JPH11266883A - Fluorescent protein gfp and bfp - Google Patents
Fluorescent protein gfp and bfpInfo
- Publication number
- JPH11266883A JPH11266883A JP10375655A JP37565598A JPH11266883A JP H11266883 A JPH11266883 A JP H11266883A JP 10375655 A JP10375655 A JP 10375655A JP 37565598 A JP37565598 A JP 37565598A JP H11266883 A JPH11266883 A JP H11266883A
- Authority
- JP
- Japan
- Prior art keywords
- bfp
- gfp
- protein
- amino acid
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、新規な蛍光性タン
パク質GFPおよびBFPに関する。The present invention relates to novel fluorescent proteins GFP and BFP.
【0002】[0002]
【従来の技術】GFP(Green Fluorescent Protein)とは、
オワンクラゲ(Aequorea victoria)で見出された、以下
に示す全238アミノ酸残基からなる分子量26,900の比較
的小さなタンパク質である(配列表の配列番号1)。2. Description of the Related Art GFP (Green Fluorescent Protein)
It is a relatively small protein having a molecular weight of 26,900 and consisting of all 238 amino acid residues shown below, which was found in Aequorea victoria (Aequorea victoria) (SEQ ID NO: 1 in the sequence listing).
【0003】 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 238 本明細書中において、GFPタンパク質とは、紫外光〜青
色光により励起されて、緑色の蛍光を発し、その際特別
な基質やATPなどのエネルギー源を必要としないタンパ
ク質を指すものとする。すなわちGFPの発色団形成反応
は自発的で、アミノ末端から65〜67番目のセリン-チロ
シン-グリシンという部分が酸化的にイミダゾリジン環
を形成し発色団となる(渡辺雄一郎 現代化学 12 46-
52 (1995))、R. Heim et al. Proc.Natl.Acad.Sci.USA
91:12501-12504 (1994))。係る性質を有するため、こ
のタンパク質をコードするDNAを適当な発現ベクターに
つなぎ、目的の細胞に導入してGFPを発現させるだけで
蛍光像が得られるので、様々な細胞において生きた状態
で遺伝子発現やタンパク質の局在などを視覚的に分析す
るのに使用されている。しかしながら、係るGFPは37℃
では光らないため、動物細胞などでの観察にはやむをえ
ず30℃で培養を行わなければならないという問題があっ
た。この問題に関しては、V163A、S175Gの変異が熱安定
性を高めることも報告されている(K.R.Siemering等、C
urr.Biol. 6, 1653-1663(1996)。[0003] Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys As p Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 238 In the present specification, the GFP protein refers to ultraviolet light to It refers to proteins that emit green fluorescence when excited by blue light and do not require special substrates or energy sources such as ATP. In other words, the chromophore-forming reaction of GFP is spontaneous, and the serine-tyrosine-glycine portion at positions 65 to 67 from the amino terminus oxidizes to form an imidazolidine ring and becomes a chromophore (Yuichiro Watanabe Modern Chemistry 12 46-
52 (1995)), R. Heim et al. Proc. Natl. Acad. Sci. USA
91: 12501-12504 (1994)). Because of these properties, a fluorescent image can be obtained simply by connecting the DNA encoding this protein to an appropriate expression vector and introducing it into the target cell to express GFP. It is used to analyze the localization of proteins and proteins visually. However, such GFP is at 37 ° C.
Therefore, there is a problem that the culture must be performed at 30 ° C. for observation with animal cells or the like. Regarding this problem, it has also been reported that mutations of V163A and S175G enhance thermal stability (KRSiemering et al.
urr. Biol. 6, 1653-1663 (1996).
【0004】また、最近、GFPにY66HとY145Fという変異
を導入した波長特性の異なったGFPのMutant(変異体と
も表す。以下にそのアミノ酸配列を示し、上記変異は下
線で示される)が開発されているが、これはUV励起によ
り青色の蛍光を発することからBFP(Blue Fluorescent P
rotein)とよばれている(R. Heim et al. Curr. Biol.
6、178-182 (1996)、R. Heim et al. Proc.Natl.Acad.S
ci.USA 91、12501-12504 (1994))。本明細書中におい
て、BFPタンパク質とは、紫外〜青色光により励起さ
れ、青色の蛍光を発し、その際特別な基質やATPなどの
エネルギー源を必要としないタンパク質を指すものとす
る。しかしながら、係るBFPはGFPと比べて退色が激し
く、顕微鏡などで観察するのが困難であるという問題が
あった。ここで、変異を表すために、上記野性型の特定
のアミノ酸配列番号でその変異の位置を示し、変異前の
アミノ酸を該数字の前に記載し、かつ変異したアミノ酸
を該数字の後に記載するものとする。Recently, Mutants of GFP having mutations of Y66H and Y145F introduced into GFP and having different wavelength characteristics (also referred to as mutants; their amino acid sequences are shown below, and the above mutations are underlined) have been developed. However, this emits blue fluorescence when excited by UV light, so BFP (Blue Fluorescent P
rotein) (R. Heim et al. Curr. Biol.
6, 178-182 (1996), R. Heim et al. Proc. Natl. Acad. S
ci. USA 91, 12501-12504 (1994)). In the present specification, the term “BFP protein” refers to a protein that is excited by ultraviolet to blue light, emits blue fluorescence, and does not require a special substrate or an energy source such as ATP. However, the BFP has a problem that the color fading is more severe than that of the GFP, and it is difficult to observe with a microscope or the like. Here, in order to represent the mutation, the position of the mutation is indicated by the specific amino acid sequence number of the wild type, the amino acid before the mutation is described before the number, and the mutated amino acid is described after the number. Shall be.
【0005】なお、アミノ酸は適時1文字表記又は3文
字表記をする。[0005] Amino acids are represented by one letter or three letters as appropriate.
【0006】 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser His Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 66 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140Phe Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 238Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser His Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 66 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Phe Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gla Ily Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 238
【0007】[0007]
【発明が解決しようとする課題】本発明は、新規な蛍光
性タンパク質GFPおよびBFPを提供するものであ
る。SUMMARY OF THE INVENTION The present invention provides novel fluorescent proteins GFP and BFP.
【0008】[0008]
【課題を解決するための手段】本発明者は、上記問題点
に鑑み鋭意研究し、GFP、又はBFPのアミノ酸配列
の特定の位置に特定の変異を導入することにより、係る
問題のない新規なGFP又はBFPを見出すことに成功
し本発明を完成した。Means for Solving the Problems The present inventor has conducted intensive studies in view of the above problems, and has introduced a novel mutation at a specific position in the amino acid sequence of GFP or BFP. We succeeded in finding GFP or BFP and completed the present invention.
【0009】すなわち、本発明は、従来知られているG
FP又はBFP(以下これらを野性型という場合があ
る)から、種々の手段により特定の位置に特定の変異を
導入することにより変異体GFP、又は変異体BFPを
調製した。また、係る変異体から、約1時間UV照射後に
おいてもなお明るく光る変異体BFPを選択した。すな
わち、従来のBFPについて、GFPと比べて退色が激
しく、顕微鏡などで観察するのが困難であったという問
題を解決したものである。That is, the present invention relates to a conventionally known G
Mutant GFP or mutant BFP was prepared from FP or BFP (hereinafter sometimes referred to as wild type) by introducing a specific mutation at a specific position by various means. From these mutants, a mutant BFP that glows brightly even after UV irradiation for about 1 hour was selected. In other words, the present invention has solved the problem that the conventional BFP was significantly fading compared to GFP and was difficult to observe with a microscope or the like.
【0010】同様に、37℃でも明るく光るGFPの変異
体を取得した。すなわち、従来GFPについては、37℃
では光らなかったため、動物細胞などでの観察にはやむ
をえず30℃で培養を行う必要があったという問題を解決
したものである。Similarly, a mutant of GFP which glows brightly even at 37 ° C. was obtained. That is, for the conventional GFP, 37 ° C.
Thus, the present invention solved the problem that cultivation at 30 ° C. was inevitable for observation with animal cells or the like.
【0011】すなわち、本発明は、野性型GFP(283
アミノ酸、配列表配列番号1)のアミノ酸配列を基本に
して、以下の変異を導入したGFPを調製し、その蛍光
特性、温度特性を調べた。That is, the present invention relates to wild-type GFP (283
Amino acids, GFP having the following mutations were prepared based on the amino acid sequence of SEQ ID NO: 1) in the Sequence Listing, and their fluorescence characteristics and temperature characteristics were examined.
【0012】 (1) Phe64Leu (2) Val163Ala、Ser175Glyを導入。 (3) Phe64Leu、 Val163Ala、Ser175Glyを導入。(1) Phe64Leu (2) Val163Ala and Ser175Gly were introduced. (3) Phe64Leu, Val163Ala and Ser175Gly are introduced.
【0013】さらに、本発明は、上記野性型BFPのアミ
ノ酸配列を基本にして、以下の変異を導入したBFPを
調製し、その蛍光特性、温度特性を調べた。ここで、導
入された変異は野性型GFPのアミノ酸配列を基本とし
た。Further, in the present invention, based on the amino acid sequence of the above-mentioned wild-type BFP, a BFP having the following mutations was prepared, and its fluorescence characteristics and temperature characteristics were examined. Here, the introduced mutation was based on the amino acid sequence of wild-type GFP.
