JPH11264796A - Dust quantity measuring device and measuring method - Google Patents
Dust quantity measuring device and measuring methodInfo
- Publication number
- JPH11264796A JPH11264796A JP10068852A JP6885298A JPH11264796A JP H11264796 A JPH11264796 A JP H11264796A JP 10068852 A JP10068852 A JP 10068852A JP 6885298 A JP6885298 A JP 6885298A JP H11264796 A JPH11264796 A JP H11264796A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- amount
- laser
- logarithmic conversion
- linear regression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000428 dust Substances 0.000 title claims abstract description 276
- 238000000034 method Methods 0.000 title claims description 19
- 238000005259 measurement Methods 0.000 claims abstract description 51
- 238000006243 chemical reaction Methods 0.000 claims abstract description 47
- 238000002834 transmittance Methods 0.000 claims abstract description 47
- 238000012417 linear regression Methods 0.000 claims abstract description 39
- 238000000691 measurement method Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 28
- 238000012545 processing Methods 0.000 abstract description 12
- 230000000704 physical effect Effects 0.000 abstract description 8
- 238000002844 melting Methods 0.000 description 16
- 230000008018 melting Effects 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 11
- 238000005070 sampling Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000013505 freshwater Substances 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザ光の減衰量
により粉塵量を測定する装置及び方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring a dust amount based on an attenuation of a laser beam.
【0002】[0002]
【従来の技術】レーザ光の減衰量を利用した粉塵濃度測
定器は知られているが、一般には投光器と受光器間隔、
及びこの間の粉塵含有気体(以降、粉塵ガスと略す)幅
も一定となるように、粉塵ガスを例えばダクトに導きこ
の壁面にレーザの投光器と受光器を配設したり、また投
光器と受光器を所定の寸法間隔に固定して一体化したも
のを粉塵ガス中に配置し、所定の物性の粉塵に対する受
光レベルと粉塵濃度の相関関係を決めておき、この条件
の下で測定するものである(公知例1と称す)。また、
粉塵ガス幅が必ずしも一定とならない長距離空間の粉塵
を測定する粉塵計が、実開昭60−76255に開示さ
れている(公知例2)。これは、レーザ光線を投射する
投光器と、投光器と相対して設けられ前記レーザ光線を
受光する受光器とを有して成り、前記レーザ光線の減衰
量より粉塵濃度を計測するものであるが、粉塵濃度と受
光器の出力の関係を予め指数関係となるように決めてお
き、これをもとに投受光器間空間の平均的粉塵濃度とし
て測定するものである。2. Description of the Related Art Although a dust concentration measuring device using an attenuation of a laser beam is known, generally, a distance between a light emitting device and a light receiving device,
Dust gas is led to, for example, a duct so that the width of the dust-containing gas (hereinafter, abbreviated as dust gas) during this period is also constant, and a laser projector and a light receiver are arranged on this wall surface. An integrated product fixed at a predetermined dimensional interval is disposed in a dust gas, a correlation between a light receiving level and a dust concentration for dust having predetermined physical properties is determined, and measurement is performed under these conditions ( Known example 1). Also,
A dust meter for measuring dust in a long-distance space where the dust gas width is not always constant is disclosed in Japanese Utility Model Laid-Open Publication No. 60-76255 (known example 2). It comprises a projector for projecting a laser beam, and a receiver for receiving the laser beam, which is provided opposite to the projector, and measures the dust concentration from the attenuation of the laser beam. The relationship between the dust concentration and the output of the light receiver is determined in advance so as to have an exponential relationship, and based on this is measured as the average dust concentration in the space between the light emitter and the light receiver.
【0003】[0003]
【発明が解決しようとする課題】各種の粉塵発生源を有
する例えば鋳造工場における環境改善においては、まず
各粉塵発生源毎の実際に発生した粉塵の全重量(以降、
粉塵量と略す)を測定する必要がある。このためには、
各粉塵発生源特有の粉塵の物性(例えば粒子材質、粒子
サイズ、凝集性、光減衰性等)や、粉塵ガスの発生範囲
や容量に合わせて粉塵量が測定できなければならない。
従来直接的に発生した全粉塵量を測定できる公知技術は
見当たらず、間接的に粉塵濃度をもとに測定しようとす
る場合でも、下記問題があった。前記公知例1における
粉塵濃度測定器では、例えば溶解炉のような粉塵発生源
に対しては、上部にダクトが設置しづらい上、さらに直
接投光器及び受光器が高温或いは腐食性のガスに触れる
ため機器の信頼性、耐久性に問題があり適用できない。
また公知例2におけるレーザ粉塵計は、測定器間空間の
平均化した粉塵濃度を求めるものであり、粉塵ガス発生
範囲が異なる場合の発生した粉塵ガス中の濃度を求める
ことはできない。即ち、受光器の出力は、粉塵濃度が同
一でも粉塵ガス中の透過距離によって変わること、また
受光器と粉塵発生源の距離によっても変わるからであ
る。また、いずれの公知例でも、粉塵の物性に合わせた
粉塵濃度と受光器の出力の相関関係の求め方については
開示されていない。従って本発明は、物性が異なる粉塵
に対しても、また粉塵ガスの発生範囲や量が異なるもの
に対しても、粉塵の発生量を測定することができる粉塵
量測定装置及び測定方法を提供することを目的としてい
る。In the improvement of the environment in, for example, a foundry having various dust sources, first, the total weight of the dust actually generated for each dust source (hereinafter, referred to as the total weight)
It is necessary to measure the amount of dust. To do this,
The amount of dust must be able to be measured according to the physical properties of the dust (e.g., particle material, particle size, cohesiveness, light attenuating property, etc.) specific to each dust generation source and the generation range and capacity of dust gas.
Conventionally, there is no known technique capable of directly measuring the total amount of generated dust, and there is a problem described below even when the measurement is indirectly performed based on the dust concentration. In the dust concentration measurement device in the above-mentioned known example 1, for a dust generation source such as a melting furnace, for example, a duct is difficult to install at the top, and furthermore, since the light emitter and the light receiver directly come into contact with high-temperature or corrosive gas. Not applicable due to problems in equipment reliability and durability.
Further, the laser dust meter in the known example 2 obtains an averaged dust concentration in the space between the measuring instruments, and cannot obtain the concentration in the generated dust gas when the dust gas generation range is different. That is, even if the dust concentration is the same, the output of the light receiver changes depending on the transmission distance in the dust gas, and also changes depending on the distance between the light receiver and the dust generation source. In addition, none of the known examples discloses a method for obtaining a correlation between the dust concentration and the output of the light receiver in accordance with the physical properties of the dust. Therefore, the present invention provides a dust amount measuring apparatus and a measuring method capable of measuring the amount of generated dust, even for dust having different physical properties, and also for those having different generation ranges and amounts of dust gas. It is intended to be.
【0004】[0004]
【課題を解決するための手段】本発明の粉塵量測定装置
は、レーザ光線を投射するレーザ投光器と、レーザ投光
器と分離された該投射光を受けるレーザ受光器と、前記
レーザ投光器とレーザ受光器と電気的に接続されレーザ
光線の透過率の対数変換値を求めるとともに、設定した
対数変換値と粉塵量の関係式と、粉塵ガス発生量をもと
に粉塵量を算出する制御部と、対数変換値と粉塵量の関
係式を表す直線回帰式を求めるための校正器とを有して
いることを特徴としている。前記校正器は、粉塵量の測
定に先立って測定対象固有の直線回帰式の傾きを示す定
数を求めるための校正操作の時に用いるものであり、内
部に媒体を充填し粉塵を添加拡散することができる両端
部が光透過性の筒体で、レーザ投射光が軸心に沿って筒
体内を貫通することができる断面寸法を有するものであ
る。媒体としては、粉塵を均一になるように拡散できる
という点で、レーザ光を透過できるような液体、例えば
水、アルコール、その他各種溶剤を用いることができる
が、粉塵が均一に拡散するように界面活性剤を添加した
り、水より粘度が少し高い液体を用いることが好まし
い。また本発明は、粉塵ガス発生量を、粉塵ガス発生幅
測定手段と粉塵ガス移動速度測定手段をもとに求め、粉
塵量として所定時間毎の粉塵絶対量を算出することを特
徴としている。ここでいう粉塵ガス発生幅とは、レーザ
投射光の粉塵ガス通過長さのうち、粉塵ガスの移動方向
に概直交する角度成分のものをいう。また、粉塵ガス発
生量は前記手段を用い、サンプリング時間毎に実測する
ことが望ましいが、予め測定対象から得られている計測
値等をもとに数値で設定しておいてもよい。According to the present invention, there is provided a dust amount measuring apparatus comprising: a laser projector for projecting a laser beam; a laser receiver for receiving the projection light separated from the laser projector; the laser projector and a laser receiver; A control unit that is electrically connected to calculate the logarithmic conversion value of the transmittance of the laser beam, calculates the amount of dust based on the set logarithmic conversion value and the amount of dust, and calculates the amount of dust based on the amount of generated dust gas. It is characterized by having a calibrator for obtaining a linear regression equation representing a relational expression between the conversion value and the amount of dust. The calibrator is used at the time of a calibration operation for obtaining a constant indicating the slope of a linear regression equation specific to the measurement object prior to the measurement of the amount of dust, and is capable of filling and diffusing dust inside the medium. Both end portions are light-transmitting cylinders, and have a cross-sectional dimension that allows laser projection light to pass through the cylinder along the axis. As the medium, a liquid that can transmit laser light, for example, water, alcohol, and various other solvents can be used in that the dust can be diffused uniformly, but the interface can be used so that the dust is diffused uniformly. It is preferable to add an activator or use a liquid having a slightly higher viscosity than water. Further, the present invention is characterized in that a dust gas generation amount is obtained based on a dust gas generation width measuring means and a dust gas moving speed measuring means, and an absolute dust amount at predetermined time intervals is calculated as a dust amount. Here, the dust gas generation width means an angle component of the length of the dust gas passage of the laser projection light that is substantially orthogonal to the moving direction of the dust gas. It is desirable that the amount of generated dust gas is actually measured at each sampling time by using the above-mentioned means, but it may be set in a numerical value based on a measured value or the like obtained from a measurement object in advance.
