Alternatively, directly, the present invention can be diagnosed as having reduced bone mass in the lower limb, upper limb, and spinal column, or has good permeability in living tissue at sites expected to be reduced, such as the femoral neck, humeral neck, and vertebrae, and In the irradiating section, laser light having laser irradiation conditions that facilitate the generation of elastic waves or acoustic waves is radiated from above the skin to the vicinity of the above-mentioned portion, thereby preventing bone loss or preventing bone loss. The above objectives can be achieved by maintaining regeneration speed and increasing bone mass.

【0009】レーザー光の照射方法は,専用治療台,寝
台あるいは照射装置にあっては標的部位に対して下方,
上方,横方向より照射可能な手段を具備させることで実
現される.
In the method of irradiating a laser beam, in a special treatment table, a bed or an irradiation device, a laser beam is irradiated downward from a target site.
This is achieved by providing means that can irradiate from above and from the side.

【作用】[Action]

【0010】光が物体に照射されると音響が発生するこ
とは良く知られたことである.物体内に光が吸収される
とは光の波長と対応する吸収物質が当該物質内に存在す
ることによる.このような吸収体は一般の金属,半導体
における自由電子,あるいは物体を構成する分子の固有
振動により光を吸収する.あるいは,特定の波長を吸収
する介在物によっても吸収される.生体組織において
は,生体の構成要素の一つである水分子あるいは特定波
長を吸収するヘモグロビン,メラニン,酸化ヘモグロビ
ンなどは良く知られていることである.前記吸収体に短
時間にかつ高エネルギー密度を有するレーザ光が吸収さ
れることで,照射部位は急激な熱膨張を生じ,その結果
として生体内に機械的応力を発生せしめることになる.
レーザ光が物体に断続的に照射されることにより,光の
エネルギーに応じて弾性波あるいは音響波が発生するこ
とは実験的にも確認されている(van Kessel
and Siegel,Phys.Rev.Let
t.33:1020,1974).しかしながら,前記
吸収体への短時間にかつ照射エネルギー密度が一定の値
をこえると,照射部位での急激な熱膨張の発生は結果と
して,照射部の生体組織の破壊,欠損などの作用を生じ
しめる.従って,このような照射部への適切なレーザ光
エネルギー密度の制御は本発明の重要な要件である.
It is well known that sound is generated when an object is irradiated with light. The fact that light is absorbed in an object is due to the fact that an absorbing substance corresponding to the wavelength of light is present in the substance. Such absorbers absorb light by free electrons in general metals and semiconductors, or by the natural vibration of the molecules that make up the object. Alternatively, it is also absorbed by inclusions that absorb a specific wavelength. In living tissues, water molecules or hemoglobin, melanin, oxyhemoglobin, etc. that absorb a specific wavelength are well known. The absorption of the laser beam having a high energy density in a short time by the absorber causes rapid thermal expansion of the irradiated portion, and as a result, generates mechanical stress in the living body.
It has been experimentally confirmed that intermittent irradiation of an object with a laser beam generates an elastic wave or an acoustic wave depending on the energy of the light (van Kessel).
and Siegel, Phys. Rev .. Let
t. 33: 1020, 1974). However, if the irradiation energy density exceeds a certain value in a short period of time to the absorber, rapid thermal expansion occurs at the irradiation site, resulting in an action such as destruction or loss of living tissue at the irradiation site. Close. Therefore, appropriate control of the laser beam energy density for such an irradiation part is an important requirement of the present invention.

【0011】骨は生理学的にリモデリングと言う骨の吸
収と再生を常に行い,微小骨折の修復などを行ってい
る.運動量の減少,ミネラル摂取量の減少,閉経後の婦
人,また宇宙空間など微小重力空間においては骨の吸収
が起こり,骨量の低下が発生する.
Physiologically, bone is constantly resorbed and regenerated, called remodeling, to repair microfractures. Decreased momentum, reduced mineral intake, postmenopausal women, and microgravity spaces such as outer space cause bone resorption, resulting in bone loss.