【0014】 (4) Y66H、 Y145F: Phe64Leu、 Leu236Arg (5) Y66H、 Y145F: Phe64Leu (6) Y66H、 Y145F: Val163Ala、 Ser175Gly (7) Y66H、 Y145F: Phe64Leu、 Val163Ala、 Ser175Gly、 Leu236Arg その結果、得られた変異体BFP、GFPは、改良され
た蛍光特性及び、熱安定性を有することが見出された。
すなわち、本発明は以下に示す新規BFP及びGFP、
さらにはそれらをコードする遺伝子を提供するものであ
る。(4) Y66H, Y145F: Phe64Leu, Leu236Arg (5) Y66H, Y145F: Phe64Leu (6) Y66H, Y145F: Val163Ala, Ser175Gly (7) Y66H, Y145F: Phe64Leu, Val163Ala, Ser175Gly, Leu236Arg The mutant BFP, GFP, was found to have improved fluorescent properties and thermal stability.
That is, the present invention provides the following novel BFP and GFP,
Further, the present invention provides genes encoding them.
【0015】1. 配列表の配列番号1に記載のアミノ酸
配列に、少なくとも、Phe64Leu、Val163Ala、及び Ser1
75Glyなる変異を有するGFPタンパク質。 2. 配列表の配列番号1に記載のアミノ酸配列に、Phe6
4Leu、Val163Ala、Ser175Glyの3つの変異を有するGF
Pタンパク質。 3. 配列表の配列番号1に記載のアミノ酸配列に、少な
くとも、Y66H、Y145F、及びPhe64Leuなる変異を有する
BFPタンパク質。 4. 配列表の配列番号1に記載のアミノ酸配列に、少な
くとも、Y66H、Y145F、Phe64Leu、及びLeu236Argなる変
異を有するBFPタンパク質。 5. 配列表の配列番号1に記載のアミノ酸配列に、Y66
H、Y145F、Phe64Leu、Leu236Argなる4つの変異を有す
るBFPタンパク質。 6. 配列表の配列番号1に記載のアミノ酸配列に、少な
くとも、Y66H、Y145F、Phe64Leu、Val163Ala、Ser175Gl
y、及びLeu236Argなる変異を有するBFPタンパク質。 7. 配列表の配列番号1に記載のアミノ酸配列に、Y66
H、Y145F、Phe64Leu、Val163Ala、Ser175Gly、Leu236Ar
gなる6つの変異を有するBFPタンパク質。 8. 上記1.又は2.のいずれかに記載のGFPタンパク質
をコードする遺伝子。 9. 上記3.〜7.のいずれかに記載のBFPタンパク質を
コードする遺伝子。1. The amino acid sequence of SEQ ID NO: 1 contains at least Phe64Leu, Val163Ala and Ser1
GFP protein having a mutation of 75Gly. 2. Phe6 is added to the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
GF having 3 mutations of 4Leu, Val163Ala and Ser175Gly
P protein. 3. A BFP protein having at least mutations of Y66H, Y145F and Phe64Leu in the amino acid sequence of SEQ ID NO: 1 in the sequence listing. 4. A BFP protein having at least mutations of Y66H, Y145F, Phe64Leu, and Leu236Arg in the amino acid sequence of SEQ ID NO: 1 in the sequence listing. 5. The amino acid sequence represented by SEQ ID NO: 1 in the sequence listing has Y66
BFP protein having four mutations of H, Y145F, Phe64Leu and Leu236Arg. 6. The amino acid sequence represented by SEQ ID NO: 1 in the sequence listing contains at least Y66H, Y145F, Phe64Leu, Val163Ala, and Ser175Gl.
BFP protein having mutations y and Leu236Arg. 7. The amino acid sequence represented by SEQ ID NO: 1 in the sequence listing has Y66
H, Y145F, Phe64Leu, Val163Ala, Ser175Gly, Leu236Ar
g BFP protein having six mutations. 8. A gene encoding the GFP protein according to any of 1 or 2 above. 9. A gene encoding the BFP protein according to any of the above items 3 to 7.
【0016】以下、本発明を実施の形態に即し詳細に説
明するが、本明細書内で使用する核酸及びアミノ酸(1
文字、及び3文字表記)の略記載を以下にしめす。Hereinafter, the present invention will be described in detail with reference to embodiments, but nucleic acids and amino acids (1
Abbreviations of letters and three-letter notations) are shown below.
【0017】(核酸) DNA デオキシリボ核酸 A アデニン C シトシン G グアニン T チミン (アミノ酸) Ala (A) アラニン Arg (R) アルギニン Asn (N) アスパラギン Asp (D) アスパラギン酸 Cys (C) システイン Gln (Q) グルタミン Glu (E) グルタミン酸 Gly (G) グリシン His (H) ヒスチジン Ile (I) イソロイシン Leu (L) ロイシン Lys (K) リジン Met (M) メチオニン Phe (F) フェニルアラニン Pro (P) プロリン Ser (S) セリン Thr (T) スレオニン Trp (W) トリプトファン Tyr (Y) チロシン Val (V) バリン。(Nucleic acid) DNA deoxyribonucleic acid A adenine C cytosine G guanine T thymine (amino acid) Ala (A) alanine Arg (R) arginine Asn (N) asparagine Asp (D) aspartic acid Cys (C) cysteine Gln (Q) Glutamine Glu (E) Glutamate Gly (G) Glycine His (H) Histidine Ile (I) Isoleucine Leu (L) Leucine Lys (K) Lysine Met (M) Methionine Phe (F) Phenylalanine Pro (P) Proline Ser (S) Serine Thr (T) Threonine Trp (W) Tryptophan Tyr (Y) Tyrosine Val (V) Valine.
【0018】本発明は、少なくとも2又は3又はそれ以上
のアミノ酸残基が置換されたGFP又はBFPをコードしてい
る核酸分子を開示するものである。これらのアミノ酸残
基置換により得られるGFP又はBFPタンパク質は、細胞内
の遺伝子活性およびタンパク質分布をモニターするため
に使用可能である。遺伝子活性およびタンパク質分布
は、GFP又はBFPをコードするDNAを目的のDNA配列と結合
したDNAを作成し細胞内へ導入することによりモニター
可能となる。さらに、GFP又はBFPをコードするDNAマー
カーを細胞へ導入し、細胞を培養し、蛍光タンパク質検
出する方法は、以下の文献に記載の方法が使用可能であ
る(M.Chalfie等、US Patent No.5,491,084 (1996); S-
H.Park等、Protein Science 6:2344-2349 (1997); M.J.
Cormier等 US Patent No.5,422,266 (1995)。The present invention discloses a nucleic acid molecule encoding GFP or BFP in which at least two or three or more amino acid residues have been substituted. GFP or BFP proteins obtained by these amino acid residue substitutions can be used to monitor gene activity and protein distribution in cells. Gene activity and protein distribution can be monitored by preparing DNA in which DNA encoding GFP or BFP is linked to a target DNA sequence and introducing the DNA into cells. Further, as a method for introducing a DNA marker encoding GFP or BFP into a cell, culturing the cell, and detecting a fluorescent protein, the method described in the following literature can be used (M. Chalfie et al., US Patent No. 5,491,084 (1996); S-
H. Park et al., Protein Science 6: 2344-2349 (1997); MJ
Cormier et al. US Patent No. 5,422,266 (1995).
【0019】[0019]
【発明の実施の形態】本発明に係る新規GFP、又はB
FPタンパク質は、野性型GFP及びBFPの一部のア
ミノ酸配列に特定の変異を導入したものであり、改良さ
れた蛍光特性及び熱的安定性を発揮するものである。従
って、係るアミノ酸配列を少なくとも有するタンパク質
であって、さらに、本発明に係る新規GFP、又はBF
Pタンパク質に基づく改良された蛍光特性及び熱的安定
性を発揮するものである限り、本発明に含まれるもので
ある。すなわち、以下の実施例においても使用されてい
るように、種々の由来の細胞を用いる場合に、該アミノ
酸配列以外に種々のアミノ酸配列が、N末端又はC末端
に付加され、かつ本発明に係る新規GFP、又はBFP
タンパク質に基づく改良された蛍光特性及び熱的安定性
を発揮するものも含まれる。BEST MODE FOR CARRYING OUT THE INVENTION A novel GFP or B according to the present invention
The FP protein is obtained by introducing a specific mutation into a part of the amino acid sequence of wild-type GFP and BFP, and exhibits improved fluorescent properties and thermal stability. Therefore, a protein having at least such an amino acid sequence, and further comprising a novel GFP or BF according to the present invention.
As long as they exhibit improved fluorescent properties and thermal stability based on the P protein, they are included in the present invention. That is, as used in the following examples, when cells of various origins are used, various amino acid sequences other than the amino acid sequences are added to the N-terminus or C-terminus, and according to the present invention. New GFP or BFP
Also included are those that exhibit improved fluorescent properties and thermal stability based on proteins.
【0020】さらに、本発明は、係る新規なタンパク質
又はそれを一部に含むタンパク質をコードする遺伝子を
提供するものである。Further, the present invention provides a gene encoding the novel protein or a protein containing the protein.
【0021】ここで、「実質的に純粋」および「単離」
という言葉は、天然物に伴う不純物や成分が除かれたタ
ンパク質を意味する。具体的には、少なくとも60から70
%の試料が単一のポリペプチド鎖を示す場合に該タンパ
ク質は実質的に純粋とされる。少数の変異体若しくは化
学修飾によるほとんど同一のポリペプチド配列を有する
ものも同様とする。実質的に純粋なタンパク質とは、通
常約85から90%以上、好ましくは約95%以上、より好まし
くは99%以上のタンパク質をいう。この用語は、動物細
胞、E.coliおよび他の原核生物細胞を用いて合成された
タンパク質および核酸についても用いるものとする。Here, “substantially pure” and “isolated”
The term means a protein from which impurities and components associated with natural products have been removed. Specifically, at least 60-70
A protein is substantially pure if% of the sample shows a single polypeptide chain. The same applies to a few mutants or those having almost identical polypeptide sequences due to chemical modification. Substantially pure protein usually refers to about 85 to 90% or more, preferably about 95% or more, more preferably 99% or more protein. The term is also used for proteins and nucleic acids synthesized using animal cells, E. coli and other prokaryotic cells.