【0005】本発明の粉塵量測定方法は、レーザ投光器
からの投射光強度と、該投射光を受けるレーザ受光器か
らの入射光強度をもとに透過率の対数変換値を求め、予
め校正操作をもとに求めた粉塵量測定対象固有の対数変
換値と粉塵量の関係式から校正基準の粉塵量を算出し、
レーザ投射光の粉塵ガス通過長さと粉塵ガス発生量を測
定して前記校正基準の粉塵量を補正し、実際に発生した
粉塵量を算出することを特徴としたものである。校正操
作は、容量既知の媒体を有した所定長さの校正器に、重
量既知の粉塵サンプルを混合する毎に、レーザ投光器か
らレーザ光を軸心方向から投射して入射光をレーザ受光
器で受け、この時の粉塵量に対するレーザ透過率の対数
変換値を収集し、これより直線回帰式を求め、その傾き
を示す定数を求めるものである。A method for measuring the amount of dust according to the present invention is to obtain a logarithmic conversion value of transmittance based on the intensity of light projected from a laser projector and the intensity of incident light from a laser receiver receiving the projected light, and perform a calibration operation in advance. Calculate the calibration reference dust amount from the relational expression between the logarithmic conversion value and the dust amount specific to the dust amount measurement object obtained based on
The invention is characterized in that the length of dust gas passage of the laser projection light and the amount of dust gas generated are measured to correct the dust amount of the calibration standard, and the actually generated dust amount is calculated. Calibration operation, every time a dust sample of a known weight is mixed with a calibrator of a predetermined length having a medium of known capacity, the laser light is projected from the laser projector from the axial center direction and the incident light is irradiated by the laser receiver. Then, a logarithmic conversion value of the laser transmittance with respect to the dust amount at this time is collected, a linear regression equation is obtained from this, and a constant indicating the slope thereof is obtained.
【0006】[0006]
【発明の実施の形態】(実施の形態1)以下、本発明の
実施の一形態を図1〜3をもとに説明する。粉塵量測定
装置はレーザ投光器1、レーザ受光器6、信号処理部1
7、入出力部20、校正器14及び粉塵ガス量測定手段
36を備えている。レーザ投光器1は、光源2として有
色、例えば赤色半導体レーザを使用し、外乱光の影響を
抑えるために変調器4により変調している。また、測定
時に粉塵ガス中のレーザ透過断面積が極力同一になるよ
うにするため、及びレーザ光の広がりを防ぐため、コリ
メータレンズ3を設置して、レーザ投光器1から照射さ
れるレーザ光である投射光5が円形断面の平行光になる
ようにしている。レーザ受光器6には、投射光5が粉塵
雰囲気中を透過したレーザ光である入射光13を確実に
光軸上で受光するために、受光レンズ10と一定角度内
のみの入射光13を検出する絞り19を設けている。受
光素子12はシリコンフォトダイオードを用いている。
また、光源2の波長のみを選択して透過する干渉フィル
タや、外乱光の影響を抑えるためのNDフィルタ等の光
学フィルタ11を受光素子12の前面に設けている。(Embodiment 1) An embodiment of the present invention will be described below with reference to FIGS. The dust amount measuring device includes a laser projector 1, a laser receiver 6, a signal processor 1
7, an input / output unit 20, a calibrator 14, and a dust gas amount measuring means 36. The laser projector 1 uses a colored, for example, red semiconductor laser as the light source 2 and modulates it with the modulator 4 in order to suppress the influence of disturbance light. Further, in order to make the laser transmission cross-sectional area in the dust gas as uniform as possible at the time of measurement and to prevent the spread of the laser light, the collimator lens 3 is provided, and the laser light is emitted from the laser projector 1. The projection light 5 is configured to be parallel light having a circular cross section. The laser light receiver 6 detects the incident light 13 only within a certain angle with the light receiving lens 10 in order to reliably receive the incident light 13 which is the laser light transmitted through the dust atmosphere on the optical axis. A diaphragm 19 is provided. The light receiving element 12 uses a silicon photodiode.
An optical filter 11 such as an interference filter that selects and transmits only the wavelength of the light source 2 and an ND filter for suppressing the influence of disturbance light is provided on the front surface of the light receiving element 12.
【0007】実際に鋳造工場等の複数の粉塵発生箇所を
有する現場で粉塵量を測定する場合、各粉塵発生源を巡
回して、粉塵発生源に合わせた位置にレーザ投、受光器
をセットして測定しなければならない。そのため、移動
する度にレーザ投光器1とレーザ受光器6の光軸合わせ
を行う必要があり、容易に光軸合わせができるようにレ
ーザ受光器6に光軸出し部を設けている。これは、入射
光13の一部を直角に反射し光軸出し窓9に導出光15
として導くハーフミラー7と、該導出光15を拡大する
拡大レンズと、中心を合わせるための十字スクリーン
と、目に安全な強度まで減衰させるフィルタ8から成っ
ており、断面が円形の導出光15が光軸出し窓9に写し
出される。この光軸出し窓9を覗きながら、十字の交点
に導出光15の中心を合わせることにより光軸出しを行
うようになっている。When actually measuring the amount of dust at a site having a plurality of dust generating places, such as a foundry, a laser beam and a light receiver are set at a position corresponding to the dust generating source by circulating around each dust generating source. Must be measured. Therefore, it is necessary to align the optical axis of the laser projector 1 and the laser light receiver 6 each time it moves, and the laser light receiver 6 is provided with an optical axis extending portion so that the optical axis can be easily adjusted. This is because a part of the incident light 13 is reflected at a right angle and the derived light 15
And a magnifying lens for magnifying the derived light 15, a cross screen for centering, and a filter 8 for attenuating the intensity to a level safe to the eyes. The light is projected on the optical axis opening window 9. While looking through the optical axis setting window 9, the center of the derived light 15 is adjusted to the intersection of the cross to set the optical axis.
【0008】信号処理部17は、コンピュータ機能を有
した対数演算部26と粉塵量演算部28、及びメモリ2
7を備えており、入出力部20と電気的に接続されてい
る。対数演算部26は、透過率演算手段26aと対数変
換手段26bを有している。透過率演算手段26aは、
レーザ投光器1とレーザ受光器6からの、投射光5の強
度I0及び入射光13の強度Iが電気信号として入力さ
れると、透過率I/I0を算出する。対数変換手段26
bは前記算出された透過率I/I0を対数変換し、その
対数変換値Xを粉塵量演算部28へ出力するとともに、
入出力部20へ出力する。粉塵量演算部28は、後述す
る校正操作により求めたデータより直線回帰式を算出
し、粉塵量Nを算出する。入出力部20は、モニタ22
とキーボード等のデータ入力手段、及び各種データを外
部に出力するための出力端子29を有しており、必要に
応じてプリンタや外部記憶装置を接続することができ
る。The signal processing unit 17 includes a logarithmic operation unit 26 having a computer function, a dust amount operation unit 28, and a memory 2
7 and is electrically connected to the input / output unit 20. The logarithmic calculation unit 26 has a transmittance calculation unit 26a and a logarithmic conversion unit 26b. The transmittance calculating means 26a includes:
When the intensity I 0 of the projection light 5 and the intensity I of the incident light 13 from the laser projector 1 and the laser receiver 6 are input as electric signals, the transmittance I / I 0 is calculated. Logarithmic conversion means 26
b is a logarithmic conversion of the calculated transmittance I / I 0 and outputs the logarithmically converted value X to the dust amount calculation unit 28,
Output to the input / output unit 20. The dust amount calculation unit 28 calculates a linear regression equation from data obtained by a calibration operation described later, and calculates the dust amount N. The input / output unit 20 includes a monitor 22
And an input terminal 29 for outputting various data to the outside, and a printer or an external storage device can be connected as needed.
【0009】粉塵量Nとレーザ透過率の対数変換値Xと
の関係は、後述するように直線回帰式 N=aX+bで
表すことができる。aは測定対象毎に設定すべき定数、
bは測定環境又は校正条件により定まる定数(オフセッ
ト値)であり、定数aの値は粉塵量測定に先立って求め
ておかなければならない(以下、このための操作を校正
操作と呼ぶ)。校正器14は校正操作時に使用し、両端
面にレーザ光が透過できるような光学窓18を有した筒
体であり、内部に粉塵サンプルを入れるようにしたもの
である。例えば、内径d、長さhの透明な合成樹脂の円
筒側面に粉塵サンプルの添加口16を設け、両端には透
明ガラスをセットし、内部に水等の媒体が封入できる構
造とし、その寸法は、投射光が側面に当たることなく軸
線に沿って貫通するに十分の内径で、所定量注入した粉
塵サンプルが凝集することなく、かつ十分均等に拡散す
るような容量となるような値を適宜選定する。レーザ投
光器1とレーザ受光器6は各々分離されており、三脚1
a、6a等により任意の位置に設置することが可能であ
り、校正器14もレーザ光軸上に位置決めできるよう
に、同様に三脚又は設置台14aにより任意の位置に設
置することができる。The relationship between the dust amount N and the logarithmic conversion value X of the laser transmittance can be expressed by a linear regression equation N = aX + b as described later. a is a constant to be set for each measurement object,
b is a constant (offset value) determined by the measurement environment or the calibration conditions, and the value of the constant a must be obtained prior to the measurement of the amount of dust (hereinafter, an operation for this is referred to as a calibration operation). The calibrator 14 is used at the time of the calibration operation, and is a cylindrical body having optical windows 18 at both end surfaces through which a laser beam can pass, in which a dust sample is put. For example, a dust sample addition port 16 is provided on a cylindrical side surface of a transparent synthetic resin having an inner diameter d and a length h, transparent glass is set at both ends, and a structure such as a medium such as water can be sealed therein. A value is appropriately selected such that the dust sample injected in a predetermined amount has a capacity such that the dust sample injected therein does not agglomerate and diffuses sufficiently evenly with an inner diameter sufficient for the projection light to penetrate along the axis without hitting the side surface. . The laser projector 1 and the laser receiver 6 are separated from each other.