【0012】骨芽細胞に機械的な振動を与えると早期に
カルシウム沈着がみられること,低い出力のレーザー光
を骨芽細胞に照射すると骨芽細胞の活性化が行われると
の報告がある.また,西須らは成長期の骨に対する体外
衝撃波の作用として仮骨誘導作用,骨皮質や骨幹幅の増
大作用,過成長の誘導作用,骨端線早期閉鎖作用などを
あげている(平成七年度衝撃波シンポジウム講演論文集
pp.429−432).体外衝撃波の整形外科領域に
おける応用は,偽関節の治療(Valchanou e
t al,Int.Ortho.15:181,199
1)の報告がある.
It has been reported that calcium deposition is observed early when mechanical vibration is applied to osteoblasts, and that osteoblasts are activated by irradiating osteoblasts with low-power laser light. In addition, Nishisu et al. Mentioned that extracorporeal shock waves act on bone during growth, such as callus induction, osteocortical and diaphyseal width increase, overgrowth induction, and epiphyseal early closure. Annual Shock Wave Symposium Proceedings, pp. 429-432). Applications of extracorporeal shock waves in the field of orthopedic surgery include the treatment of pseudojoints (Valchanoue).
tal, Int. Ortho. 15: 181, 199
There is a report of 1).

【0013】また衝撃波法による家兎を用いた実験によ
ると,内外骨膜の骨皮質の削り取り像の出現や外側皮質
骨の外骨骨側に中央陥凹の火山型の仮骨形成が発生する
という.副作用として骨折が認められることがあるとい
う.この現象は体外衝撃波による胆石,尿路結石の破壊
とその結果としての治療で明らかのように,胆石,尿路
結石と類似した骨組織間を結合させている構成物質の結
合エネルギーが,衝撃波によって破壊されるほどに強力
な場合には当然予想されることである.あるいはかかる
事実は体表外から照射された衝撃波が容易に体内の構成
物である,筋肉,臓器などを容易に通過し,骨などの硬
組織物体に直接作用せしめることを示している.
According to an experiment using rabbits by the shock wave method, it is said that a shaved image of the bone cortex of the inner and outer periosteum appears, and a volcanic callus with a central depression is formed on the outer bone side of the outer cortical bone. He says that side effects include fractures. This phenomenon is evident from the destruction of gallstones and uroliths by extracorporeal shock waves and the consequent treatment, as the binding energy of the constituents that connect the bone tissues similar to gallstones and uroliths is increased by the shock waves. Of course, it is expected when it is powerful enough to be destroyed. Or, this fact indicates that shock waves emitted from outside the body surface easily pass through the body's constituents, such as muscles and organs, and directly act on hard tissue objects such as bones.

【0014】一方,骨に音響波,弾性波,衝撃波あるい
は歪みが伝達されると,骨内部に電位が発生することは
良く知られている.このことは骨組織の一部又は全部が
圧電性を生じる結晶構造と類似した成分より構成されて
いる事実を示唆しているが,結果として発生した微少電
流によって,骨組織の代謝に影響され,結果として骨組
織の再生を生じしめていることに対応する.従って,本
発明は別の観点で明らかにすれば,骨に印加される機械
的エネルギーは骨組織の結合エネルギーを破壊する程に
は強力である必要はなく,骨組織に微弱な電位の発生を
生じしめる程度の機械的エネルギーの伝搬で十分である
点が肝要である.
On the other hand, it is well known that when an acoustic wave, an elastic wave, a shock wave or a strain is transmitted to a bone, a potential is generated inside the bone. This suggests that part or all of the bone tissue is composed of components similar to the crystal structure that causes piezoelectricity, but the resulting microcurrent is affected by the metabolism of the bone tissue, As a result, it corresponds to the regeneration of bone tissue. Therefore, from another point of view, the present invention does not require that the mechanical energy applied to the bone be strong enough to destroy the binding energy of the bone tissue, and to generate a weak electric potential in the bone tissue. It is important that the transmission of mechanical energy to the extent that it occurs is sufficient.