【0022】「単離された」または「精製された」核酸
とは、他のタンパク質をコードする不純物核酸から同
定、または分離された核酸を意味する。"Isolated" or "purified" nucleic acid means nucleic acid that has been identified or separated from impurity nucleic acids encoding other proteins.
【0023】本発明に係る、新規GFP、又はBFPの
取得の方法については特に制限はなく、化学合成法によ
る人工的な取得方法や、通常公知の遺伝子工学に基づく
取得方法が可能である。後者は通常公知の適当なベクタ
ーと、変異導入手段を組合せた遺伝子工学的手法により
可能である。具体的には以下の手順が好ましい。The method for obtaining a novel GFP or BFP according to the present invention is not particularly limited, and an artificial obtaining method by a chemical synthesis method or an obtaining method based on generally known genetic engineering is possible. The latter can be carried out by a genetic engineering technique combining a generally known appropriate vector with a mutation introducing means. Specifically, the following procedure is preferable.
【0024】すなわち、(1)改良したい公知のGFP又
はBFPタンパク質を出発とし、該タンパク質をコード
する遺伝子を適当なベクターに導入し、(2)公知の方法
により、該遺伝子に、選択的にまたはランダムに変異を
導入し、(3)得られた変異体GFP又はBFPの蛍光強
度、温度依存性等から好ましい変異体を選択する、とい
う手順である。That is, (1) starting from a known GFP or BFP protein to be improved, a gene encoding the protein is introduced into an appropriate vector, and (2) selectively or selectively to the gene by a known method. In this procedure, mutations are introduced at random, and (3) a preferred mutant is selected from the fluorescence intensity, temperature dependency, etc. of the obtained mutant GFP or BFP.
【0025】以下、実施例に基づいて上記手順を詳細に
説明するが、この発明はこれらの実施例によって限定さ
れるものではない。Hereinafter, the above procedure will be described in detail with reference to examples, but the present invention is not limited to these examples.
【0026】[0026]
【実施例】(I) 本実施例で用いた遺伝子工学的手法
を以下に説明する。EXAMPLES (I) The genetic engineering technique used in this example is described below.
【0027】1. ベクターコンストラクション 本発明においては、pGFP-C1ベクター(Clontech社製)のG
FPをコードするDNA部分をphGFP-S65T(Clontech社製)由
来のGFPのDNAに交換したものを基本のプラスミドとした
(以下、phGFP(101)-C1と名付ける)。本ベクターは動
物細胞発現用であり、ベクター部分を含め全塩基配列は
公知である。以下に、該当するアミノ酸配列を示した。 1. Vector Construction In the present invention, the pGFP-C1 vector (Clontech) G
A DNA obtained by replacing the FP-encoding DNA with GFP DNA derived from phGFP-S65T (Clontech) was used as a basic plasmid (hereinafter referred to as phGFP (101) -C1). This vector is for expression in animal cells, and the entire nucleotide sequence including the vector portion is known. The corresponding amino acid sequence is shown below.
【0028】 Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 225 230 235 238Met Val Ser Lys Gly Glu Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Glu Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 225 230 235 238
【0029】ここで、上記phGFP-S65Tのコードするタン
パク質はクラゲ由来の野生型のものに比べ、(i)アミノ
酸配列1番目のメチオニンおよび2番目のセリンの間に
アミノ酸(バリン)が一つ挿入されている、(ii)さら
に、アミノ酸番号65のセリンがスレオニンに変異され
ている、(iii)アミノ酸番号231番目のヒスチジンが
ロイシンに変異されたものである(上のアミノ酸配列中
でそれぞれ下線をつけた)。従って、たとえば該アミノ
酸番号65のスレオニンは実際は66番目になるが、本
明細書では、変異に係るアミノ酸番号を一般の通例に従
い、野生型に相当するアミノ酸配列番号を使用する。す
なわち、クラゲ由来の野生型のアミノ酸配列からのアミ
ノ酸配列番号を用いるものとし(アミノ酸番号1番目か
ら〜238番目)、上記余分なバリンは、アミノ酸番号
1番目と2番目の間に付加されたものとし、番号を与え
ないものする。実際、係るバリンの付加は、本発明の実
施の形態を説明するために実施例として用いたものであ
り、本発明の必須のアミノ酸配列ではない。従って、以
下の説明において、係るバリンの付加の有無は本質的に
本発明の範囲に影響を与えるものではない。Here, the protein encoded by the phGFP-S65T is (i) an amino acid (valine) inserted between the first methionine and the second serine in the amino acid sequence as compared with the wild-type protein derived from jellyfish. (Ii) serine at amino acid number 65 is mutated to threonine; (iii) histidine at amino acid number 231 is mutated to leucine (each underlined in the above amino acid sequence) Wearing). Therefore, for example, the threonine at the amino acid number 65 is actually the 66th amino acid, but in the present specification, the amino acid number corresponding to the wild type is used in accordance with a general customary amino acid number relating to the mutation. That is, an amino acid sequence number from a jellyfish-derived wild-type amino acid sequence is used (amino acid numbers 1 to 238), and the extra valine is added between amino acid numbers 1 and 2. And do not give a number. In fact, such addition of valine is used as an example to explain the embodiment of the present invention, and is not an essential amino acid sequence of the present invention. Therefore, in the following description, whether or not valine is added does not essentially affect the scope of the present invention.
【0030】さらに、特定の変異を導入する方法におい
ても特に制限はされないが、例えば本発明において実施
例で用いた以下の導入方法が可能である。すなわち、上
記phGFP(101)-C1よりHindIIIによりGFPをコードするD
NA領域を切り出し、pUC18ベクターまたはpQE30ベクタ
ー(Qiagen)のHindIIIサイトに挿入することで、pUCGFP
(101)またはpQEGFP(101)を作成した。ここで、pQE30ベ
クターは大腸菌発現用である。The method for introducing a specific mutation is not particularly limited. For example, the following introduction methods used in Examples in the present invention are possible. That is, D encoding GFP by HindIII from phGFP (101) -C1
By cutting out the NA region and inserting it into the HindIII site of the pUC18 vector or pQE30 vector (Qiagen), pUCGFP
(101) or pQEGFP (101) was prepared. Here, the pQE30 vector is for expression in E. coli.
【0031】得られたpUCGFP(101)を用いることで、以
下に示す部位特異的変異導入法によりT65S,Y66H、Y145F
の変異が導入されたpUCBFP(201)を作成した。Using the obtained pUCGFP (101), T65S, Y66H, Y145F
PUCBFP (201) into which the above mutation was introduced was prepared.
【0032】ここで、上記変異(T65S)により導入された
アミノ酸配列65番目のSerは、該変異により野性型と
同じとなったものである。Here, Ser at position 65 in the amino acid sequence introduced by the above mutation (T65S) is the same as the wild type due to the mutation.
【0033】さらに、得られたpUCBFP(201)より、EcoRI
/XhoI切断によりBFPをコードするDNAを切り出し、Bl
uescript II KS(-)(Stratagene)のEcoRI/XhoIサイトに
クローニングすることでblueBFP(201)を作成した。Further, from the obtained pUCBFP (201), EcoRI
DNA encoding BFP was cut out by digestion with
BlueBFP (201) was prepared by cloning into EcoRI / XhoI site of uescript II KS (-) (Stratagene).
【0034】さらに、得られたpUCBFP(201)より、HindI
II切断によりBFPをコードするDNA領域を切り出し、p
QE30ベクターのHindIIIサイトに挿入することにより、p
QEBFP(201)を作成した。一方、同様に上記DNAをphGFP(1
01)-C1ベクターのGFPコード領域と交換することによりp
hBFP(201)-C1を作成した。Further, from the obtained pUCBFP (201), HindI
A DNA region encoding BFP is cut out by II digestion, and p
By inserting into the HindIII site of the QE30 vector, p
QEBFP (201) was created. On the other hand, similarly, the above DNA was
01) by replacing with the GFP coding region of the -C1 vector
hBFP (201) -C1 was created.
【0035】2.Mutagenic Polymerase chain reactio
n(以下PCRという) さらに、ランダムに変異を導入する方法についても特に
制限はないが、本発明においては以下のMutagenic PCR
が好ましく使用可能である。Mutagenic PCRは公知の方
法に準じて行うことが可能である(C. W. Dieffenbach,
ed. PCR PRIMER,A Laboratory Manual (Cold Spring H
arbor Laboratory Press) (1995) pp.583-588)。実施
例においては具体的には以下の条件で行った。[0035] 2. Mutagenic Polymerase chain reactio
n (hereinafter referred to as PCR) Furthermore, there is no particular limitation on a method for introducing mutations at random, but in the present invention, the following Mutagenic PCR is used.
Can be preferably used. Mutagenic PCR can be performed according to a known method (CW Dieffenbach,
ed.PCR PRIMER, A Laboratory Manual (Cold Spring H
arbor Laboratory Press) (1995) pp.583-588). In the examples, specifically, the following conditions were used.