The calibrator 14 can be installed at an arbitrary position by using a tripod or an installation table 14a so that the calibrator 14 can be positioned on the laser optical axis.
【0010】ここで、粉塵量Nとレーザ透過率の対数変
換値Xとの関係が、直線回帰式 N=aX+bで表すこ
とができることについて説明する。透過率I/I0はラ
ンバート・ベールの法則とミー理論に基づき下記数1で
表すことができる。Here, it will be described that the relationship between the dust amount N and the logarithmic conversion value X of the laser transmittance can be expressed by a linear regression equation N = aX + b. The transmittance I / I 0 can be expressed by the following equation 1 based on Lambert-Beer's law and Mie theory.
【数1】 ここで K:系の光学透過減衰係数 現場測定時:K=k1(周囲空気の透過減衰係数) 校正時 :K=K1・K2・exp(- β ,n,h) K2・exp(- β ,n,h):校正器の総合透過率 (K2:校正器透過窓及び媒体の減衰係数) β:媒体の減衰係数 n:媒体モル濃度 h:校正器の長さ(Equation 1) Where K: Optical transmission attenuation coefficient of the system At the time of on-site measurement: K = k1 (transmission attenuation coefficient of ambient air) At the time of calibration: K = K1 · K2 · exp ( -β , n, h) K2 · exp ( -β , n, h) : Calibrator total transmittance (K2: Calibrator transmission window and medium attenuation coefficient) β: Medium attenuation coefficient n: Medium molarity h: Calibrator length
【数2】 R(α,θ):粉塵発生源と受光器間距離、及び平均粒
子ハ゜ラメータによる補正係数 α:平均粒子ハ゜ラメータ(=π・D/λ(λはレーザ光の波
長)) θ:粉塵発生源と受光器間距離で決まる検出角度 Qext:粉塵の減衰係数(平均) ρ:粉塵の粒子密度(平均) D:粉塵の直径(平均) N′:レーザの粉塵雰囲気通過単位長さ当たりの粉塵量 L:レーザの粉塵雰囲気通過長さ(校正時はL=h) さらにここで −X=ln(I/I0) :(lnは自然対数を示す記
号) N=N’・L a=1/{R(α,θ)・Qext・3/2・1/(ρ
D)} b=a・ ln K とおくと、式1は前述した直線回帰式N=aX+bに変
換することができる。(Equation 2) R (α, θ): distance between the dust source and the light receiver, and correction coefficient based on the average particle parameter α: average particle parameter (= π · D / λ (λ is the wavelength of the laser beam)) θ: Detection angle determined by the distance between receivers Q ext : Dust attenuation coefficient (average) ρ: Dust particle density (average) D: Dust diameter (average) N ': Dust amount per unit length of laser passing through dust atmosphere L: Length of laser passing through the dust atmosphere (L = h at the time of calibration) Further, -X = ln (I / I0): (ln is a symbol indicating natural logarithm) N = N '· La = 1 / { R (α, θ) · Q ext · 3/2 · 1 / (ρ
D) b b = a · ln K Equation 1 can be converted to the above-described linear regression equation N = aX + b.
【0011】次に図7に従い、校正操作から現場での粉
塵量測定までの手順を説明する。ブロックS1からS4
が校正操作であり、これは測定対象の粉塵発生源の性状
及び発生する粉塵の物性に合わせて行なう操作であり、
特に個々に状況が異なる場合、それに対して行なう必要
がある。ブロックS1において、レーザ投光器1とレー
ザ受光器6を、実際の測定対象とする粉塵発生源に対し
て配置すると同様な位置関係になるように三脚1a、6
aに固定し、対向配置する。離す距離は、粉塵発生源の
性状に合わせ、レーザ投光器1とレーザ受光器6が高温
又は腐食性の粉塵ガスに触れて損傷したり、粉塵がレー
ザ投光器1又はレーザ受光器6の光学窓或いはレンズに
付着しないような距離とする。校正時も実測時と同等の
距離離す理由は、レーザ受光器6で受光する入射光の検
出角度を同一とするためである。Next, the procedure from the calibration operation to the on-site measurement of the amount of dust will be described with reference to FIG. Blocks S1 to S4
Is a calibration operation, which is an operation performed according to the properties of the dust source to be measured and the physical properties of the generated dust,
Especially when the situation is different in each case, it is necessary to do so. In block S1, the tripods 1a and 6 are arranged such that the laser projector 1 and the laser receiver 6 have the same positional relationship when the laser projector 1 and the laser receiver 6 are arranged with respect to the dust source to be actually measured.
a, and arranged facing each other. The distance to be separated depends on the properties of the dust source. The laser projector 1 and the laser receiver 6 may be damaged by contact with high-temperature or corrosive dust gas, or the dust may be damaged by the optical window or lens of the laser projector 1 or the laser receiver 6. Distance so that it does not adhere to The reason why the distance is the same at the time of calibration as at the time of actual measurement is to make the detection angles of the incident light received by the laser light receiver 6 the same.
【0012】次に、ブロックS2に示すように、レーザ
投光器1とレーザ受光器6の光軸出し、及び信号出力チ
ェックを行う。光軸出しは、レーザ投光器1から投射光
5を照射し、まず投光器1の三脚1aを調整して、前述
した導出光15がレーザ受光器6の光軸出し窓9に入る
ようにし、次に光軸出し窓9を覗きながら、レーザ受光
器6の三脚6aを調整して、十字の交点に導出光15の
中心を合わせて行なう。光軸出し終了後、校正器14を
光軸上で、実際の粉塵発生源の位置に相当する場所に配
置するように設置台14aの位置決めを行いセットす
る。次に、校正器14を設置台14aから外して、レー
ザ投光器1からの投射光5を直接レーザ受光器6に照射
する。この時、透過率の対数変換値が0に近い値である
かどうか確認する。これは、レーザ受光器6の受光素子
12が受ける入射光13は、光軸出し窓9の方に分離さ
れた導出光15の分だけ少なくなっており、信号処理部
17が透過率の対数変換値Xを算出するに当たってはこ
れを補正するようにしているが、この機能確認である。Next, as shown in block S2, the optical axes of the laser projector 1 and the laser receiver 6 are set, and the signal output is checked. The optical axis alignment is performed by irradiating the projection light 5 from the laser projector 1, first adjusting the tripod 1 a of the projector 1 so that the above-mentioned derived light 15 enters the optical axis alignment window 9 of the laser receiver 6, and then While looking through the optical axis opening window 9, the tripod 6a of the laser receiver 6 is adjusted so that the center of the derived light 15 is aligned with the intersection of the cross. After completing the optical axis alignment, the mounting table 14a is positioned and set so that the calibrator 14 is arranged on the optical axis at a location corresponding to the actual position of the dust generation source. Next, the calibrator 14 is removed from the installation table 14a, and the projection light 5 from the laser projector 1 is directly applied to the laser receiver 6. At this time, it is checked whether or not the logarithmic conversion value of the transmittance is close to zero. This is because the incident light 13 received by the light receiving element 12 of the laser receiver 6 is reduced by the derived light 15 separated toward the optical axis opening window 9 and the signal processing unit 17 performs logarithmic conversion of the transmittance. In calculating the value X, this is corrected, but this is a function check.
【0013】次に、S3に示す校正データ取りを行う。
まず校正器14に正確に容量vを測定した透光性の媒体
を入れる。この媒体を入れた校正器14を再度設置台に
セットし、レーザ光を照射して媒体中を透過させ、その
時の透過率の対数変換値X0を求める。この時粉塵量演
算部28では粉塵量N0は0とする。なお当然ながら、
この時の校正器14をセットした時の媒体が占める断面
範囲は、投射光5の透過断面を包含することが必要であ
る。つぎに、測定対象の実際の粉塵から収集した粉塵サ
ンプルから、正確に重量を測定して作成した複数の添加
用サンプルのうち、まず任意の重量N1のものを校正器
14に添加し、媒体とよく混ぜ合わせた後レーザを投射
し、透過率の対数変換値X1を求める。この時、透過率
の対数変換値は例えば、0.1秒ごとに測定し、その測
定値からピーク値、あるいはその近傍の平均値を対数変
換値X1とするとよい。これは、通常粉塵の粒子径は数
〜数十μmと極めて小さいが、比重は媒体と異なる場合
が多く、時間経過とともに沈降又は浮上していくため、
測定した透過率の対数変換値は時間経過とともに変化す
るからである。以降、順次粉塵添加サンプルを校正器1
4に添加し同様の測定をし、校正器中の添加添加サンプ
ル重量N1、N2…に対するレーザ透過率の対数値X
1、X2…の関係を収集していく。添加重量データは入
出力部のキーボード等で入力する。なお、校正器14に
入れる媒体としては、微量で微細な粉塵と均一に混じり
合い易く透過率が良好な液体、例えば清水を用いるとよ
い。また、必ずしも液体でなくても、粉塵サンプルが十
分均等に攪拌できるような手段、例えばブロー循環手段
を設置すれば気体を用いることもできる。Next, calibration data collection shown in S3 is performed.