【0015】本発明では前記項目骨量の増加を図ると同
時に前記項目の内外骨膜の骨皮質の削り取り像の出現や
外側皮質骨の外側に中央陥凹の火山型の仮骨形成を防止
実現するための方法を提供するものである.レーザー照
射は簡単に多方向よりの照射が可能であり,多方向にお
ける弾性波を発生源とすることができ上記衝撃波法の不
利な点を克服できる.
In the present invention, the bone mass of the item is increased, and at the same time, the appearance of a scraped image of the cortex of the inner and outer periosteum of the item and the prevention of the formation of a volcanic callus with a central depression outside the outer cortical bone are realized. It provides a method for Laser irradiation can easily be performed from multiple directions, and can use elastic waves in multiple directions as a source, thereby overcoming the disadvantages of the shock wave method.

【0016】本発明はレーザー光を照射することにより
骨粗鬆症における骨量の減少を防止し,あるいは増加さ
せることを,骨折にあっては治癒促進,あるいは微小重
力の作用する宇宙空間において骨量の減少防止の実現を
可能とするものである.
The present invention aims to prevent or increase bone loss in osteoporosis by irradiating a laser beam, to promote healing in fractures, or to reduce bone loss in space where microgravity acts. It is possible to realize prevention.

【0017】レーザ光の照射により弾性波が発生するこ
とは実験的に確認することができる.すなわち,ブタ大
腿骨の照射部位よりわずかに離れた表面近傍および照射
部位の裏面側の透過光部より僅かに離れた部位に微弱圧
力を検知できるセンサーを埋め込み,パルス幅約10ナ
ノ秒のYAGレーザを照射する.この時のレーザエネル
ギー密度は10mJ/cm,ピーク出力は1MWであ
る.その結果,照射面近くのセンサー出力は照射直後に
は引張変位と,その後の時間経過後では圧縮変位を,ま
た,裏面部位でのセンサー出力は前記のセンサー信号と
反対の対応を示した.
It can be experimentally confirmed that an elastic wave is generated by the irradiation of the laser beam. That is, a YAG laser with a pulse width of about 10 nanoseconds is embedded with a sensor that can detect weak pressure near the surface of the pig femur slightly away from the irradiated area and in the area slightly away from the transmitted light part on the back side of the irradiated area. Is irradiated. At this time, the laser energy density was 10 mJ / cm 2 and the peak output was 1 MW. As a result, the sensor output near the irradiated surface showed a tensile displacement immediately after the irradiation, a compressive displacement after a lapse of time, and the sensor output at the back surface showed the opposite correspondence to the above sensor signal.

【0018】レーザ光による骨形成を示す動物実験の概
要説明をする.動物はSD種ラット(10週齢,雌)を
用い,ラットを計17日間懸垂免荷装置にて飼育した.
パルス波レーザ光(YAG laser:波長1064
nm,繰り返し周波数10Hz,照射時間10分間)の
照射条件は,8−15日目までの7日間照射群(13m
J/cm/pulsc),8日目に1回照射群(外
側:13mJ/cm/pulse),8日目に2回照
射群(7.5mJ/cm/pulse),そして17
日間懸垂および非懸垂かつ非照射群を懸垂対照とした.
懸垂開始より18日目のラットの大腿骨を1mm厚に薄
切し骨の形成状態を観察した.骨形成の指標として,テ
トラサイクリン(1.0mg/体重100g)を懸垂1
7日間のうち7日と13日目に腹腔内投与を行った.骨
の形成は,顕微鏡,X線蛍光顕微鏡,あるいはテトラサ
イクリンの骨形成部における蛍光を観察することにより
評価した.その結果,大腿骨中心部位およびで大腿骨端
部位ともに1日2回照射群において骨の形成が最も高か
った.
An outline of an animal experiment showing bone formation by laser light will be described. SD rats (10-week-old, female) were used as the animals, and the rats were reared for 17 days in a suspension-relieving device.
Pulse wave laser light (YAG laser: wavelength 1064)
nm, repetition frequency 10 Hz, irradiation time 10 minutes), the irradiation group (13 m
J / cm 2 / pulsc), one irradiation group on day 8 (outside: 13 mJ / cm 2 / pulse), two irradiation groups on day 8 (7.5 mJ / cm 2 / pulse), and 17
The day suspension and non-suspension and non-irradiation groups were used as suspension control.
On the 18th day from the start of suspension, the femur of the rat was sliced to a thickness of 1 mm and the state of bone formation was observed. Tetracycline (1.0 mg / 100 g body weight) was used as an indicator of bone formation.
Intraperitoneal administration was performed on days 7 and 13 of the 7 days. Bone formation was assessed by microscopy, X-ray fluorescence microscopy, or by observing the fluorescence of tetracycline at the bone formation. As a result, the bone formation was highest in the irradiation group twice daily at both the central part of the femur and the end part of the femur.