【0036】10×mutagenic PCR buffer(70mM MgCl2;
500mM KCl; 100mM Tris-HCl,pH8.3at25℃; 0.1%(w/v)
gelatin)10μl、10×dNTP(2mM dGTP, 2mMdATP, 10mM dC
TP,10mM dTTP)10μl, 10pmol/μlのプライマー(23mer M
13Universal primer及びM13Reverse primer )3μl, H2O
62μlにプラスミドBlueBFP(201)を約50ng加え混合した
後、5mMのMnCl2を10μl加え混合し1μlのTaq Polymeras
e(TaKaRa)を加えてPCR(ASTEC社製 PC-700を使用)を行っ
た。PCRは3本のチューブで行い94℃、1分 45℃ 1分 7
2℃ 1分の条件で各25、30、35サイクル行った。10 × mutagenic PCR buffer (70 mM MgCl 2 ;
500 mM KCl; 100 mM Tris-HCl, pH 8.3 at 25 ° C .; 0.1% (w / v)
gelatin) 10 μl, 10 × dNTP (2 mM dGTP, 2 mM dATP, 10 mM dC
TP, 10 mM dTTP) 10 μl, 10 pmol / μl primer (23mer M
13Universal primer and M13Reverse primer) 3μl, H 2 O
After adding about 50 ng of plasmid BlueBFP (201) to 62 μl and mixing, 10 μl of 5 mM MnCl 2 was added and mixed, and 1 μl of Taq Polymeras
e (TaKaRa) was added to perform PCR (using PC-700 manufactured by ASTEC). Perform PCR in three tubes at 94 ° C for 1 minute 45 ° C for 1 minute 7
25, 30, and 35 cycles were performed at 2 ° C. for 1 minute.
【0037】各反応液をあわせフェノールクロロホルム
処理を2回行なった後、BamHIとXhoIで切断後1%アガロ
ースゲルで電気泳動を行い、増幅されたBFPをコードす
るDNA断片を回収し、pQE30(QIAGEN社)のBamHIとSalIサ
イトに挿入した。After combining each reaction solution and performing phenol-chloroform treatment twice, digestion with BamHI and XhoI, electrophoresis was performed on a 1% agarose gel, the amplified DNA fragment encoding BFP was recovered, and pQE30 (QIAGEN BamHI and SalI sites.
【0038】大腸菌(JM109)にトランスフォーメーショ
ンを行い、カルベニシリンを含むLB寒天培地にまき、37
℃で16時間インキュベートした。その後、室温で24時間
放置した。プレートに生じる大腸菌のコロニーにプレー
トの上側からUV(フナコシ UVTRANSILLUMINATOR FTI-2
01 UV 365nm)を一時間照射し、その後も視覚的に十分
光っているコロニーをした選択した(実施例では10個得
ることができた)。E. coli (JM109) was transformed and spread on LB agar medium containing carbenicillin.
Incubated for 16 hours at ° C. Then, it was left at room temperature for 24 hours. UV (Funakoshi UVTRANSILLUMINATOR FTI-2)
01 UV 365 nm) for 1 hour, and then selected colonies that were visually luminous enough (10 were obtained in the example).
【0039】選択されたプラスミドのシークエンス決定
を行った。コード領域内に意味のあると思われる変異を
持つ変異体について、ベクターのクローニング部位をpQ
EBFP(201)とそろえるため、コード領域をHind3で切り出
し、pQE30のHindIIIサイトに挿入後、これをSalI/BglII
で切り出し、pQEBFP (201)の相当部分と交換した(実施
例の場合Mutant.10から作成したものをpQE BFP(202)と
した)。The sequence of the selected plasmid was determined. For variants with potentially significant mutations in the coding region, replace the vector cloning site with pQ
To align with EBFP (201), the coding region was cut out with Hind3, inserted into the HindIII site of pQE30, and inserted into SalI / BglII.
And replaced with a corresponding part of pQEBFP (201) (in the case of the embodiment, the one created from Mutant.10 was used as pQEBFP (202)).
【0040】3. 部位特異的変異導入法によるMutant
GFP/BFPの作成 部位特異的変異導入法は、特に制限はないが、例えば実
施例ではSTRATAGENE社のQuick Changeキットのプロトコ
ールに従った。下表2に示すオリゴヌクレオチドをプラ
イマーとして用い、表3に示すpUC18またはpQE30ベクタ
ーのHindIIIサイトにGFP又はBFPcDNAをサブクローニン
グしたプラスミド(約0.03μg)をtemplateとして用い
た(PCR条件は具体的には、16サイクル、95℃ 30秒 5
5℃ 1分、68℃ 10分が好ましい)。[0040] 3. Mutant by site-directed mutagenesis
The method for introducing a GFP / BFP site-directed mutagenesis is not particularly limited. For example, in the Examples, the protocol of the STRATAGENE Quick Change kit was used. Oligonucleotides shown in Table 2 below were used as primers, and plasmids (about 0.03 μg) obtained by subcloning GFP or BFP cDNA into HindIII site of pUC18 or pQE30 vector shown in Table 3 were used as templates (specifically, PCR conditions were as follows). 16 cycles, 95 ° C, 30 seconds 5
5 ° C. for 1 minute, 68 ° C. for 10 minutes).
【0041】(表2) ========================================== オリゴNo シークエンス 1F TCGTGACCACCTTCTCCCACGGCGTGCA 1R TGCACGCCGTGGGAGAAGGTGGTCACGA 2F GCTGGAGTACAACTTCAACAGCCACAACG 2R CGTTGTGGCTGTTGAAGTTGTACTCCAGC 3F CCTCGTGACCACCCTCTCCCACGGCGTG 3R CACGCCGTGGGAGAGGGTGGTCACGAGG 4F CCTCGTGACCACCCTCACCTACGGCGTG 4R CACGCCGTAGGTGAGGGTGGTCACGAGG 5F GAACGGCATCAAGGCCAACTTCAAGATCC 5R GGATCTTGAAGTTGGCCTTGATGCCGTTC 6F CATCGAGGACGGCGGCGTGCAGCTCGCC 6R GGCGAGCTGCACGCCGCCGTCCTCGATG ======================================== (表3) ============================================================= templateに用いた 変異を導入する際 変異導入後の GFP又はBFP に用いたオリゴNo 変異体GFP又はBFP ------------------------------------------------------------- pUCGFP(101) 1F+1R pUCGFP101(+Y66H) pUCGFP101(+Y66H) 2F+2R pUC(201) pQEGFP(101) 4F+4R pQEGFP(103) pQEBFP(201) 3F+3R pQEBFP(203) pQEGFP(101) 5F+5R pQEGFP101(+V163A) pQEGFP101(+V163A) 6F+6R pQEGFP(104) pQEBFP(201) 5F+5R pQEBFP(201)(+V163A) pQEBFP(201)(+V163A) 6F+6R pQEBFP(204) pQEGFP(104) 4F+4R pQEGFP(105) pQEBFP(202) 5F+5R pQEBFP202(+V163A) pQEBFP202(+V163R) 6F+6R pQEBFP(205) ===============================================================(Table 2) ========================================== oligo No sequence 1F TCGTGACCACCTTCTCCCACGGCGTGCA 1R TGCACGCCGTGGGAGAAGGTGGTCACGA 2F GCTGGAGTACAACTTCAACAGCCACAACG 2R CGTTGTGGCTGTTGAAGTTGTACTCCAGC 3F CCTCGTGACCACCCTCTCCCACGGCGTG 3R CACGCCGTGGGAGAGGGTGGTCACGAGG 4F CCTCGTGACCACCCTCACCTACGGCGTG 4R CACGCCGTAGGTGAGGGTGGTCACGAGG 5F GAACGGCATCAAGGCCAACTTCAAGATCC 5R GGATCTTGAAGTTGGCCTTGATGCCGTTC 6F CATCGAGGACGGCGGCGTGCAGCTCGCC 6R GGCGAGCTGCACGCCGCCGTCCTCGATG ======================== ================ (Table 3) ============================== =============================== When introducing the mutation used for template Used for GFP or BFP after mutagenesis Oligo No mutant GFP or BFP ------------------------------------------- ------------------ pUCGFP (101) 1F + 1R pUCGFP101 (+ Y66H) pUCGFP101 (+ Y66H) 2F + 2R pUC (201) pQEGFP (101) 4F + 4R pQEGFP (103) pQEBFP (201) 3F + 3R pQEBFP (203) pQEGFP (101) 5F + 5R pQEGFP101 (+ V163A) pQEGFP101 (+ V163A) 6F + 6R pQEGFP (104) pQEBFP (201) 5F + 5R pQEBFP (201) (+ V163A) pQEBFP (201) (+ V163A) 6F + 6R pQEBFP (204) pQEGFP (104) 4F + 4R pQEGFP (105) pQEBFP (202) 5F + 5R pQEBFP202 (+ (V163A) pQEBFP202 (+ V163R) 6F + 6R pQEBFP (205) ===================================== ===========================
【0042】得られたプラスミドのシークエンス決定を
行い、目的の変異が入っていることを確認した。The sequence of the obtained plasmid was determined, and it was confirmed that the desired mutation was contained.
【0043】本発明の実施例では、得られた種々の変異
体を整理するために便宜上GFPについては101〜105、BFP
に関しては201〜205という名前をつけた。その導入され
た変異(Mutation)は下表4にまとめて示す通りであ
る。また、表には示さないが、GFP101〜105はすべてSer
65Thr、His231Leuの変異を含むものである。In the examples of the present invention, for the purpose of sorting out the various mutants obtained, 101-105 for GFP and BFP
I named them 201-205. The mutations (Mutation) introduced are as shown in Table 4 below. Also, although not shown in the table, GFP 101 to 105 are all Ser
It contains mutations of 65Thr and His231Leu.