First, a translucent medium whose volume v is accurately measured is put into the calibrator 14. The calibrator 14 containing the medium is set on the installation table again, and the medium is irradiated with laser light to transmit through the medium, and a logarithmic conversion value X0 of the transmittance at that time is obtained. At this time, the dust amount calculation unit 28 sets the dust amount N0 to 0. Of course,
At this time, the cross-sectional area occupied by the medium when the calibrator 14 is set needs to include the transmission cross section of the projection light 5. Next, of a plurality of additive samples prepared by accurately measuring the weight from the dust sample collected from the actual dust to be measured, first, an arbitrary sample having an arbitrary weight N1 is added to the calibrator 14, and the medium and After mixing well, a laser is projected to obtain a logarithmic conversion value X1 of the transmittance. At this time, the logarithmic conversion value of the transmittance may be measured, for example, every 0.1 seconds, and the peak value or an average value in the vicinity thereof may be determined as the logarithmic conversion value X1 from the measured value. This is because the particle size of the dust is usually as small as several to several tens of μm, but the specific gravity is often different from that of the medium, and the particles settle or float over time,
This is because the logarithmic conversion value of the measured transmittance changes with time. Thereafter, the dust-added sample is sequentially calibrated to Calibrator 1
4 and the same measurement was performed, and the logarithmic value X of the laser transmittance with respect to the weight N1, N2.
1, X2 ... is collected. The added weight data is input using a keyboard or the like of the input / output unit. As a medium to be put into the calibrator 14, a liquid that easily mixes uniformly with a minute amount of fine dust and has a good transmittance, for example, clear water may be used. Even if it is not necessarily a liquid, a gas can be used if a means capable of sufficiently agitating the dust sample, for example, a blow circulation means is provided.
【0014】続いて、ブロックS4に示すように、上記
複数の粉塵量Niに対する対数変換値Xiの測定データ
をもとに、該測定対象の直線回帰式N=AX+B’を最
小二乗法により算出しメモリ27に収納する。この定数
値Aは、粉塵性状と検出角度により決まる固有の値であ
るのに対し、定数値B’は校正時特有のオフセット値で
あり、実測時には改めて求める必要がある。上述したブ
ロックS1からS4の校正操作を、測定対象の粉塵発生
源の性状及び発生する粉塵の物性に合わせて行ない、各
々に対応する固有の直線回帰式を求めて記憶しておく。
ここで、前記直線回帰式から計算される粉塵量Nは、校
正操作環境下での、粉塵通過長さhの時の、容量vの媒
体中に含まれる粉塵量を示すものであり、実際の粉塵測
定時の粉塵量は、固有の定数値Bを求めるとともに、レ
ーザの粉塵ガス通過長さLと、粉塵ガス発生量(容量)
Vに合わせて補正して算出しなければならない。Subsequently, as shown in block S4, a linear regression equation N = AX + B 'of the measurement object is calculated by the least square method based on the measurement data of the logarithmic conversion value Xi for the plurality of dust amounts Ni. It is stored in the memory 27. The constant value A is a unique value determined by the properties of the dust and the detection angle, whereas the constant value B 'is an offset value peculiar to calibration, and needs to be obtained again at the time of actual measurement. The above-described calibration operations in blocks S1 to S4 are performed in accordance with the properties of the dust generation source to be measured and the physical properties of the generated dust, and a unique linear regression equation corresponding to each is obtained and stored.
Here, the dust amount N calculated from the linear regression equation indicates the amount of dust contained in the medium having the volume v at the time of the dust passage length h under the calibration operation environment. The amount of dust during the measurement of the dust is determined by determining the specific constant value B, the length L of the laser passing through the dust gas, and the amount of dust gas generated (capacity).
It must be calculated by correcting for V.
【0015】ブロックS5以降が、実際の粉塵発生源か
らの粉塵量測定の手順である。まず、測定対象毎に前述
した校正操作で求めてメモリ27に記憶しておいた直線
回帰式から、該測定対象の直線回帰式N=AX+B’を
選択する。次にブロックS6において、レーザ投光器1
とレーザ受光器6を、測定対象をはさんで、前記校正時
に配置したと同様な位置関係に配置し、光軸合わせを行
なう。次に、ブロックS7に示すように、粉塵が発生し
ていない時にレーザを投射し、この時の透過率の対数変
換値を求める。粉塵量演算部28では前記選択した直線
回帰式N=AX+B’に対し、粉塵量Nをゼロと置くこ
とによって、校正時特有のオフセット値B’に代えて該
測定対象環境のオフセット値Bを求め、該測定対象粉塵
発生源に対する固有の直線回帰式、N=AX+Bを作成
する。The procedure after block S5 is the procedure for measuring the amount of dust from the actual dust source. First, the linear regression equation N = AX + B ′ of the measurement target is selected from the linear regression equation obtained by the above-described calibration operation and stored in the memory 27 for each measurement target. Next, in block S6, the laser projector 1
And the laser light receiver 6 are arranged with the same positional relationship as that arranged at the time of the calibration, with the measurement object interposed, and the optical axis is aligned. Next, as shown in block S7, a laser is projected when no dust is generated, and a logarithmic conversion value of the transmittance at this time is obtained. The dust amount calculator 28 sets the dust amount N to zero for the selected linear regression equation N = AX + B ′, thereby obtaining the offset value B of the measurement target environment in place of the offset value B ′ unique to the calibration. Then, a unique linear regression equation for the measurement target dust source, N = AX + B, is created.
【0016】ブロックS8において、粉塵の発生開始と
ともに測定を開始する。所定サンプリング時間(例え
ば、0.1秒)毎に、前記設定した固有の直線回帰式N
=AX+Bをもとに粉塵量Nを算出していく。ここで、
前述したようにこの粉塵量値Nは、校正器14を基準と
したもので、レーザが通過するする粉塵雰囲気の幅がh
における透過率の対数変換値をもとに、校正記14の容
量v中に含まれる粉塵量を示すものであり、実際に発生
する粉塵量Yとは異なっている。以下、実際に発生する
粉塵量Yの算出方法について説明する。測定開始後の所
定サンプリング時間毎に、前記直線回帰式N=AX+B
をもとにした粉塵量Nを算出するとともに、粉塵ガス量
測定手段36において、発生する粉塵ガスの移動量と、
この移動方向に概直交する方向に広がった粉塵ガス発生
幅Hを求める。これらの値は、測定対象毎に予め求めた
経験値を用いてもよいが、移動量計測手段として風速計
38を用いて粉塵ガス39の単位時間当たりの上昇速度
Sを測定し、粉塵ガス発生幅計測手段として、撮像装置
例えばストロボカメラやビデオカメラ37を用いて粉塵
ガス39の動きを撮影することで求めることができる。In block S8, the measurement is started when the generation of dust starts. Every predetermined sampling time (for example, 0.1 second), the set unique linear regression equation N
= AX + B, the dust amount N is calculated. here,
As described above, this dust amount value N is based on the calibrator 14, and the width of the dust atmosphere through which the laser passes is h
Indicates the amount of dust contained in the volume v of the calibration note 14 based on the logarithmic conversion value of the transmittance at the time of the measurement, and differs from the amount of dust Y actually generated. Hereinafter, a method of calculating the actually generated dust amount Y will be described. The linear regression equation N = AX + B every predetermined sampling time after the start of measurement
And the amount of dust gas generated by the dust gas amount measuring means 36,
A dust gas generation width H spread in a direction substantially perpendicular to the moving direction is obtained. As these values, empirical values obtained in advance for each measurement object may be used, but the rising speed S of the dust gas 39 per unit time is measured using the anemometer 38 as the movement amount measuring means, and the dust gas generation The width measurement means can be obtained by photographing the movement of the dust gas 39 using an image pickup device such as a strobe camera or a video camera 37.