【0019】照射方法 レーザ光の照射方法としては照射部位に対して一方向,
あるいは光を分割あるいは別のレーザ装置からの光を対
向あるいは多方向より照射することができる.あるいは
二つ以上のレーザ光の照射にあっては各レーザパルスを
同時,あるいは時間をずらして照射することができる.
光の導光には光ファイバーを利用することもできる.あ
るいは二つ以上のレーザ光の照射にあっては各レーザの
光は同一あるいは異なる波長を利用することもできる.
Irradiation Method The method of irradiating the laser beam is as follows.
Alternatively, the light can be split or the light from another laser device can be irradiated from opposite or multiple directions. Alternatively, when irradiating two or more laser beams, each laser pulse can be emitted simultaneously or at a different time.
Optical fibers can also be used to guide light. Alternatively, when irradiating two or more laser beams, each laser beam can use the same or different wavelength.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0020】(1)骨に伝搬させる弾性波,音響波の発
生源たるレーザ光としては生体内でレーザ光を吸収し,
吸収部位での組織の熱膨張を生じしめる波長帯域のレー
ザ光を用いる. (2)生体内組織の代表的吸収帯域は紫外領域でのOH
吸収帯,可視領域でのヘモグロビン,酸化ヘモグロビン
および赤外領域でのOH吸収が良く知られている. (3)体外より投与された各種感光色素(ポルフィリン
類,同誘導体)は紫外領域や可視領域に吸収帯をを有す
る. (4)よって使用可能なレーザ光は400nmから11
μm以上の広い範囲に存在する.しかしながら,OH吸
収が極度に強い2.94μm,10μm帯のレーザ光な
どは一照射あたりのレーザエネルギーを強くすると,照
射部位の蒸散,損傷などの不具合を生じる恐れがある
為,注意が必要になる.従って,安全にかつ簡便に照射
生体表面に弾性波,音響波を発生させるためには,適切
なレーザ光の照射条件の制御が必要になる. (5)レーザ光と物質との相互作用を規定する簡便な方
法として,一照射あたりのエネルギー密度(J/c
),レーザ出力強度(W/cm),および作用時
間の関係で示すことができる. (6)先に記述したように,レーザ光によって生体照射
部に弾性波,音響波を発生させることが肝要であり,過
剰な機械的エネルギーの発生,あるいは照射部位への損
傷を引き起こすことは避けなければならない.よって,
これらの照射条件を選択する手段として,エネルギー密
度,レーザ出力強度,作用時間を適切に選択する必要が
ある. (7)弾性波,音響波の発生を容易ならしめる要件とし
ては,エネルギー密度の大きさよりも,レーザ出力強度
の大きさが寄与してくる.さらには照射部位への損傷等
を避けるために作用時間をできるだけ短く,かつ照射エ
ネルギー密度を低く選択する必要がある. (8)このようなレーザ照射条件を容易に構成する方法
として,レーザ光の発生手段をパルス光に選択する方法
が有用である.しかしながら,連続光であっても照射条
件を適切に選択して所定のエネルギー密度,レーザ光出
力強度,作用時間を適切に設定できるようにレーザ光の
出力(w),照射面積,照射時間を設定することで容易
に実現できる. (9)レーザ光の他の有用な特徴はレーザ光を細いガラ
ス媒体であるファイバーに容易に導光させることが出来
ることにある.この特徴により,対象とする部位への複
数個の導光,任意箇所への容易なる導光を可能にし,又
生体への照射時における甚だ簡便な手段を提供できる特
徴を有している. (10)レーザ光照射による弾性波,音響波による骨形
成活性を促進する他の手段として,対象骨への作用をよ
り効果的にするために,複数箇所の照射方法も有効であ
る. (11)骨形成を促進するレーザ照射回数は一日一回あ
るいは複数回,あるいは数日ごとに一回ないし複数回照
射,あるいはその他の手段によって達成される.これら
の実施方法は理論的に得られるものでなく,むしろ,各
対象部位への照射条件を臨床的に確定することが現実的
であり,従って,その作用効果を規定する作用回数を明
確に定めることは出来ない.
(1) As laser light as a source of elastic waves and acoustic waves to be propagated to bones, the laser light is absorbed in a living body,
Laser light in the wavelength band that causes thermal expansion of the tissue at the absorption site is used. (2) The typical absorption band of the tissue in the living body is OH in the ultraviolet region.
Absorption bands, hemoglobin and oxyhemoglobin in the visible region, and OH absorption in the infrared region are well known. (3) Various photosensitive dyes (porphyrins and their derivatives) administered from outside the body have absorption bands in the ultraviolet and visible regions. (4) Therefore, the usable laser light is from 400 nm to 11