【0044】 (表4) ================================================================== GFP 101 なし 103 Phe64Leu 104 Val163Ala, Ser175Gly 105 Phe64Leu, Val163Ala, Ser175Gly ------------------------------------------------------------------- BFP(BFPについては、GFPの配列をもとにして2つの変異Y66H, Y145Fが導入され ている) 201 Y66H, Y145F: 202 Y66H, Y145F: Phe64Leu, Leu236Arg 203 Y66H, Y145F: Phe64Leu 204 Y66H, Y145F: Val163Ala, Ser175Gly 205 Y66H, Y145F: Phe64Leu, Val163Ala, Ser175Gly, Leu236Arg ====================================================================(Table 4) ============================================ ======================= GFP 101 None 103 Phe64Leu 104 Val163Ala, Ser175Gly 105 Phe64Leu, Val163Ala, Ser175Gly ------------ -------------------------------------------------- ----- BFP (BFP has two mutations Y66H and Y145F introduced based on the GFP sequence) 201 Y66H, Y145F: 202 Y66H, Y145F: Phe64Leu, Leu236Arg 203 Y66H, Y145F: Phe64Leu 204 Y66H, Y145F: Val163Ala, Ser175Gly 205 Y66H, Y145F: Phe64Leu, Val163Ala, Ser175Gly, Leu236Arg =============================== ======================================
【0045】4. 変異体BFP発現量の測定 得られる変異体BFPの発現量の測定は特に制限はない
が、SDS-PAGEによる大腸菌でのMutantBFP発現量を比較
することが好ましい。具体的は、pQE30(空ベクター)
あるいはpQEBFP(201)、pQEBFP(202)、の発現ベクターを
導入した大腸菌のovernight cultureを1/50になるよう
に希釈し、3mlの2×YTカルベニシリン培地で37℃で3時
間培養した。終濃度0.24mg/mlになるようにIPTGを各サ
ンプルに加え、さらに2.5時間培養することによりBFPタ
ンパクの誘導を行うった。[0045] 4. Measurement of mutant BFP expression level The measurement of the obtained mutant BFP expression level is not particularly limited, but it is preferable to compare the Mutant BFP expression level in E. coli by SDS-PAGE. Specifically, pQE30 (empty vector)
Alternatively, an overnight culture of Escherichia coli into which the expression vectors of pQEBFP (201) and pQEBFP (202) were introduced was diluted to 1/50, and cultured in 3 ml of 2 × YT carbenicillin medium at 37 ° C. for 3 hours. IPTG was added to each sample to a final concentration of 0.24 mg / ml, and the cells were further cultured for 2.5 hours to induce BFP protein.
【0046】そのうち100μlをとって遠心し沈殿をサン
プルバッフアーに溶解した。また各サンプルについて1.
3mlの大腸菌を10000rpm,1min遠心し沈殿をPBS(-),260μ
lに懸濁し、この懸濁液を-80℃、10分で凍結融解、超音
波処理(Elma トランソニック超音波洗浄機460/H)を行
った後、15000rpm 5分遠心し、可溶性のタンパク質と封
入体を含む不溶性の画分に分けた。これらは50μlの大
腸菌培養液に相当する量をSDS-PAGEにかけ、クマシーブ
リリアントブルーにより染色を行った。100 μl of the solution was centrifuged, and the precipitate was dissolved in a sample buffer. In addition, 1.
3 ml of E. coli was centrifuged at 10,000 rpm for 1 min, and the precipitate was washed with PBS (-), 260μ.
This suspension was freeze-thawed at -80 ° C for 10 minutes, subjected to sonication (Elma Transonic ultrasonic washer 460 / H), and centrifuged at 15000 rpm for 5 minutes to remove soluble proteins. It was separated into insoluble fractions containing inclusion bodies. These were subjected to SDS-PAGE in an amount corresponding to 50 μl of the E. coli culture, and stained with Coomassie brilliant blue.
【0047】5. 各種のGFPとBFPを導入した大腸菌の明
るさの比較 pQE30(空ベクター)または、pQEGFP(101)、pQEGFP(10
5)とpQEBFP(201)、pQEBFP(202)、pQEBFP(205)をJM109に
トランスフォーメーションしカルベニシリンを含むLB寒
天培地にストリークした。24時間、37℃でインキュベー
ト後、プレートの上ぶたをとり、プレートを裏返し、UV
を照射し(フナコシ UV TRANSILLUMINATOR FTI-201 UV
365nm)写真撮影を行った。 5. Escherichia coli transfected with various GFPs and BFPs
Comparison of Rusa pQE30 (empty vector) or pQEGFP (101), pQEGFP (10
5) and pQEBFP (201), pQEBFP (202) and pQEBFP (205) were transformed into JM109 and streaked on LB agar medium containing carbenicillin. After incubation at 37 ° C for 24 hours, remove the lid of the plate, turn the plate over, and
(Funakoshi UV TRANSILLUMINATOR FTI-201 UV
365 nm) Photographs were taken.
【0048】6. リン酸カルシウム法によるGFP, BFP M
utant cDNAのCHO細胞へのトランスフェクションと蛍光
測定 A.トランスフェクション 部位特異的変異導入法で作成した変異GFP,BFPの遺伝子
を含むpQEベクターより、HindIII切断によってコード領
域を切り出してphGFP(101)-C1ベクターの相当部分と交
換することによって、phGFP(103-105)-C1, phBFP(202-2
05)-C1を作成した。 6. GFP, BFP M by calcium phosphate method
Transfection of utant cDNA into CHO cells and fluorescence
Measurement A. From the pQE vector containing the gene for the mutated GFP and BFP created by the transfection site-directed mutagenesis method, the coding region was cut out by HindIII digestion and replaced with a corresponding part of the phGFP (101) -C1 vector. phGFP (103-105) -C1, phBFP (202-2
05) -C1 was created.
【0049】CHO-K1細胞はF12+10%FBS培地
で、特に示す場合を除き5%CO2、37℃で培養した。
6cmディッシュに1x105の細胞をまき、2枚一組で翌
日リン酸カルシウム法によりトランスフェクションを行
った(C. Chen and H. OkayamaMol. Cell. Biol. 7: 27
45-2752 (1987))。トランスフェクション終了後1枚は
37℃、もう1枚は30℃で24時間培養した。トラン
スフェクションしたCHO細胞を1×PBS(-)で3回洗い、1%
Triton X-100を含む10mMTris-HCl (pH7.4)1mlで細胞を
溶解しエッペンドルフチューブに回収した。3000rpm で
5分遠心した上清0.5mlを同じbufferで4倍に希釈し、蛍
光測定を行った。なお、blankとして空ベクターpUcD2 S
RαMCSをトランスフェクションしたものを用いた。蛍光
測定には日立F-2000形分光蛍光光度計を用いた。GFP測
定時には、励起波長460nmで460nmから600nmまで蛍光を
スキャンし、蛍光波長510nm付近での極大値を、BFP測定
時には励起波長360nmで360nmから500nmまで蛍光をスキ
ャンし、蛍光波長445nm付近での極大値を測定した。CHO-K1 cells were cultured in an F12 + 10% FBS medium at 37 ° C. and 5% CO 2 , unless otherwise indicated.
1 × 10 5 cells were seeded on a 6 cm dish and transfected in pairs by the calcium phosphate method the following day (C. Chen and H. Okayama Mol. Cell. Biol. 7:27).
45-2752 (1987)). After the transfection, one was cultured at 37 ° C. and the other was cultured at 30 ° C. for 24 hours. Wash the transfected CHO cells 3 times with 1 × PBS (-), 1%
The cells were lysed with 1 ml of 10 mM Tris-HCl (pH 7.4) containing Triton X-100, and collected in an Eppendorf tube. At 3000rpm
0.5 ml of the supernatant after centrifugation for 5 minutes was diluted 4-fold with the same buffer, and the fluorescence was measured. The blank vector pUcD2S is used as blank.
RαMCS transfected was used. Hitachi F-2000 type spectrofluorometer was used for fluorescence measurement. When measuring GFP, scan the fluorescence from 460 nm to 600 nm at an excitation wavelength of 460 nm, and scan the maximum value around 510 nm for BFP measurement, scan the fluorescence from 360 nm to 500 nm at an excitation wavelength of 360 nm when measuring BFP, and scan the maximum around 445 nm. The value was measured.
【0050】7. ウエスタンブロッティング CHO細胞にpUcD2SRαMCS(空ベクター)(T. Tsukamoto et
al. Nature Genet.11:395-401 (1995))、phGFP(101)-C
1、phGFP(105)-C1、phBFP(201)-C1、phBFP(205)-C1をト
ランスフェクションし、30℃、37℃で培養したものにつ
いて、先の蛍光測定に用いた希釈前サンプルを8μlを用
い12%ゲルでSDS-PAGEを行った。ホライズブロット(AT
TO社)を用い1平方センチメートルあたり2mA、90minの
条件でニトロセルロースメンブレン(Millipore社、HAHY
394F0)にトランスフアーした。メンブレンを取り出し、
1×PBSで洗った後、メンブレンを1%スキムミルク/PBS
に浸して、室温で30分間振盪した。メンブレンを1×PBS
洗った後、2000倍希釈した抗GFP抗体(Clontech社)を
含んだ0.1%スキムミルク/PBSに浸して終夜4℃で振盪し
た。メンブレンを1×PBSで5分洗った後、TPBS(0.05%Tr
iton X-100/PBS)で15分、3回洗った。メンブレンを1000
倍希釈したHRP標識抗ウサギIgG抗体(Amersham社) を
含んだ0.1%スキムミルク/PBSに浸して1時間4℃で振盪
した。メンブレンを1×PBSで5分洗った後、TPBS(0.05%
Triton X-100/PBS)で15分、3回洗った。メンブレンを化
学発光試薬液(Amersham社 ECL)で1分間反応させた後、2
分間X線フイルムに露光させた。[0050] 7. Western blotting CHO cells into pUcD2SRαMCS (empty vector) (T. Tsukamoto et
al. Nature Genet. 11: 395-401 (1995)), phGFP (101) -C.