【0017】粉塵ガス発生幅H は次のようにして求め
る。レーザ投光器からの投射光が粉塵ガス39内を通過
すると、レーザが通過した範囲は赤色になり識別できる
ため、撮影した映像を画像処理手段に送信し(図示せ
ず)、サンプリング時間毎に、公知手段により投射光5
が粉塵ガス39中を通過した長さLを求める。ここで、
レーザ投光器、受光器が、粉塵ガスの発生移動方向と直
交する方向にレーザを照射するようにセットされている
場合、レーザ投射光の粉塵ガス通過長さLをそのまま粉
塵ガス発生幅Hとする。直交する方向から角度γ傾いた
方向に照射するようにセットされている場合、余弦成分
Lcosγを粉塵ガス発生幅Hとする。なお、粉塵濃度が
薄い等で、レーザ投射光の粉塵ガス通過ラインが明瞭に
判別できない場合は、撮像画像中にレーザ通過想定ライ
ンを設けて、これをもとにして粉塵ガス通過長さLを求
めることができる。風速計38により粉塵ガス39の上
昇速度Sが求められると、サンプリング間隔時間t当た
りの移動量が計算できる。これらのデータは信号処理手
段17に送られ、サンプリング時間毎に、サンプリング
間隔時間t当たりの粉塵ガス39の発生量Vは、例えば
粉塵ガス発生幅Hを直径とする円内に一様に分布すると
仮定し、下式により算出する。 V=S×t×πH2/4The dust gas generation width H is obtained as follows. When the projection light from the laser projector passes through the dust gas 39, the area through which the laser has passed becomes red and can be identified. Therefore, the captured image is transmitted to the image processing means (not shown), and a known By means of projection light 5
The length L that has passed through the dust gas 39 is determined. here,
When the laser projector and the light receiver are set so as to irradiate a laser beam in a direction orthogonal to the dust gas generation movement direction, the dust gas passage length L of the laser projection light is directly used as the dust gas generation width H. When the irradiation is set in a direction inclined by an angle γ from a direction orthogonal to the orthogonal direction, the cosine component Lcosγ is set to the dust gas generation width H. When the dust gas passage line of the laser projection light cannot be clearly distinguished due to a low dust concentration or the like, an assumed laser passage line is provided in the captured image, and the dust gas passage length L is determined based on the line. You can ask. When the rising speed S of the dust gas 39 is obtained by the anemometer 38, the movement amount per sampling interval time t can be calculated. These data are sent to the signal processing means 17, and for each sampling time, the generation amount V of the dust gas 39 per sampling interval time t is, for example, uniformly distributed in a circle whose diameter is the dust gas generation width H. Assuming that it is calculated by the following equation. V = S × t × πH 2 /4
【0018】以上の測定結果をもとに、信号処理部では
サンプリング時間毎の粉塵量Yを下記式により算出す
る。 Y=N×h/L×V/v この算出されるデータは、外部記憶装置に出力したり、
入出力部のモニタ或いはプリンタに出力することがで
き、環境改善を行なう場合の対象粉塵源の選定、及び改
善効果の評価を的確に行なうことができる。また、設備
改善に利用する等適宜利用することができる。積算すれ
ば発生する総粉塵量を求めることができるし、経時的な
粉塵発生状況を求めることもできる。また、下記式で示
すように粉塵濃度Wを求めることもでき、粉塵濃度管理
を行なう場合に用いることができる。この場合、粉塵発
生源からの粉塵に対しては、前記粉塵ガス量測定手段3
6のうちビデオカメラ37だけを用いてレーザ投射光の
粉塵ガス通過長さLを測定する。また、特定の粉塵発生
源から離れている粉塵浮遊雰囲気に対しては、ビデオカ
メラ37を用いることなく、レーザ投光器1とレーザ受
光器6の距離を粉塵ガス通過長さLとすればよい。 W=N×h/L×1/vBased on the above measurement results, the signal processing unit calculates the amount of dust Y for each sampling time by the following equation. Y = N × h / L × V / v The calculated data is output to an external storage device,
The data can be output to a monitor of an input / output unit or a printer, so that a target dust source in the case of environmental improvement can be selected and the effect of improvement can be accurately evaluated. In addition, it can be used as appropriate, such as for equipment improvement. The total amount of generated dust can be obtained by integration, and the state of generation of dust over time can be obtained. Further, the dust concentration W can be obtained as shown by the following equation, and can be used when managing the dust concentration. In this case, for the dust from the dust generation source, the dust gas amount measuring means 3
The dust gas passage length L of the laser projection light is measured using only the video camera 37 out of 6. Further, for a dust floating atmosphere remote from a specific dust generation source, the distance between the laser projector 1 and the laser receiver 6 may be set to the dust gas passage length L without using the video camera 37. W = N × h / L × 1 / v
【0019】(実施の形態2)次に、より操作取扱いを
容易とした実施形態2について、図4を参照しながら以
下説明する。前記実施の形態1で説明した構成のうち、
主として制御部の構成を変えたものであり、信号処理部
17と入出力部20を一体化して操作盤30としてまと
めたものである。従って他の同一の構成部については同
一であり詳しい説明は省略するとともに、説明に当たっ
ては同一の符号を用いることとする。本実施の形態2に
おける操作盤30は、図4に示すように表面に数個のス
イッチと液晶等の簡単な表示器31を有する構成であ
る。また、外部出力端子を有しておりプリンタ等の外部
表示手段と接続可能である。制御機能は前述の実施の形
態1で述べたものとほぼ同様で、対数演算部と粉塵量演
算部を備えているが、制御アルゴリズムはハードウエア
による論理回路で組んでいる。(Embodiment 2) Next, Embodiment 2 in which operation and handling are easier will be described with reference to FIG. Among the configurations described in the first embodiment,
The configuration of the control unit is mainly changed, and the signal processing unit 17 and the input / output unit 20 are integrated to form an operation panel 30. Therefore, the other same components are the same and the detailed description is omitted, and the same reference numerals are used in the description. The operation panel 30 according to the second embodiment has a configuration in which several switches and a simple display 31 such as a liquid crystal are provided on the surface as shown in FIG. In addition, it has an external output terminal and can be connected to external display means such as a printer. The control function is almost the same as that described in the first embodiment, and includes a logarithmic operation unit and a dust amount operation unit, but the control algorithm is formed by a hardware logic circuit.
【0020】対数演算部は、透過率演算手段と対数変換
手段を有している。透過率演算手段は、レーザ投光器1
とレーザ受光器6からの投射光5の強度I0、及び入射
光の強度Iが電気信号として入力されると、透過率I/
I0が論理回路により求められ、この電気信号は対数変
換手段に送られる。対数変換手段は前記透過率I/I0
を論理回路により対数変換し、その対数変換値Xを電気
信号として粉塵量演算部へ出力する。粉塵量演算部は、
直線回帰式N=aX+bを構成する論理回路を有し粉塵
量Nを求める。上記透過率I/I0の対数変換値X、粉
塵量Nは所定の時間間隔(例えば0.1秒毎)で求め、
表示器に表示することができるとともに、外部出力端子
より出力することができる。なお、前記表示は、切換え
スイッチ32を適宜操作することで、一つの表示器31
に表示するようにしているが、対数変換値X、粉塵量N
用の固有の表示器を設けてもよい。増幅率調節手段33
は、上記直線回帰式の測定対象毎に設定すべき定数aを
電圧で設定するダイヤルであり、目盛付きの可変抵抗器
から構成される。オフセット調節手段34は、測定環境
又は校正条件により定まる定数bを電圧で設定するダイ
ヤルで、目盛付きの可変抵抗器から構成される。The logarithmic calculation unit has a transmittance calculator and a logarithmic converter. The transmittance calculating means includes the laser projector 1
When the intensity I 0 of the projection light 5 from the laser receiver 6 and the intensity I of the incident light are input as electric signals, the transmittance I /
I 0 is obtained by a logic circuit, and this electric signal is sent to logarithmic conversion means. The logarithmic conversion means is provided with the transmittance I / I 0.
Is logarithmically converted by a logic circuit, and the logarithmically converted value X is output as an electric signal to the dust amount calculation unit. The dust amount calculation unit is
It has a logic circuit constituting the linear regression equation N = aX + b and finds the dust amount N. The logarithmic conversion value X and the dust amount N of the transmittance I / I 0 are obtained at predetermined time intervals (for example, every 0.1 second),
It can be displayed on a display and output from an external output terminal. The display can be made by appropriately operating the changeover switch 32 to display one display 31.
, The logarithmic conversion value X, the dust amount N
May be provided with a unique indicator for Amplification rate adjusting means 33
Is a dial for setting a constant a to be set for each measurement target in the linear regression equation by a voltage, and is composed of a variable resistor with a scale. The offset adjusting means 34 is a dial for setting a constant b determined by a measurement environment or calibration conditions by a voltage, and is composed of a scaled variable resistor.
【0021】校正操作は基本的には前述した方法と同様
であるが、前記定数a、bの設定方法とその手順が異な
っており、以下それについて説明する。レーザ投光器
1、レーザ受光器6及び校正器14の配置、光軸出し等
が終了した後、校正器14を設置台14aから外して、
レーザ投光器1からの投射光5を直接レーザ受光器6に
照射する。この時、操作盤の表示器31に透過率の対数
変換値Xを表示させ、その値が0に近い値であるかどう
かチェックする。これは、受光器6の受光素子12が受
ける入射光13は、光軸出し窓9の方に分離された導出
光15の分だけ少なくなっており、対数処理部が透過率
の対数変換値Xを変換するに当たってはこれを補正する
ような回路としているが、この機能確認である。The calibration operation is basically the same as the above-described method, except that the method of setting the constants a and b is different from the procedure thereof. After the arrangement of the laser projector 1, the laser receiver 6, and the calibrator 14, the alignment of the optical axis, etc., are completed, the calibrator 14 is removed from the installation table 14a,
The projection light 5 from the laser projector 1 is directly applied to the laser receiver 6. At this time, the logarithmic conversion value X of the transmittance is displayed on the display 31 of the operation panel, and it is checked whether or not the value is close to zero. This is because the incident light 13 received by the light receiving element 12 of the light receiver 6 is reduced by the amount of the derived light 15 separated toward the optical axis opening window 9, and the logarithmic processing unit performs the logarithmic conversion value X of the transmittance. Is converted into a circuit to correct this, but this function is confirmed.
【0022】次に、校正データ取りを行う。前記実施の
形態1と同様、まず校正器14に正確に容量vを測定し
た清水を入れる。この清水を入れた校正器14を再度設
置台14aにセットし、レーザ光を照射して清水中を透
過させ、その時の透過率の対数変換値X0を求める。次
に、測定対象の実際の粉塵から収集した粉塵サンプルか
ら、正確に重量を測定して作成した複数の添加用サンプ
ルのうち、まず任意の重量N1のものを校正器14に添
加し、清水とよく混ぜ合わせた後レーザを投射し、透過
率の対数変換値X1を記録する。この時、0.1秒ごと
に測定値をプリンタ等に出力し、この出力データをもと
にピーク値、あるいはその近傍の平均値を対数変換値X
1とするとよい。以降、順次添加サンプルを校正器14
に添加し同様の測定をし、校正器中の添加サンプル重量
Niに対するレーザ透過率の対数値Xiの関係を収集し
ていく。続いて、上記複数のNiに対するXiの収集デ
ータをもとに、粉塵量を推定するための直線回帰式N=
AX+B’を最小二乗法により算出し、測定対象の定数
値Aを求める。Next, calibration data is collected. As in the first embodiment, first, fresh water whose volume v has been accurately measured is put into the calibrator 14. The calibrator 14 containing the fresh water is set again on the installation table 14a, and is irradiated with a laser beam to transmit the clear water, and a logarithmic conversion value X0 of the transmittance at that time is obtained. Next, from the dust sample collected from the actual dust to be measured, among a plurality of additive samples prepared by accurately measuring the weight, first, an arbitrary sample having an arbitrary weight N1 is added to the calibrator 14 and the fresh water is added to the calibrator 14. After mixing well, a laser is projected and the logarithmic conversion value X1 of the transmittance is recorded. At this time, the measured value is output to a printer or the like every 0.1 seconds, and based on the output data, the peak value or an average value in the vicinity thereof is converted to a logarithmic conversion value X.