It exists over a wide range of μm or more. However, laser light in the 2.94 μm or 10 μm band, which has extremely strong OH absorption, may cause problems such as evaporation and damage of the irradiated area if the laser energy per irradiation is increased, so care must be taken. . Therefore, in order to safely and easily generate elastic waves and acoustic waves on the surface of the irradiated living body, it is necessary to control the irradiation conditions of the laser beam appropriately. (5) As a simple method for defining the interaction between a laser beam and a substance, the energy density per irradiation (J / c
m 2 ), laser output intensity (W / cm 2 ), and action time. (6) As described above, it is important to generate an elastic wave and an acoustic wave in the living body irradiation part by the laser beam, and avoid generating excessive mechanical energy or causing damage to the irradiation part. There must be. Therefore,
As a means of selecting these irradiation conditions, it is necessary to appropriately select the energy density, laser output intensity, and operation time. (7) As a requirement for facilitating generation of elastic waves and acoustic waves, the magnitude of laser output intensity contributes more than the magnitude of energy density. Furthermore, in order to avoid damage to the irradiation site, it is necessary to select the action time as short as possible and the irradiation energy density as low as possible. (8) As a method of easily configuring such laser irradiation conditions, a method of selecting a laser light generating means as pulse light is useful. However, even for continuous light, the laser light output (w), irradiation area, and irradiation time are set so that the irradiation conditions can be appropriately selected and the prescribed energy density, laser light output intensity, and operation time can be set appropriately. Can be easily realized. (9) Another useful feature of the laser light is that the laser light can be easily guided to a fiber which is a thin glass medium. This feature enables multiple light guides to the target site, easy light guide to any location, and provides extremely simple means for irradiating the living body. (10) As another means of promoting the bone formation activity by the elastic wave and the acoustic wave by the laser beam irradiation, the irradiation method at a plurality of places is also effective to make the action on the target bone more effective. (11) The number of laser irradiations that promote bone formation can be achieved once or more times a day, or once or more times every few days, or by other means. These methods are not theoretically available; rather, it is practical to clinically determine the irradiation conditions for each target site, and therefore clearly define the number of actions that define their effects. You cannot do that.