1, phGFP (105) -C1, phBFP (201) -C1, phBFP (205) -C1, transfected and cultured at 30 ° C., 37 ° C., 8 μl of the undiluted sample used for the previous fluorescence measurement Was used to perform SDS-PAGE on a 12% gel. Horizon blot (AT
Nitrocellulose membrane (Millipore, HAHY) at 2 mA per square centimeter for 90 min using TO
394F0). Take out the membrane,
After washing with 1 × PBS, remove the membrane with 1% skim milk / PBS
And shaken at room temperature for 30 minutes. 1 × PBS membrane
After washing, the plate was immersed in 0.1% skim milk / PBS containing anti-GFP antibody (Clontech) diluted 2000-fold and shaken at 4 ° C. overnight. After washing the membrane with 1 × PBS for 5 minutes, TPBS (0.05% Tr
It was washed three times with iton X-100 / PBS) for 15 minutes. 1000 membranes
The plate was immersed in 0.1% skim milk / PBS containing double-diluted HRP-labeled anti-rabbit IgG antibody (Amersham) and shaken at 4 ° C. for 1 hour. After washing the membrane with 1 × PBS for 5 minutes, TPBS (0.05%
(Triton X-100 / PBS) for 15 minutes three times. After reacting the membrane with a chemiluminescent reagent solution (Amersham ECL) for 1 minute,
Exposure to X-ray film for minutes.
【0051】(II) 新規変異体GFP、BFPのア
ミノ酸配列1. Mutant BFPのシークエンス決定 得られた変異体の10個のうちの1つ(Mutant No.10)
については、発色団のすぐN末側にある64番目のフェニ
ルアラニンがロイシンに変異したものであった。[0051] (II) A new mutant GFP, the amino acid sequence of BFP 1. Mutant BFP sequence determination One of ten mutants obtained (Mutant No. 10)
For, the phenylalanine at position 64 immediately N-terminal to the chromophore was mutated to leucine.
【0052】なおこの変異体クローンは、C末にもう一
つの変異(L236R)が導入されていた(表1)。In this mutant clone, another mutation (L236R) was introduced at the C-terminus (Table 1).
【0053】 表1 ===================================================== Mutant No. Mutation 1 L(CTT)1H(CAT) 2 D(GAT)7Y(TAT) 3 I(ATC)6T(ACC) 4 マルチクローニングサイトがBamHIから14bp欠失 5 マルチクローニングサイトがBamHIから24bp欠失 6 I(ATC)6N(AAC) 7 L(CTT)4P(CCT), I(ATC)128G(GTC), D(GAC)197A(GCC), S(AGC)202C(TGC) 8 L(CTT)4R(CGT) 9 M(ATG)1T(ACG), Y(TAC)39N(AAC), K(AAG)52E(GAG) 10 K(AAG)41K(AAA)silent, F(TTC)64L(CTC), L(CTG)236R(CGG) ===================================================== また、この変異体については、比較のためにpQEBFP(20
1)と同じHindIIIサイトにBFPcDNAをサブクローニング
し、pQEBFP(202)を作成した。Table 1 ============================================= ======== Mutant No. Mutation 1 L (CTT) 1H (CAT) 2 D (GAT) 7Y (TAT) 3 I (ATC) 6T (ACC) 4 Multicloning site deleted 14 bp from BamHI 5 Multiple cloning site deleted 24 bp from BamHI 6 I (ATC) 6 N (AAC) 7 L (CTT) 4 P (CCT), I (ATC) 128 G (GTC), D (GAC) 197 A (GCC), S (AGC) 202C (TGC) 8 L (CTT) 4R (CGT) 9 M (ATG) 1T (ACG), Y (TAC) 39N (AAC), K (AAG) 52E (GAG) 10 K (AAG) 41K (AAA) silent , F (TTC) 64L (CTC), L (CTG) 236R (CGG) ================================= ===================== For this mutant, pQEBFP (20
BFP cDNA was subcloned into the same HindIII site as in 1) to create pQEBFP (202).
【0054】2. SDS-PAGEによる大腸菌でのMutant BFP
の発現量の比較 pQEBFP(201)、pQEBFP(202)を保持した大腸菌の培養液に
IPTGを加えBFPタンパク質を発現させた。大腸菌に
紫外線を照射したところpQEBFP(202)を保持した大腸菌
の方が明らかに蛍光が強かった。この大腸菌のタンパク
質をSDS-PAGEにより解析したところ、両プラスミドを持
つ大腸菌では31kDaのタンパク質の産生がほぼ同程度認
められた(図1、レーン4、7)。 2. Mutant BFP in E. coli by SDS-PAGE
Comparison of expression levels of IPT was added to a culture solution of Escherichia coli holding pQEBFP (201) and pQEBFP (202) to express BFP protein. When Escherichia coli was irradiated with ultraviolet light, the fluorescence of Escherichia coli retaining pQEBFP (202) was clearly stronger. When the Escherichia coli protein was analyzed by SDS-PAGE, production of a 31-kDa protein was found to be almost the same in Escherichia coli having both plasmids (FIG. 1, lanes 4, 7).
【0055】また、これらのBFPが可溶性かどうか調べ
たところ、蛍光の低いBFP(201)はほとんど不溶性である
(図1、レーン5、6)のに対し、BFP(202)では可溶性部
分に多く回収された(図1、レーン8、9)。Further, it was examined whether or not these BFPs were soluble. As a result, BFP (201) having low fluorescence was almost insoluble (FIG. 1, lanes 5 and 6), whereas BFP (202) showed a large amount in the soluble portion. It was recovered (FIG. 1, lanes 8, 9).
【0056】3. 各種のGFPとBFPを導入した大腸菌の蛍
光の比較 F64Lに加えて、V163A,S175Gという変異をさらに導入し
たGFP及びBFPを作成した(表4参照)。 3. Fluorescence of Escherichia coli transfected with various GFPs and BFPs
GFP and BFP in which mutations V163A and S175G were further introduced in addition to light comparison F64L were prepared (see Table 4).
【0057】大腸菌で蛍光の強さを比較するために、pQ
E30の空ベクターまたは、GFP101、105とBFP201、202、2
05のcDNAをサブクローニングしたpQE30を有する大腸菌
のストリークを行った。空ベクターを導入した大腸菌は
光っていない。改良前のBFP201をサブクローニングした
大腸菌はUVを当ててもほとんど光らなかったのに対し、
202をサブクローニングしたものについては青色に明る
く光っていた。そして205については202よりもさらに明
るく光っているのが確認できた。To compare the intensity of fluorescence in E. coli, pQ
E30 empty vector or GFP101,105 and BFP201,202,2
Streak of Escherichia coli having pQE30 obtained by subcloning the cDNA of 05 was performed. E. coli transfected with the empty vector is not shining. Escherichia coli subcloned BFP201 before improvement hardly glowed even when exposed to UV,
The subcloned version of 202 glowed brightly in blue. And it was confirmed that 205 shines brighter than 202.
【0058】GFPについては、肉眼的に緑色の蛍光が観
察され、101と105で明るさに顕著な差が見られた(図
2)。Regarding GFP, green fluorescence was visually observed, and a remarkable difference in brightness was observed between 101 and 105 (FIG. 2).
【0059】4. GFP, BFP Mutant cDNAのCHO細胞への
トランスフェクションと蛍光測定 大腸菌でよく光るGFP,BFPが得られたため動物細胞(C
HO)でも比較を行った。37℃培養下と30℃培養下にお
ける調製済み細胞抽出液の蛍光測定の結果をまとめた
(表5)。 4. Transfer of GFP, BFP Mutant cDNA to CHO cells
Transfection and fluorescence measurement Because GFP and BFP that shine well in E. coli were obtained, animal cells (C
HO). The results of fluorescence measurement of the prepared cell extract under 37 ° C culture and 30 ° C culture are summarized (Table 5).
【0060】 ========================================== GFP又はBFP 37℃ 30℃ 101 30.8 214.6 103 532.1 765.4 104 659.0 697.9 105 2991.1 868.7 201 14.3 166.7 202 304.6 188.6 203 331.3 210.9 204 330.9 265.9 205 901.5 287.7 =================================================================================== GFP or BFP 37 ° C. 30 ° C 101 30.8 214.6 103 532.1 765.4 104 659.0 697.9 105 2991.1 868.7 201 14.3 166.7 202 304.6 188.6 203 331.3 210.9 204 330.9 265.9 205 901.5 287.7 ====================== ====================
【0061】表に示した値は得られた蛍光値からblank
として用いた空ベクターの値を引いたものである。blan
kはGFP37℃測定時は8.9、30℃測定時で7.14、BFP37℃測
定時は64.3、30℃測定時で50であった。The values shown in the table are blank values based on the obtained fluorescence values.
The value of the empty vector used as the value is subtracted. blan
k was 8.9 at GFP 37 ° C. measurement, 7.14 at 30 ° C. measurement, 64.3 at BFP 37 ° C. measurement, and 50 at 30 ° C. measurement.
【0062】表6は37℃培養における改良前のGFP又はBF
Pの蛍光強度を100とし相対値で示し、また37℃と30℃で
の蛍光の比による比較を行ったものである。表6より、M
utagenic PCR で見出した変異を持つBFP(202)は37
℃で21倍蛍光が強かった。またBFP(202)は2つの変異
(F64LとL236R)を有しているが、F64Lの
みを有するBFP(203)も202と同じ程度の蛍光であり、こ
の変異が蛍光が強くなった原因であると考えられる。F
64Lを有するGFP(103)では17倍蛍光が強くなってい
た。Table 6 shows GFP or BF before improvement in 37 ° C. culture.
The fluorescence intensity of P is shown as a relative value assuming that it is 100, and a comparison was made based on the ratio of fluorescence at 37 ° C and 30 ° C. From Table 6, M
BFP (202) with the mutation found by utagenic PCR was 37
The fluorescence was 21 times stronger at ℃. BFP (202) has two mutations (F64L and L236R), but BFP (203) having only F64L has the same level of fluorescence as 202, and this mutation is the cause of the increased fluorescence. it is conceivable that. F
GFP (103) having 64 L had 17 times stronger fluorescence.