It is good to be 1. Thereafter, the added samples are sequentially calibrator 14
And the same measurement is performed, and the relationship between the logarithmic value Xi of the laser transmittance and the weight Ni of the sample added in the calibrator is collected. Subsequently, based on the collected data of Xi for the plurality of Nis, a linear regression equation N =
AX + B ′ is calculated by the least squares method, and a constant value A to be measured is obtained.
【0023】次に該現場での実測に先立って、該測定対
象環境における直線回帰式の定数a及びbの値を操作盤
30より設定する操作を行う。まず、校正容器14を外
した状態でレーザを投射し、透過率の対数変換値Xair
を表示器に表示させて求める。次にこのときの粉塵量の
表示値Nair値を表示器に表示させ、この値が0になる
ようにオフセット調節手段34を調整する。これは該現
場の測定環境におけるオフセット値を求める操作であ
り、定数bの値Bを設定することに相当する。次に、所
定の減衰率(例えば10%)のNDフィルタをレーザ受
光器6前に挿入して擬似粉塵透過状態を作り、この時の
レーザ透過率の対数変換値Xnを求める。これより、前
記で求めた定数A、 Xair値をもとにこの時の粉塵相
当量Nnを、Nn=A(Xn―Xair)の式から計算で
求める。このNDフィルタを挿入した状態で、粉塵量を
表示するようにし、表示値が前記算出した値を示すよう
に増幅率調節手段33を調整する。このときの増幅率調
節手段33及びオフセット調節手段34の目盛値をメモ
等に記録しておく。上記の操作は、現場測定に先立っ
て、測定対象である粉塵発生源ごとに行い、定数a、b
の各対象現場毎の固有の環境に対する値A、Bを求める
ことに相当する。実際の測定に当たっては、該測定対象
固有の直線回帰式の定数値A、Bを増幅率調節手段3
3、オフセット調節手段34で設定し、粉塵量演算部に
おける直線回帰式を決定してから行なう。本操作盤30
は、論理回路などの電気回路のみで作成しているために
上記の操作が必要になるが、テンキー等の入力装置は必
要としないためコンパクトとなり、現場で容易に取扱い
ができる。Next, prior to the actual measurement at the site, an operation of setting the values of the constants a and b of the linear regression equation in the environment to be measured from the operation panel 30 is performed. First, a laser is projected with the calibration container 14 removed, and the logarithmic conversion value Xair of the transmittance is obtained.
Is displayed on the display unit to obtain the value. Next, the display value Nair value of the dust amount at this time is displayed on a display, and the offset adjusting means 34 is adjusted so that this value becomes zero. This is an operation for obtaining an offset value in the measurement environment at the site, and corresponds to setting the value B of the constant b. Next, an ND filter having a predetermined attenuation rate (for example, 10%) is inserted in front of the laser receiver 6 to create a simulated dust transmission state, and a logarithmic conversion value Xn of the laser transmittance at this time is obtained. From this, based on the constants A and Xair values obtained above, the dust equivalent amount Nn at this time is obtained by calculation from the equation of Nn = A (Xn-Xair). With the ND filter inserted, the amount of dust is displayed, and the gain adjusting means 33 is adjusted so that the displayed value indicates the calculated value. At this time, the scale values of the amplification factor adjusting means 33 and the offset adjusting means 34 are recorded in a memo or the like. The above operation is performed for each dust source to be measured prior to the on-site measurement, and the constants a and b
Is equivalent to obtaining the values A and B for the unique environment for each target site. In the actual measurement, the constant values A and B of the linear regression equation specific to the measurement object are set to the amplification factor adjusting means 3.
3. The setting is performed by the offset adjusting means 34, and the linear regression equation in the dust amount calculation section is determined before the determination. Main operation panel 30
The above-mentioned operation is necessary because the device is created only by an electric circuit such as a logic circuit. However, since an input device such as a numeric keypad is not required, the device is compact and can be easily handled on site.
【0024】[0024]
【実施例】以下、実施の形態2をもとに、直径が1mの
溶融口を有する溶解炉から発生する粉塵量の測定を行な
った例を、図1及び4を参照しながら説明する。レーザ
投光器1とレーザ受光器6は、溶解炉40を中央にして
20m離し、かつレーザ投射光5は、溶解炉上面から1
mの高さをほぼ水平に通るように設定した。これは溶解
炉40の炉蓋が開いた時にほぼ垂直に立上る高温の粉塵
が、レーザ投光器1或いはレーザ受光器6の光学窓に付
着することによるレーザ強度の変化、即ち測定精度の信
頼性低下を防ぐためであり、またレーザ投光器1及びレ
ーザ受光器6が1500℃近くの溶湯の輻射熱を受ける
のを防ぐためである。校正器14としては、内径d=
0.09m、長さh=0.5mの寸法のものを用い、その
容積の約90%にあたる清水を充填した。この時の清水
の容量はv=0.0029m3であった。まず最初に、
レーザ投光器1とレーザ受光器6及び校正器14を実測
時と同様に配置し、校正器14に粉塵を添加しない清水
だけの状態でレーザを照射し、レーザ透過率の対数変換
値X0を求めた。次に直線回帰式を算出するために、溶
解炉40から発生した粉塵を収集して予め重量N1を計
測しておいた粉塵サンプルを添加し、手で振って均一に
拡散させ、この校正器14に対するレーザ透過率の対数
変換値を0.1秒毎にプリンタ等に出力し、これよりピ
ーク値を対数変換値X1として求めた。EXAMPLE An example of measurement of the amount of dust generated from a melting furnace having a melting hole of 1 m in diameter based on Embodiment 2 will be described below with reference to FIGS. The laser projector 1 and the laser receiver 6 are separated from each other by 20 m with the melting furnace 40 at the center.
m was set so as to pass almost horizontally. This is because the high-temperature dust that rises almost vertically when the furnace lid of the melting furnace 40 is opened adheres to the optical window of the laser projector 1 or the laser receiver 6, which causes a change in laser intensity, that is, a decrease in reliability of measurement accuracy. This is to prevent the laser projector 1 and the laser receiver 6 from receiving the radiant heat of the molten metal near 1500 ° C. As the calibrator 14, the inner diameter d =
A sample having a size of 0.09 m and a length h of 0.5 m was used, and was filled with about 90% of the volume of fresh water. At this time, the capacity of the fresh water was v = 0.0029 m 3 . First of all,
The laser projector 1, the laser receiver 6, and the calibrator 14 were arranged in the same manner as in the actual measurement, and the calibrator 14 was irradiated with laser in a state of only fresh water without adding dust, and a logarithmic conversion value X0 of the laser transmittance was obtained. . Next, in order to calculate a linear regression equation, dust generated from the melting furnace 40 is collected, a dust sample whose weight N1 has been measured in advance is added, and the dust is shaken by hand to diffuse uniformly. The logarithmic conversion value of the laser transmittance with respect to was output to a printer or the like every 0.1 seconds, and the peak value was obtained as the logarithmic conversion value X1.
【0025】ここで、直線回帰式を精度よく求めるため
には、実際の粉塵発生状態に近い透過率が得られるよう
な粉塵量を校正器14に添加した。この粉塵量は次のよ
うにして設定した。まず、これまでの経験より、溶解炉
40については、その上方での粉塵濃度は2g/m3〜
10g/m3程度であり、溶解炉上面から1mの高さで
は粉塵ガス39は約1.5mの幅で広がっていることが
わかっていた。これよりこれを基準として、レーザ投射
光5が校正器14の長さh=0.5mを通過する時の透
過率が、前述した粉塵ガス幅1.5mを通過した時と同
等になるように粉塵量を決めた。溶解炉40の上方での
粉塵濃度が例えば2g/m3の場合、これに相当する粉
塵添加量は以下のようにして算出した。 2×0.0029×1.5/0.5=0.0174g これより、約17mg見当で、正確に重量を測定した粉
塵サンプルを5セット用意し、校正器14に1セット添
加する毎にレーザ透過率の対数値Xiを測定していっ
た。なお、清水に微量な界面活性剤を添加したところ、
粉塵の拡散状態が安定して保て良好であった。Here, in order to obtain the linear regression equation with high accuracy, a dust amount was added to the calibrator 14 so as to obtain a transmittance close to the actual dust generation state. This dust amount was set as follows. First, from the experience so far, the dust concentration above the melting furnace 40 is 2 g / m 3 or more.
It was about 10 g / m 3 , and it was found that the dust gas 39 spread in a width of about 1.5 m at a height of 1 m from the top of the melting furnace. From this, on the basis of this, the transmittance when the laser projection light 5 passes through the length h = 0.5 m of the calibrator 14 is made equal to that when the laser projection light 5 passes through the dust gas width 1.5 m described above. The amount of dust was determined. When the dust concentration above the melting furnace 40 is, for example, 2 g / m 3 , the corresponding amount of added dust was calculated as follows. 2 × 0.0029 × 1.5 / 0.5 = 0.0174 g From this, 5 sets of dust samples whose weights are accurately measured with approximately 17 mg register are prepared. The logarithmic value Xi of the transmittance was measured. In addition, when a small amount of surfactant was added to Shimizu,
The diffusion state of the dust was stable and good.