【図面の簡単な説明】[Brief description of the drawings] 【実施例】【Example】

【図1】は本発明の骨形成装置の概略図を示す.FIG. 1 shows a schematic view of an osteogenic device of the present invention.

【図2】は照射方法の概略図を示す.FIG. 2 shows a schematic diagram of the irradiation method.

【図3】はレーザ光の発射時間の関係を示す.FIG. 3 shows the relationship between the laser light emission times.

【図4】はヒトに照射する方法の概略図を示す.Aは四
肢,Bは背部や全身照射に使用される様式
FIG. 4 shows a schematic diagram of a method of irradiating a human. A is the limb, B is the style used for back and whole body irradiation

【符号の説明】[Explanation of symbols]

【図1】1は波長400nm−11μmまでのレーザ光
を発生する装置,2は光ファイバー,3は被照射体
FIG. 1 is a device for generating a laser beam having a wavelength of 400 nm to 11 μm, 2 is an optical fiber, and 3 is an object to be irradiated.

【図2】3は被照射体,A−Jはレーザ光の被写体に対
する照射方向.A,G,C,Bそれぞれは一方向照射の
方向.A−B照射は同一光軸上照射,A−G,B−G,
B−C,G−C,A−Cの組み合わせは軸外し照射.
FIG. 2 is an irradiation target, and A-J are irradiation directions of a laser beam to a subject. A, G, C, B are directions of one-way irradiation. AB irradiation is irradiation on the same optical axis, AG, BG,
The combination of BC, GC and AC is off-axis irradiation.

【図3】A,B,C,Dはレーザ光の発射時間を示す.
B,CにおいてはAの光発射からt,t時間だけ遅
れて発射される.
FIG. 3 shows A, B, C, and D, each of which indicates a laser light emission time.
In B and C, the light is emitted with a delay of t 1 and t 2 from the light emission of A.

【図4】3は被照射体FIG. 4 is an irradiation target

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】レーザ光を照射することにより骨を形成さ
せることを特徴とする骨形成装置において,前記レーザ
光を照射する装置は,パルス波発振レーザ装置にあって
はパルス幅が数百マイクロ秒から数ピコ秒,繰り返し周
波数が1から100kHz,波長が400nmから11
μm,照射エネルギーが10J以下,連続波レーザ装置
にあってはパルス波発振レーザー装置と同様な波長と照
射出力が20W以下であることを特徴とする骨再形成装
置.
1. A bone forming apparatus characterized in that a bone is formed by irradiating a laser beam, wherein the apparatus for irradiating the laser beam has a pulse width of several hundred micrometers in a pulse wave oscillation laser apparatus. Seconds to several picoseconds, repetition frequency from 1 to 100 kHz, wavelength from 400 nm to 11
μm, irradiation energy of 10 J or less, and a continuous wave laser device having a wavelength and irradiation power of 20 W or less similar to that of a pulsed wave oscillation laser device.
【請求項2】生体にレーザ光を照射する方向が標的部位
に対して一方向の,また二方向以上の照射にあっては同
一照射軸上,あるいは軸外し,あるいは半円状や同心円
上に照射することのできる手段より構成されていること
を特徴とする請求項1に記載された骨形成装置
2. The method of irradiating a living body with a laser beam in one direction with respect to a target part, or in two or more directions, on the same irradiation axis or off-axis, or on a semicircle or concentric circle. 2. An osteogenic device according to claim 1, wherein said device comprises an irradiating means.
【請求項3】複数照射法にあっては,各々のレーザ光は
同一波長の場合と異なるもの,また各レーザ光の照射時
間が同時である方法と異なる時間で照射される方法を特
徴とする請求項1及び2項に記載された骨形成装置
3. A method of irradiating a plurality of laser beams, wherein each laser beam is different from the laser beam having the same wavelength, and each laser beam is irradiated at a different time from the method of simultaneous irradiation. An osteogenic device according to claim 1 or 2.
【請求項4】生体にレーザ光を照射する場合,生体組織
表面にレーザ光の吸収が少ない物体を接することがで
き,光の反射を防止する処置が施された手段を備えてい
る事を特徴とする前記請求項1乃至請求項3に記戴され
た骨形成装置
4. When irradiating a living body with a laser beam, an object which absorbs a small amount of the laser beam can be brought into contact with the surface of the living tissue, and is provided with means for preventing light reflection. An osteogenic device according to any one of claims 1 to 3.
【請求項5】骨形成速度をほぼ正常に回復させ,維持す
るのに有効な量の骨形成プロセスの必要なレーザ光エネ
ルギーを含む前記請求項1乃至請求項3に記戴された骨
形成装置
5. An osteogenic device as claimed in claim 1, comprising an effective amount of laser light energy required for the osteogenic process to substantially restore and maintain the osteogenic rate.
JP10114098A 1998-03-19 1998-03-19 Bone forming device Pending JPH11267229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114098A JPH11267229A (en) 1998-03-19 1998-03-19 Bone forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114098A JPH11267229A (en) 1998-03-19 1998-03-19 Bone forming device