【0063】一方V163A、及びS175Gの変異を持つBFP(20
4), GFP(104)はそれぞれ23倍、21倍明るくなってい
た。これらの変異とF64Lとを組み合わせたGFP(105)に
ついては97倍、BFP(205)については63倍明るくなった。
さらに、37℃と30℃での蛍光強度の比をとり比較したと
ころ、改良前の101,201のいずれもが37℃では30℃より
暗かった。F64L単独、V163A、S175Gの組み合わせを持つ
ものでは、両温度での蛍光強度の比が上昇したが、変異
を組み合わせたGFP(105)、BFP(205)では37℃の方が
3倍以上明るいことがわかった(表6)。On the other hand, BFP (20%) having mutations of V163A and S175G
4) and GFP (104) were 23 times and 21 times brighter, respectively. GFP (105), which combines these mutations with F64L, was 97 times brighter and BFP (205) 63 times brighter.
Furthermore, when the ratios of the fluorescence intensities at 37 ° C. and 30 ° C. were compared, both 101 and 201 before improvement were darker at 37 ° C. than 30 ° C. In the case of F64L alone, the combination of V163A and S175G, the ratio of the fluorescence intensities at both temperatures increased, but GFP (105) and BFP (205) combined with mutations were more than 3 times brighter at 37 ° C. (Table 6).
【0064】(表6) ========================================== GFP又はBFP 37℃ 37℃/30℃ 101 100 0.14 103 1728 0.70 104 2140 0.94 105 9711 3.44 201 100 0.09 202 2130 1.62 203 2317 1.57 204 2314 1.24 205 6304 3.13 =========================================(Table 6) =========================================== GFP Or BFP 37 ° C 37 ° C / 30 ° C 101 100 0.14 103 1728 0.70 104 2140 0.94 105 9711 3.44 201 100 0.09 202 2130 1.62 203 2317 1.57 204 2314 1.24 205 6304 3.13 =============== ===========================
【0065】5. ウエスタンブロッティングによる動物
細胞での発現量の検討 CHO細胞にpUcD2SRαMCS(空ベクター)、phGFP(101)-C1、
phGFP(105)-C1、phBFP(201)-C1、phBFP(205)-C1をトラ
ンスフェクションし、37℃と30℃で培養したものについ
て抗GFP抗体を用い、発現したGFPあるいはBFPのタンパ
ク量を検討した。 空ベクター(図3、レーン1と6)の
トランスフェクションでは認められない約30kDのバンド
が検出された。 5. Animals by Western Blotting
Examination of expression level in cells pUcD2SRαMCS (empty vector), phGFP (101) -C1,
phGFP (105) -C1, phBFP (201) -C1, and phBFP (205) -C1 were transfected and cultured at 37 ° C and 30 ° C using an anti-GFP antibody, and the amount of expressed GFP or BFP protein was determined. investigated. A transfection of the empty vector (FIG. 3, lanes 1 and 6) detected a band of about 30 kD, which was not observed.
【0066】30℃での培養においては、変異導入前と導
入後において発現したGFPとBFPタンパク質の存在量には
顕著な差は認められなかった(レーン7−10)。一方、3
7℃での培養においては、変異体(レーン3と5)が、明
らかにGFP及び、BFPタンパク質が多く発現していること
がわかった(図3、レーン2−5)。In the culture at 30 ° C., no remarkable difference was observed between the amounts of GFP and BFP protein expressed before and after the introduction of the mutation (lanes 7-10). Meanwhile, 3
In the culture at 7 ° C., it was found that the mutants (lanes 3 and 5) clearly expressed a large amount of GFP and BFP proteins (FIG. 3, lanes 2-5).
【0067】[0067]
【配列表】SEQUENCE LISTING <110> CHUGAI PHARMACEUTICAL CO.,LTD. <120> Green Fluorescent Proteins and Blue Fluoresc
ent Proteins <130> P98XX-021Y <160> 13 <210> 1 <211> 238 <212> PRT <213> Aequorea victoria <400> 1 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser His Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 66 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140Phe Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 238 <210> 2 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 2 tcgtgaccac cttctcccac ggcgtgca 28 <210> 3 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 3 tgcacgccgt gggagaaggt ggtcacga 28 <210> 4 <211> 29 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 4 gctggagtac aacttcaaca gccacaacg 29 <210> 5 <211> 29 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 5 cgttgtggct gttgaagttg tactccagc 29 <210> 6 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 6 cctcgtgacc accctctccc acggcgtg 28 <210> 7 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 7 cacgccgtgg gagagggtgg tcacgagg 28 <210> 8 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 8 cctcgtgacc accctcacct acggcgtg 28 <210> 9 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 9 cacgccgtag gtgagggtgg tcacgagg 28 <210> 10 <211> 29 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 10 gaacggcatc aaggccaact tcaagatcc 29 <210> 11 <211> 29 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 11 ggatcttgaa gttggccttg atgccgttc 29 <210> 12 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 12 catcgaggac ggcggcgtgc agctcgcc 28 <210> 13 <211> 28 <212> DNA <213> Artificial <220> <223> PCR Probe <400> 13 ggcgagctgc acgccgccgt cctcgatg 28[Sequence list] SEQUENCE LISTING <110> CHUGAI PHARMACEUTICAL CO., LTD. <120> Green Fluorescent Proteins and Blue Fluoresc
ent Proteins <130> P98XX-021Y <160> 13 <210> 1 <211> 238 <212> PRT <213> Aequorea victoria <400> 1 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser His Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 66 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Phe Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 230 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 238 <210> 2 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 2 tcgtgaccac cttctcccac ggcgtgca 28 <210> 3 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 3 tgcacgccgt gggagaaggt ggtcacga 28 <210> 4 <211> 29 <212> DNA <213> Artificial <220><223> PCR Probe <400> 4 gctggagtac aacttcaaca gccacaacg 29 <210> 5 <211> 29 <212> DNA <213> Artificial <220><223> PCR Probe <400> 5 cgttgtggct gttgaagttg tactccagc 29 <210> 6 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 6 cctcgtgacc accctctccc acggcgtg 28 <210> 7 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 7 cacgccgtgg gagagggtgg tcacgagg 28 <210 > 8 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 8 cctcgtgacc accctcacct acggcgtg 28 <210> 9 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 9 cacgccgtag gtgagggtgg tcacgagg 28 <210> 10 <211> 29 <212> DNA <213> Artificial <220><223> PCR Probe <400 > 10 gaacggcatc aaggccaact tcaagatcc 29 <210> 11 <211> 29 <212> DNA <213> Artificial <220><223> PCR Probe <400> 11 ggatcttgaa gttggccttg atgccgttc 29 <210> 12 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 12 catcgaggac ggcggcgtgc agctcgcc 28 <210> 13 <211> 28 <212> DNA <213> Artificial <220><223> PCR Probe <400> 13 ggcgagctgc acgccgccgt cctcgatg 28
【0068】[0068]
【発明の効果】本発明に係る改良された変異体BFP及
びGFPについての効果を以下にまとめた。The effects of the improved mutant BFP and GFP according to the present invention are summarized below.
【0069】(1) Mutagenic PCRにより得られた変異型
BFP(202)は、大腸菌でも動物細胞でも変異導入される
前のものに比べて増強された蛍光を有する。当該変異B
PFのクローンは、64番目のフェニルアラニンがロイシ
ンに変異し(F64L)、さらにC末に、236番目のロイシン
がアルギニンに変異している(L236R)。(1) Mutant obtained by Mutagenic PCR
BFP (202) has enhanced fluorescence in both E. coli and animal cells as compared to before mutagenesis. The mutation B
In the PF clone, the phenylalanine at position 64 is mutated to leucine (F64L), and the leucine at position 236 is mutated to arginine at the C-terminus (L236R).
【0070】上記64番目のみの変異を有する変異型BFP
(203)も、動物細胞では同様の蛍光の増強が認められた
ことから、この変異型BFP(202)の責任変異はF64Lであ
る。Mutant BFP having only the 64th mutation
(203) also showed similar enhancement of fluorescence in animal cells, so the responsible mutation of this mutant BFP (202) is F64L.
【0071】係る変異は、GFPにおいて報告されている
蛍光の増強と同様のメカニズムによるものと推定される
(T.-T. Yang et al. Nucleic Acids Res. 24:4592-459
3 (1996))。Such a mutation is presumed to be due to a mechanism similar to the enhancement of fluorescence reported in GFP (T.-T. Yang et al. Nucleic Acids Res. 24: 4592-459).
3 (1996)).
【0072】(2) タンパク質の発現量、及び可溶性タ
ンパク質の産生を検討し、(i)大腸菌でのMutantBFPの発
現量の比較よりタンパク質の存在量は同じであるが(SDS
-PAGEによる)、変異型BPF(201)はほとんど不溶性である
のに対し変異型BPF(202)では可溶性のものが増し、(ii)
また、大腸菌での明るさにも大きく差がみられた。この
結果より、上記蛍光増強のメカニズムとして、変異型BP
F(201)では発色団の形成等の高次構造を正しくとれない
のに対し、変異型BPF(202)では変異が入ったことにより
タンパクがより正しい高次構造をとりやすくなったこと
によると考えられる。(2) The expression level of the protein and the production of the soluble protein were examined. (I) Comparison of the expression level of MutantBFP in E. coli showed that the protein abundance was the same (SDS
(By -PAGE), mutant BPF (201) is almost insoluble, whereas mutant BPF (202) is more soluble, (ii)
There was also a large difference in the brightness of E. coli. From these results, it was found that the mutant BP
According to the fact that F (201) could not correctly take higher-order structures such as chromophore formation, whereas the mutant BPF (202) had a mutation that made it easier for proteins to adopt more correct higher-order structures. Conceivable.
【0073】(3) 一方、動物細胞におけるウエスタン
ブロッティングの結果、動物細胞では、GFPあるいはBFP
のタンパク質の量そのものが増加している。すなわち、
動物細胞においてはタンパクが安定した高次構造をとれ
る、又はタンパク構造が安定しているためタンパク分解
が改良前に比べて遅くなっていると考えられる。(3) On the other hand, as a result of Western blotting on animal cells, GFP or BFP
The amount of protein itself is increasing. That is,
In animal cells, it is considered that the protein can take a stable higher-order structure, or the protein structure is stable, so that the protein degradation is slower than before improvement.
【0074】(4) 上記の特性を有するF64L変異と、他
の変異であるV163AおよびS175Gを導入することにより、
上記特性とともにさらに37℃での発現が著しく改善さ
れた特性を有するGFPおよびBFPタンパク質が得られる。(4) By introducing the F64L mutation having the above properties and the other mutations V163A and S175G,
GFP and BFP proteins having the above-mentioned properties and further improved properties at 37 ° C. are obtained.
【0075】従って、係る変異を導入した改良型のGFP
及びBFPは、37℃においてもよく光るという特性を有し
たものであり、37℃で培養が行われる動物細胞における
観察を可能とするものであり、これらの改良型GFPとBFP
は、細胞生物学をはじめ、多くの研究に応用可能とする
ものである。以上の本発明に係る効果を図4に示した。Therefore, an improved GFP into which such a mutation has been introduced
And BFP have the property of shining well at 37 ° C., and enable observation in animal cells cultured at 37 ° C. These improved GFP and BFP
Can be applied to many researches, including cell biology. The effect according to the present invention described above is shown in FIG.
【図1】図1は各プラスミドを保持した大腸菌をIPT
Gで 誘導し、タンパク質のSDS−PAGEを行っ
た。レーン1,4,7は大腸菌培養液50μl相当、レー
ン2,3,5,6,8,9は50μl相当を泳動した結
果を示す電気泳動写真である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows that E. coli carrying each plasmid was subjected to IPT.
G, and SDS-PAGE of the protein was performed. Lanes 1, 4, and 7 are electrophoresis photographs showing the results of electrophoresis of 50 μl of the E. coli culture solution, and lanes 2, 3, 5, 6, 8, and 9 are the results of electrophoresis of 50 μl.
【図2】図2は、各プラスミドを保持した大腸菌をプレ
ートにストリークし、37℃で一晩培養したのち、長波
長紫外線を照射して発する蛍光を示す写真である。FIG. 2 is a photograph showing fluorescence generated by streaking E. coli carrying each plasmid on a plate, culturing at 37 ° C. overnight, and irradiating with long-wavelength ultraviolet light.
【図3】図3は、CHO細胞に、各プラスミドをトラン
スフェクション後、37℃あるいは30℃で培養したも
のをSDS−PAGEを行い、ニトロセルロースメンブ
レンにトランスファーし、抗GFP抗体でウエスタンブ
ロッティングを行った結果を示す電気泳動写真である。
ここで矢印はGFPまたはBFPを示す。FIG. 3 shows that after transfection of each plasmid into CHO cells, those cultured at 37 ° C. or 30 ° C. are subjected to SDS-PAGE, transferred to a nitrocellulose membrane, and subjected to Western blotting with an anti-GFP antibody. 4 is an electrophoretic photograph showing the results.
Here, the arrow indicates GFP or BFP.
【図4】本発明に係る改良型BFP及びGFPの効果を
示す蛍光写真である。FIG. 4 is a fluorescence photograph showing the effects of the improved BFP and GFP according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91) ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI (C12N 1/21 C12R 1:19) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:91)
Claims (9)
列に、少なくとも、Phe64Leu、Val163Ala、及び Ser175
Glyなる変異を有するGFPタンパク質。[Claim 1] The amino acid sequence of SEQ ID NO: 1 contains at least Phe64Leu, Val163Ala, and Ser175
A GFP protein having a mutation called Gly.
列に、Phe64Leu、Val163Ala、Ser175Glyの3つの変異を
有するGFPタンパク質。2. A GFP protein having three mutations of Phe64Leu, Val163Ala, and Ser175Gly in the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
列に、少なくとも、Y66H、Y145F、 及びPhe64Leuなる変
異を有するBFPタンパク質。3. A BFP protein having at least mutations of Y66H, Y145F and Phe64Leu in the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
列に、少なくとも、Y66H、Y145F、Phe64Leu、及びLeu23
6Argなる変異を有するBFPタンパク質。4. The amino acid sequence represented by SEQ ID NO: 1 in the sequence listing contains at least Y66H, Y145F, Phe64Leu and Leu23.
BFP protein having a mutation of 6Arg.
列に、Y66H、Y145F、Phe64Leu、Leu236Argなる4つの変
異を有するBFPタンパク質。5. A BFP protein having four mutations of Y66H, Y145F, Phe64Leu and Leu236Arg in the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
列に、少なくとも、Y66H、Y145F、Phe64Leu、Val163Al
a、Ser175Gly、及びLeu236Argなる変異を有するBFP
タンパク質。6. The amino acid sequence represented by SEQ ID NO: 1 in the sequence listing contains at least Y66H, Y145F, Phe64Leu, Val163Al
BFP having mutations a, Ser175Gly and Leu236Arg
protein.
列に、Y66H、Y145F、Phe64Leu、Val163Ala、Ser175Gl
y、Leu236Argなる6つの変異を有するBFPタンパク
質。7. An amino acid sequence represented by SEQ ID NO: 1 in the sequence listing, wherein Y66H, Y145F, Phe64Leu, Val163Ala, Ser175Gl
y, BFP protein having six mutations, Leu236Arg.
GFPタンパク質をコードする遺伝子。A gene encoding the GFP protein according to any one of claims 1 and 2.
FPタンパク質をコードする遺伝子。9. B according to any one of claims 3 to 7,
Gene encoding FP protein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10375655A JPH11266883A (en) | 1998-01-23 | 1998-12-16 | Fluorescent protein gfp and bfp |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-26418 | 1998-01-23 | ||
JP2641898 | 1998-01-23 | ||
JP10375655A JPH11266883A (en) | 1998-01-23 | 1998-12-16 | Fluorescent protein gfp and bfp |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11266883A true JPH11266883A (en) | 1999-10-05 |
Family
ID=26364201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10375655A Pending JPH11266883A (en) | 1998-01-23 | 1998-12-16 | Fluorescent protein gfp and bfp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11266883A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029408A1 (en) | 2013-08-27 | 2015-03-05 | 独立行政法人理化学研究所 | Drive control method for objective lens and fluorescence microscope system |
WO2016204123A1 (en) * | 2015-06-19 | 2016-12-22 | Necソリューションイノベータ株式会社 | Novel protein, novel gene, expression vector, transformant, method for producing transformant, and method for screening for novel fluorescent protein |
-
1998
- 1998-12-16 JP JP10375655A patent/JPH11266883A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029408A1 (en) | 2013-08-27 | 2015-03-05 | 独立行政法人理化学研究所 | Drive control method for objective lens and fluorescence microscope system |
US9921398B2 (en) | 2013-08-27 | 2018-03-20 | Riken | Drive control method for objective lens and fluorescence microscope system |
WO2016204123A1 (en) * | 2015-06-19 | 2016-12-22 | Necソリューションイノベータ株式会社 | Novel protein, novel gene, expression vector, transformant, method for producing transformant, and method for screening for novel fluorescent protein |
JPWO2016204123A1 (en) * | 2015-06-19 | 2018-03-08 | Necソリューションイノベータ株式会社 | Novel protein, novel gene, expression vector, transformant, method for producing transformant, and method for screening novel fluorescent protein |
US10900045B2 (en) | 2015-06-19 | 2021-01-26 | Nec Solution Innovators. Ltd. | Protein, novel gene, expression vector, transformant, method for producing transformant, and method for screening for novel fluorescent protein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU783767B2 (en) | Anthozoa derived chromophores/fluorophores and methods for using the same | |
US8138320B2 (en) | Fluorescent proteins and methods for using same | |
US7297782B2 (en) | Chromophores/fluorophores and methods for using the same | |
US20130344591A1 (en) | Modified Fluorescent Proteins and Methods for Using Same | |
JP4480674B2 (en) | Fluorescent protein derived from Copepoda species and method of using the protein | |
AU2003208520B2 (en) | Fluorescent protein from aequorea coerulscens and uses therof | |
ES2254043T3 (en) | FLUORESCENT PROTEINS AND CHROMOPROTEINS OF HYDROZO SPECIES THAT ARE NOT AEQUOREA AND METHODS FOR USE. | |
US7972834B2 (en) | Modified fluorescent proteins and methods for using same | |
US6194548B1 (en) | Green fluorescent proteins and blue fluorescent proteins | |
US8206978B2 (en) | Green fluorescent protein optimized for expression with self-cleaving polypeptides | |
JPH11266883A (en) | Fluorescent protein gfp and bfp | |
EP1434483B1 (en) | Nucleic acids encoding linked chromo/fluorescent domains and methods for using the same | |
JPH10234382A (en) | Fluorescent protein | |
WO2003054158A2 (en) | Rapidly maturing fluorescent proteins and methods for using the same | |
WO2002059309A2 (en) | Anthozoa derived chromoproteins, fluorescent mutants thereof and methods for using the same | |
AU2002361624A1 (en) | Novel chromophores/fluorophores and methods for using the same | |
AU2006200881A1 (en) | Anthozoa derived chromophores/fluorophores and methods for using the same | |
NZ517548A (en) | Non-bioluminescent Anthozoa derived chromophores / fluorophores and methods for using the same |