【0026】続いて、上記添加粉塵重量Niと測定した
レーザ透過率の対数値Xiのデータから、粉塵量を推定
するための直線回帰式N=AX+B’を最小二乗法によ
り求めた。上記添加粉塵量Niとレーザ透過率の対数変
換値Xiをもとにした直線回帰式との関係を図5に示
す。これより溶解炉40から発生した粉塵のデータから
粉塵量を推定する直線回帰式35aの傾きAは、A=6
7であった。なお、同図に上に示すもう一つの直線回帰
式35bは同じようにして求めた自動注湯機に対するも
のである。次に現場での実測に先立って、粉塵量を推定
する直線回帰式の定数A、Bの値を設定する操作を行っ
た。まず、前記溶解炉40の粉塵量を測定する場合、校
正容器14を外した状態で、レーザ透過率の対数変換値
Xairを求めた。このときの粉塵量の表示値Nair値の表
示器31の表示が0になるように、オフセット調節手段
34を調整した。次に、所定の減衰率(例えば10%)
のNDフィルタを受光器6前に挿入し、レーザ透過率の
対数変換値Xnを求めた。このNDフィルタを挿入した
状態で、粉塵量Nnの表示値が、Nn=67(Xn―X
air)の計算式で求めた値となるように増幅率調節手段
33を調整した。Subsequently, a linear regression equation N = AX + B ′ for estimating the amount of dust was obtained by the least square method from the data of the added dust weight Ni and the logarithmic value Xi of the measured laser transmittance. FIG. 5 shows the relationship between the amount of added dust Ni and the linear regression equation based on the logarithmic conversion value Xi of the laser transmittance. From this, the slope A of the linear regression equation 35a for estimating the amount of dust from the data of the dust generated from the melting furnace 40 is A = 6.
It was 7. The other linear regression equation 35b shown above in the same figure is for an automatic pouring machine obtained in the same manner. Next, prior to actual measurement at the site, an operation of setting values of constants A and B of a linear regression equation for estimating the amount of dust was performed. First, when measuring the amount of dust in the melting furnace 40, the logarithmic conversion value Xair of the laser transmittance was obtained with the calibration container 14 removed. At this time, the offset adjusting means 34 was adjusted so that the display 31 of the display value Nair value of the dust amount became 0. Next, a predetermined attenuation rate (for example, 10%)
Was inserted in front of the light receiver 6 to obtain a logarithmic conversion value Xn of the laser transmittance. With the ND filter inserted, the display value of the dust amount Nn is Nn = 67 (Xn-X
The amplification factor adjusting means 33 was adjusted to have a value obtained by the calculation formula of (air).
【0027】次に上記のようにして校正した操作盤30
を用い、レーザ投光器1とレーザ受光器6を対象の溶解
炉40に対し前述した所定の位置にセットし、溶解炉4
0の蓋が開放された後の、0.1秒毎の測定した粉塵量
Nを表示器31に表示するとともに、プリンタに出力し
ていった。ここで、上記粉塵量Nは校正操作の基準(内
径0.09m、長さ0.5mの円筒の容量0.0029
m3中に含まれた粉塵量)に対する粉塵量を示したもの
であり、実際の粉塵量は次のようにして求めた。まず、
ビデオカメラ37で粉塵ガス39の動きを撮像していっ
た。同時に溶解炉の上方に設置した風速計38から粉塵
ガスの上昇速度Sを測定し、上記粉塵量Nを出力する同
時刻の値をプリンタに出力していった。レーザ投射光の
粉塵ガス通過長さLは、撮像後の映像をもとに、上述の
測定時刻に相当する画像中に写っている赤色のレーザ光
の画像から算出していった。これより、サンプリング時
間間隔0.1秒間に発生する粉塵ガス発生量はS×0.
1×πH2/4であり、投射光5が透過した粉塵ガス通
過長さLであることから、粉塵発生源から発生したサン
プリング時間毎の粉塵量Yは下記式により求めた。 Y= N× (0.5/L)×(S×0.1×πH2/4)
/0.0029 なお、本実施例においては、レーザ照射方向は粉塵発生
移動方向にほぼ直交するため、H=Lとおくことがで
き、上式は次のようにまとめた。 Y=13.5×N×L×S 上記のようにして求めた溶解炉40の蓋が開閉する間の
時間経過とその間に発生した粉塵量の関係を模式的に示
したものが図6である。以上、鋳造工場の溶解炉から発
生する粉塵量の測定の実施例について説明したが、同様
にして他の粉塵発生源から発生する粉塵量を測定した
り、粉塵濃度を測定することができることは言うまでも
ない。Next, the operation panel 30 calibrated as described above
The laser projector 1 and the laser receiver 6 are set at the above-mentioned predetermined positions with respect to the target melting furnace 40 by using
After the lid of No. 0 was opened, the measured dust amount N every 0.1 second was displayed on the display 31 and output to the printer. Here, the dust amount N is a reference for the calibration operation (capacity of a cylinder having an inner diameter of 0.09 m and a length of 0.5 m of 0.0029 mm).
(the amount of dust contained in m 3 ), and the actual amount of dust was determined as follows. First,
The movement of the dust gas 39 was imaged by the video camera 37. At the same time, the rising speed S of the dust gas was measured from the anemometer 38 installed above the melting furnace, and the value at the same time when the dust amount N was output was output to the printer. The dust gas passage length L of the laser projection light was calculated from the image of the red laser light in the image corresponding to the above-described measurement time, based on the image after imaging. Accordingly, the amount of dust gas generated in the sampling time interval of 0.1 second is S × 0.
1 × a πH 2/4, since the projection light 5 is dust gas passage length L that has passed through dust amount Y of each sampling time generated from the dust generation source was determined by the following equation. Y = N × (0.5 / L ) × (S × 0.1 × πH 2/4)
In this example, since the laser irradiation direction is substantially perpendicular to the dust generation movement direction, H = L can be set, and the above equation is summarized as follows. Y = 13.5 × N × L × S FIG. 6 schematically shows the relationship between the elapsed time during which the lid of the melting furnace 40 is opened and closed and the amount of dust generated during the opening and closing as determined above. is there. Although the embodiment of measuring the amount of dust generated from the melting furnace of the foundry has been described above, it goes without saying that the amount of dust generated from other dust sources and the concentration of the dust can be measured in the same manner. No.
【0027】[0027]
【発明の効果】以上説明した本発明は次の効果を有して
いる。 1)投光器と受光器を分離しているので、粉塵発生範囲
の異なるものにも広く対応できる。 2)投光器と受光器を粉塵ガスに触れさせず測定するこ
とができるので、粉塵ガスが光学窓等に付着することに
よる精度低下が防止でき、また粉塵ガスが高温或いは腐
食性のものであっても機器を損傷することなく測定でき
る。 3)粉塵の絶対量を測定することができるので、粉塵発
生源の環境への影響度の大小、及び対策後の効果が的確
に把握できるので、環境改善に有効である。 4)粉塵濃度も測定できるので、場所毎の大気中の粉塵
雰囲気の良否が判定できる。 5)レーザ透過率と粉塵量を推定する直線回帰式の傾き
を校正操作により求めるので、粉塵発生源及び粉塵性状
が異なっていても、校正操作をすることで測定をするこ
とができる。 6)校正操作は、予め別の場所で行なうことができるの
で、現場測定は効率良く短時間で実施することができ
る。 7)レーザ強度の信号処理、粉塵量演算処理をハードウ
エアによる論理回路で製作すると、制御部をコンパクト
にすることができ、現場での取扱いが容易となる。The present invention described above has the following effects. 1) Since the light emitter and the light receiver are separated from each other, it is possible to cope with those having different dust generation ranges. 2) Since it is possible to perform measurement without causing the projector and the receiver to come into contact with dust gas, it is possible to prevent a decrease in accuracy due to dust gas adhering to an optical window or the like, and to use a high temperature or corrosive dust gas. Can be measured without damaging the equipment. 3) Since the absolute amount of dust can be measured, the magnitude of the degree of influence of the dust source on the environment and the effect after the countermeasures can be accurately grasped, which is effective for environmental improvement. 4) Since the dust concentration can also be measured, the quality of the dust atmosphere in the air at each location can be determined. 5) Since the slope of the linear regression equation for estimating the laser transmittance and the amount of dust is obtained by a calibration operation, it is possible to measure by performing the calibration operation even if the dust source and the dust properties are different. 6) Since the calibration operation can be performed in another place in advance, on-site measurement can be performed efficiently and in a short time. 7) If the signal processing of the laser intensity and the processing for calculating the amount of dust are manufactured by a hardware logic circuit, the control unit can be made compact and handling on site becomes easy.
【図1】本発明の粉塵量測定装置の全体構成を示す概略
図FIG. 1 is a schematic diagram showing an entire configuration of a dust amount measuring device of the present invention.
【図2】レーザ及び制御に関する説明のための図FIG. 2 is a diagram for explaining a laser and control.
【図3】レーザ投射光と入射光の制御部での処理を説明
するための図FIG. 3 is a diagram for explaining processing in a control unit for controlling laser projection light and incident light;
【図4】制御部を簡易化した実施の形態2を説明するた
めの図FIG. 4 is a diagram illustrating a second embodiment in which a control unit is simplified.
【図5】校正操作により2種類の粉塵に対し直線回帰式
を求めた例を示す図FIG. 5 is a diagram showing an example of obtaining a linear regression equation for two types of dust by a calibration operation.
【図6】溶解炉の蓋の開閉に伴う粉塵量発生状況を示す
図FIG. 6 is a diagram showing a state of generation of dust amount due to opening and closing of a lid of a melting furnace.
【図7】粉塵量を測定するときの手順を示す流れ図FIG. 7 is a flowchart showing a procedure for measuring the amount of dust.
1…レーザ投光器、 2…光源、 5…投射光、 6…
レーザ受光器 9…光軸出し窓、 10…受光レンズ、 12…受光素
子、 13…入射光 14…校正器、 17…信号処理部、 18…光学窓、
19…絞り 20…入出力部、 22…モニタ、 26…対数演算
部、 27…メモリ 28…粉塵量演算部、 29…出力端子、 30…操作
盤、 31…表示器 33…増幅率調整手段、 34…オフセット値調整手
段、 36…粉塵ガス測定手段、 37…ビデオカメ
ラ、 38…風速計、 39…粉塵ガス1 ... laser projector, 2 ... light source, 5 ... projection light, 6 ...