Publications (1)

Publication Number Publication Date
JPH11267229A true JPH11267229A (en) 1999-10-05

Family

ID=14629073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114098A Pending JPH11267229A (en) 1998-03-19 1998-03-19 Bone forming device

Country Status (1)

Country Link
JP (1) JPH11267229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353164B1 (en) * 1999-11-01 2002-09-18 엔비엠 주식회사 Bone fracture therapeutic system
WO2007126115A1 (en) * 2006-05-02 2007-11-08 Kagoshima University Prevention apparatus and prevention system of osteoporotic change
JP2018527093A (en) * 2015-09-09 2018-09-20 レヴェニオ リサーチ オサケ ユキチュア Device for delivering material into bone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353164B1 (en) * 1999-11-01 2002-09-18 엔비엠 주식회사 Bone fracture therapeutic system
WO2007126115A1 (en) * 2006-05-02 2007-11-08 Kagoshima University Prevention apparatus and prevention system of osteoporotic change
JP4858998B2 (en) * 2006-05-02 2012-01-18 国立大学法人 鹿児島大学 Prevention device for osteoporosis-like change and its prevention system
JP2018527093A (en) * 2015-09-09 2018-09-20 レヴェニオ リサーチ オサケ ユキチュア Device for delivering material into bone

Similar Documents

Publication Publication Date Title
US11534187B2 (en) Acoustic therapy device
US4905671A (en) Inducement of bone growth by acoustic shock waves
US5730705A (en) Ultrasonic treatment for bony ingrowth
US7189209B1 (en) Method for using acoustic shock waves in the treatment of a diabetic foot ulcer or a pressure sore
US6273864B1 (en) Ultrasonic treatment for wounds
US7594930B2 (en) Method of attaching soft tissue to bone
US20010009999A1 (en) Ultrasonic plantar fasciitis therapy : apparatus and method
WO2001039835A8 (en) Device and method for laser biomodulation in pdt/surgery
EP0324711A2 (en) Apparatus for enhancing wound and fracture healing
Akai et al. Laser's effect on bone and cartilage change induced by joint immobilization: an experiment with animal model
Millis et al. Emerging modalities in veterinary rehabilitation
JPH11267229A (en) Bone forming device
Glinkowski et al. Effect of low incident levels of infrared laser energy on the healing of experimental bone fractures
RU2468839C2 (en) Method of treating inflammatory-degenerative arthropathies
CA2442047A1 (en) Method of treating osteochondrosis and apparatus for treating osteochondrosis
Laverty et al. Initial experience with extracorporeal shock wave therapy in six dogs–part I
US7118540B2 (en) Method for use in orthodontics for accelerating tooth movement when treating patients for malocclusion
Al-Habib et al. Histological observation related to the use of laser and ultrasound on bone fracture healing
Stein et al. How does pulsed low-intensity ultrasound enhance fracture healing?
RU2196624C1 (en) Method for treating injuries, their complications and other pathologies and device for applying laser therapy
Glinkoiyski DELAYED UNION HEALING WITH DIODE LASER THERAPY (LLLT). CASE REPORT AND REVlEW 0F LITERATURE
RU2017461C1 (en) Method for treating false joints and retarded consolidation of shin ossa fractures
Jose et al. " THERAPEUTIC ULTRASOUND-A NEW INNOVATIVE THERAPY IN DENTISTRY
RU2078596C1 (en) Method for laser therapy of pain in locomotive apparatus
Glinkowski LASER THERAPY (LLLT). CASE REPORT