Laser light receiver 9: optical axis opening window, 10: light receiving lens, 12: light receiving element, 13: incident light 14: calibrator, 17: signal processing unit, 18: optical window,
19: Aperture 20: Input / output unit, 22: Monitor, 26: Logarithmic operation unit, 27: Memory 28: Dust amount operation unit, 29: Output terminal, 30: Operation panel, 31: Display 33: Amplification rate adjusting means, 34: Offset value adjusting means 36: Dust gas measuring means 37: Video camera 38: Anemometer 39: Dust gas
Claims (5)
レーザ投光器と分離された該投射光を受けるレーザ受光
器と、前記レーザ投光器とレーザ受光器と電気的に接続
されレーザ光線の透過率の対数変換値を求めるととも
に、設定した対数変換値と粉塵量の関係式と、粉塵ガス
発生量をもとに粉塵量を算出する制御部と、対数変換値
と粉塵量の関係式を表す直線回帰式を求めるための校正
器とを有していることを特徴とする粉塵量測定装置。A laser projector for projecting a laser beam;
A laser receiver for receiving the projection light separated from the laser projector, a logarithmic conversion value of the transmittance of the laser beam electrically connected to the laser projector and the laser receiver, and a set logarithmic conversion value and a set amount of dust. And a control unit for calculating the amount of dust based on the amount of dust gas generated, and a calibrator for obtaining a linear regression equation representing the relationship between the logarithmic conversion value and the amount of dust. Dust amount measurement device.
測定対象固有の直線回帰式の傾きを示す定数を求めるた
めの校正操作の時に用い、内部に媒体を充填し粉塵を添
加拡散することができる両端部が光透過性の筒体で、レ
ーザ投射光が軸心に沿って筒体内を貫通することができ
ることを特徴とする請求項1記載の粉塵量測定装置。2. The calibrator is used at the time of a calibration operation for obtaining a constant indicating a slope of a linear regression equation specific to a measurement object prior to the measurement of the amount of dust, in which a medium is filled and dust is added and diffused. 2. The dust amount measuring device according to claim 1, wherein both end portions capable of being formed are light-transmitting cylinders, and the laser projection light can penetrate the cylinder along the axis.
測定手段と粉塵ガス移動速度測定手段をもとに求め、粉
塵量として所定時間毎の粉塵絶対量を算出することを特
徴とする請求項1又は2に記載の粉塵量測定装置。3. The dust gas generation amount is obtained based on a dust gas generation width measuring unit and a dust gas moving speed measuring unit, and an absolute dust amount at predetermined time intervals is calculated as a dust amount. Item 3. The dust amount measuring device according to Item 1 or 2.
射光を受けるレーザ受光器からの入射光強度をもとに透
過率の対数変換値を求め、予め校正操作をもとに求めた
粉塵量測定対象固有の対数変換値と粉塵量の関係式から
校正基準の粉塵量を算出し、レーザ投射光の粉塵ガス通
過長さと粉塵ガス発生量を測定して前記校正基準の粉塵
量を補正し、実際に発生した粉塵量を算出することを特
徴とする粉塵量測定方法。4. A logarithmic conversion value of transmittance is determined based on the intensity of light projected from a laser projector and the intensity of incident light from a laser receiver receiving the projected light. Calculate the dust amount of the calibration standard from the relational expression of the logarithmic conversion value and the amount of dust specific to the amount measurement object, measure the dust gas passage length of the laser projection light and the amount of dust gas generated, and correct the dust amount of the calibration standard. A method for measuring the amount of dust actually generated.
定長さの校正器に、重量既知の粉塵サンプルを混合する
毎に、レーザ投光器からレーザ光を軸心方向から投射し
て入射光をレーザ受光器で受け、この時の粉塵量に対す
るレーザ透過率の対数変換値を収集し、これより直線回
帰式を求め、その傾きを示す定数を求めることを特徴と
する請求項4に記載の粉塵量測定方法。5. A calibrating operation is performed by projecting a laser beam from a laser projector from an axial direction every time a dust sample of a known weight is mixed with a calibrator of a predetermined length having a medium of a known capacity. 5. The method according to claim 4, wherein a logarithmic conversion value of the laser transmittance with respect to the amount of dust at this time is collected, a linear regression equation is determined from the logarithmic conversion equation, and a constant indicating the slope thereof is determined. Dust amount measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06885298A JP3968675B2 (en) | 1998-03-18 | 1998-03-18 | Dust generation measuring device and measuring method of dust generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06885298A JP3968675B2 (en) | 1998-03-18 | 1998-03-18 | Dust generation measuring device and measuring method of dust generation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003105003A Division JP3909705B2 (en) | 2003-04-09 | 2003-04-09 | Calculation method of dust generation prediction formula from dust source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11264796A true JPH11264796A (en) | 1999-09-28 |
JP3968675B2 JP3968675B2 (en) | 2007-08-29 |
Family
ID=13385625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06885298A Expired - Fee Related JP3968675B2 (en) | 1998-03-18 | 1998-03-18 | Dust generation measuring device and measuring method of dust generation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3968675B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107884322A (en) * | 2017-10-30 | 2018-04-06 | 重庆广睿达科技有限公司 | The dynamic calibration method and monitor that a kind of chemical constituent for eliminating particulate matter influences |
CN107941666A (en) * | 2017-10-30 | 2018-04-20 | 重庆广睿达科技有限公司 | The dynamic calibration method and monitor that a kind of humiture for eliminating particulate matter influences |
CN109490153A (en) * | 2018-12-29 | 2019-03-19 | 杭州春来科技有限公司 | A kind of double light path laser dust instrument |
CN110573855A (en) * | 2017-04-14 | 2019-12-13 | 理音株式会社 | particle measuring device and particle measuring method |
CN112326519A (en) * | 2020-10-15 | 2021-02-05 | 上海北分科技股份有限公司 | Detection method and detection device of laser scattering dust meter |
CN112903551A (en) * | 2021-02-05 | 2021-06-04 | 顺德职业技术学院 | Laser dust sensor and automatic compensation method thereof |
CN115970599A (en) * | 2022-12-13 | 2023-04-18 | 中国矿业大学 | High-precision belt type dust generator and calibration method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102637410B1 (en) * | 2016-06-16 | 2024-02-16 | 엘지전자 주식회사 | Apparatus and method for measuring dust |
-
1998
- 1998-03-18 JP JP06885298A patent/JP3968675B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110573855A (en) * | 2017-04-14 | 2019-12-13 | 理音株式会社 | particle measuring device and particle measuring method |
CN107884322A (en) * | 2017-10-30 | 2018-04-06 | 重庆广睿达科技有限公司 | The dynamic calibration method and monitor that a kind of chemical constituent for eliminating particulate matter influences |
CN107941666A (en) * | 2017-10-30 | 2018-04-20 | 重庆广睿达科技有限公司 | The dynamic calibration method and monitor that a kind of humiture for eliminating particulate matter influences |
CN109490153A (en) * | 2018-12-29 | 2019-03-19 | 杭州春来科技有限公司 | A kind of double light path laser dust instrument |
CN112326519A (en) * | 2020-10-15 | 2021-02-05 | 上海北分科技股份有限公司 | Detection method and detection device of laser scattering dust meter |
CN112326519B (en) * | 2020-10-15 | 2024-05-24 | 上海北分科技股份有限公司 | Detection method and detection device of laser scattering dust meter |
CN112903551A (en) * | 2021-02-05 | 2021-06-04 | 顺德职业技术学院 | Laser dust sensor and automatic compensation method thereof |
CN115970599A (en) * | 2022-12-13 | 2023-04-18 | 中国矿业大学 | High-precision belt type dust generator and calibration method thereof |
CN115970599B (en) * | 2022-12-13 | 2023-08-11 | 中国矿业大学 | High-precision belt type dust generator and calibration method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3968675B2 (en) | 2007-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106706852B (en) | A kind of scaling method and system of gas concentration sensor | |
CN105705917A (en) | Precision scale or mass comparator with module for detecting a measurement uncertainty | |
JPH08501637A (en) | Method for simulating smoke of scattered light smoke sensor, method for calibrating smoke sensitivity of smoke sensor, and use of method for simulating smoke | |
CN106053391A (en) | Turbidity measuring method, turbidity measuring device and turbidimeter | |
JP6301910B2 (en) | Contact lens inspection apparatus and inspection method | |
JPH11264796A (en) | Dust quantity measuring device and measuring method | |
JPS5833106A (en) | Device for measuring varying quantity of thickness of paint layer | |
US4176953A (en) | Method and apparatus for measuring the motility of sperm cells | |
CN101809430A (en) | Standard media suspension body, optical particulate measurement instrument, and verification method for an optical particulate measurement instrument | |
JP3909705B2 (en) | Calculation method of dust generation prediction formula from dust source | |
CN116819811B (en) | Method and system for measuring response time of liquid crystal display | |
JPH07146113A (en) | Laser displacement meter | |
JP2002517717A (en) | Turbidimeter calibration test system | |
WO2019138856A1 (en) | Performance testing method and performance testing system for particulate concentration measuring instrument, control method and control device for same, and storage medium | |
CN115096768A (en) | Backlight imaging system and method capable of simultaneously measuring particle size and volume concentration of particles | |
WO2022087223A1 (en) | A stokes-based method to estimate gelation time | |
US9869626B2 (en) | Particle size distribution measuring apparatus and particle size distribution measuring method | |
CN109855726A (en) | A kind of calibrating installation and method of the light source power of Immune scatter turbidimetry | |
JPH0815093A (en) | Device for inspecting headlight | |
CN108956095A (en) | A kind of optical lens pollution level measurement method and device | |
CN105092474A (en) | Device and method for measuring extinction coefficient of water body and method for measuring extinction coefficient of suspended matter | |
JPS6117007A (en) | Automatic measuring apparatus of contact angle | |
USH1655H (en) | Backscatter haze measurement using a distributed light source | |
JPH03122550A (en) | Method and apparatus of measuring grain | |
CN113433569B (en) | Atmospheric parameter measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050221 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070524 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |