JPH11264794A - Method of evaluating material separation of high fluid concrete - Google Patents

Method of evaluating material separation of high fluid concrete

Info

Publication number
JPH11264794A
JPH11264794A JP9078598A JP9078598A JPH11264794A JP H11264794 A JPH11264794 A JP H11264794A JP 9078598 A JP9078598 A JP 9078598A JP 9078598 A JP9078598 A JP 9078598A JP H11264794 A JPH11264794 A JP H11264794A
Authority
JP
Japan
Prior art keywords
concrete
color difference
separation
high fluid
fluid concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9078598A
Other languages
Japanese (ja)
Other versions
JP3627958B2 (en
Inventor
Masanobu Tokuhisa
正信 徳久
Itoshi Izumi
意登志 和泉
Toshio Yonezawa
敏男 米澤
Kazumasa Inoue
和政 井上
Toshiaki Yamada
敏昭 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP09078598A priority Critical patent/JP3627958B2/en
Publication of JPH11264794A publication Critical patent/JPH11264794A/en
Application granted granted Critical
Publication of JP3627958B2 publication Critical patent/JP3627958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To quantitatively and precisely evaluate the material separation by measuring the color difference in surface between a non-separated fresh general concrete using the same material as high fluid concrete and the fresh high fluid concrete. SOLUTION: A non-separated reference concrete (for example, general concrete with slump of 18 cm) using the same material as high fluid concrete and the high fluid concrete to be measured are formed, and rested for about 5 minutes until the state is settled. A protecting cover 3 consisting of an organic transparent resin or glass plate is directly mounted on the tip of a color difference gauge body 1, or a light shielding cylinder 6 with (without) the protecting cover 3 is used according to the circumferential state or measuring condition. The color difference gauge body 1 is vertically set on the surface 4 of a sample, and the color difference digitally displayed on a data display part 2 is read. When the color difference between both the concretes is 5-10 or less, absence of separation is judged, and when it exceeds 5-10, presence of separation is judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高流動コンクリー
トの材料分離評価方法に関する。高流動コンクリート
は、比較的多量の高性能AE減水剤等を使用することで
高い流動性を保持できるものであり、高密度配筋部や複
雑な形状部でも締固め不要で密実に打込むことができる
という特長を有している。しかし、材料分離が生じると
逆に鉄筋通過性が悪くなったり、施工後の仕上がり面に
ジャンカを形成するなどの悪影響がでるため、その特長
を活かすには、施工上、材料分離の品質管理が大切であ
る。そこで、本発明は、高流動コンクリートの材料分離
を定量的に判断する新たな技術を提供し、高流動コンク
リートの品質管理を合理化しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating material separation of highly fluid concrete. High-fluidity concrete can maintain high fluidity by using a relatively large amount of high-performance AE water-reducing agent. It has the feature that it can be done. However, if material separation occurs, adverse effects such as deterioration of rebar penetration and formation of junkers on the finished surface after construction will occur, so quality control of material separation in construction is required to take advantage of this feature. It is important. Then, this invention aims at rationalizing the quality control of a high fluidity concrete by providing the new technique which judges the material separation of the high fluidity concrete quantitatively.

【0002】[0002]

【従来の技術】高流動コンクリートを製造した際、その
フレッシュコンクリート(まだ固まらないコンクリー
ト)において実際に材料分離を起こしているか否かの判
断は、JASS 5(日本建築学会コンクリート工事標準仕様
書)又は高流動コンクリートの材料・調合・製造・施工
指針に従っている。このJASS 5では、材料分離の有無を
スランプフロー試験後のコンクリートの状態から行うこ
とになっており、広がったコンクリートの中央部に粗骨
材が偏在していないこと及び周辺部にペーストや遊離し
た水が偏在していないことを目視で評価するものであ
る。つまり、ここでは材料分離の有無を定量的に判断す
る十分な基準は確立されておらず、コンクリート技術者
が目視判断で決定しているのが実情である。したがっ
て、この方法では、個人の判断によるところが強いた
め、各人の技術レベルによって判断結果が異なる危険性
がある。
2. Description of the Related Art When a high-fluidity concrete is manufactured, it is determined whether or not material separation has actually occurred in the fresh concrete (concrete that has not yet set) by JASS 5 (Architectural Institute of Japan Standard Specification for Concrete Work) or Follow the guidelines for materials, mix, manufacture and construction of high fluidity concrete. In this JASS 5, the presence or absence of material separation is supposed to be performed from the state of the concrete after the slump flow test, and that coarse aggregate is not unevenly distributed in the center of the spread concrete, and paste or loosened in the peripheral part It is visually evaluated that water is not unevenly distributed. That is, here, a sufficient standard for quantitatively determining the presence or absence of material separation has not been established, and the actual situation is that a concrete engineer has decided by visual judgment. Therefore, in this method, there is a risk that the result of the judgment differs depending on the skill level of each person since the judgment depends on the individual.

【0003】一方、コンクリート硬化後の判定技術とし
ては、粗骨材とモルタルとの面積比率を調査する方法が
存在している。この方法は、型枠内にコンクリートを打
設した際に生じる粗骨材とモルタルとの分離性状を評価
するものであり、その一手法として、打設したコンクリ
ートの硬化後にコア抜きによりサンプルを採取し、該サ
ンプルを截断研磨してその研磨面上に現れた粗骨材とモ
ルタルの面積比率を調査することで、コンクリートの分
離性状を把握する方法である。しかし、硬化後にコンク
リートの分離性状を評価しても、既に打設は完了してお
り、仮に悪い評価がでても今更解体することもできな
い。したがって、硬化後の品質管理ではなく、事前の品
質管理すなわちフレッシュコンクリート時の分離評価が
重要となる。
On the other hand, as a technique for judging after hardening of concrete, there is a method of investigating an area ratio between coarse aggregate and mortar. This method evaluates the property of separation between coarse aggregate and mortar that occurs when concrete is poured into a formwork.One of the methods is to collect a sample by coring after hardening of the poured concrete. Then, the sample is cut and polished, and the area ratio between the coarse aggregate and the mortar that appears on the polished surface is investigated to determine the property of concrete separation. However, even if the separation properties of the concrete are evaluated after hardening, the concrete has already been poured, and even if the evaluation is bad, it cannot be dismantled yet. Therefore, not quality control after hardening but prior quality control, that is, separation evaluation at the time of fresh concrete is important.

【0004】かかる状況下にあって、近年、高流動コン
クリートにおける材料分離の程度を定量化できる試験方
法の一つが提案された(特開平9-21797 号公報)。この
試験方法は、高性能減水剤を配合した高流動コンクリー
トを作製する際に、所定のモールド内に該コンクリート
を装填し、このモールド内コンクリートの上面全体に所
定の吸水性シートを接触させ、この接触状態に一定時間
静置した後、該吸水性シートを剥がし、この試験前後の
該シートの重量差から該シートへの吸着量を求め、この
吸着量を該コンクリートの材料分離の指標とするもので
ある。しかし、この吸水試験方法は、ブリーディングに
伴ってコンクリート表面に浮き上がったペースト状の水
を吸水性シートに吸着させ、その吸着量(重量)を材料
分離の指標とするものであるから、次のような問題点を
有している。 材料分離の指標として用いている吸着量すなわち吸
水量は、材料(細骨材、粗骨材)及び調合(水セメント
比W/C等)によって変化を生じるので、吸水量そのも
のを絶対値として判断するのは難しいと考えられる。 高流動コンクリートでも、調合が高水セメント比
(W/C≧40%)では、ブリーディングを生じ、低水
セメント比(W/C≦40%)では、ブリーディングを
ほとんど生じないといった2つのケースが存在する。し
たがって、ブリーディングのない又は少ない低水セメン
ト比(W/C≦40%)の領域では成立しても、高水セ
メント比(W/C≧40%)では吸水量の絶対値で判断
するのは困難であると考えられる。つまり、高水セメン
ト比で製造した高流動コンクリートは、高性能AE減水
剤を過剰添加する前の段階においてコンクリート表面に
水が浮き上がってしまうため、最初からブリーディング
水が存在するコンクリートの材料分離を吸水量で判断す
るのは難しいからである。なお、上記試験に用いている
低水セメント比(W/C=30%)の高流動コンクリー
トは高粉体量であるので、上述のような浮き水などの静
的な分離よりもむしろ流動時における鉄筋通過性等の分
離評価が重要な管理となる。したがって、試料として適
正かどうかは疑問である。
[0004] Under such circumstances, in recent years, one of test methods capable of quantifying the degree of material separation in high fluidity concrete has been proposed (Japanese Patent Application Laid-Open No. 9-21797). In this test method, when producing a high fluidity concrete containing a high-performance water reducing agent, the concrete is loaded into a predetermined mold, and a predetermined water-absorbent sheet is brought into contact with the entire upper surface of the concrete in the mold. After being left in contact for a certain period of time, the water-absorbent sheet is peeled off, the amount of adsorption to the sheet is determined from the weight difference of the sheet before and after the test, and the amount of adsorption is used as an index of material separation of the concrete. It is. However, in this water absorption test method, paste-like water floating on the concrete surface due to bleeding is adsorbed on the water-absorbent sheet, and the amount of adsorption (weight) is used as an index of material separation. Problems. Since the amount of adsorption, ie, the amount of water absorption, used as an index of material separation varies depending on the material (fine aggregate, coarse aggregate) and the preparation (water cement ratio W / C, etc.), the amount of water absorption itself is determined as an absolute value. It is considered difficult to do. Even in high fluidity concrete, there are two cases in which bleeding occurs at high water cement ratio (W / C ≧ 40%) and almost no bleeding occurs at low water cement ratio (W / C ≦ 40%). I do. Therefore, even if the condition is satisfied in the low water cement ratio (W / C ≦ 40%) region where there is no or little bleeding, the absolute value of the water absorption is determined at the high water cement ratio (W / C ≧ 40%). It is considered difficult. In other words, the high fluidity concrete produced at a high water cement ratio causes water to float on the concrete surface before the excessive addition of the high-performance AE water reducing agent, so that the material separation of the concrete in which bleeding water exists from the beginning absorbs water. It is difficult to judge by quantity. Since the high fluidity concrete having a low water cement ratio (W / C = 30%) used in the above test has a high powder content, it is more likely to be used in flowing than in static separation of floating water as described above. Evaluation of separation such as rebar penetration is important management. Therefore, it is questionable whether it is appropriate as a sample.

【0005】[0005]

【発明が解決しようとする課題】ところで、高流動コン
クリートの材料分離は、フロー試験の端部、中央部の骨
材遊離とともに、減水剤の過添加又は過加水によるブリ
ーディングとコンクリート表面上への白色又は茶褐色、
黒褐色の不純物が析出する現象を伴う。したがって、こ
の状態では、コンクリート表面の色が浮遊物により変化
を生じることになる。本発明は、この点に着目し、色の
変化により材料分離の評価を定量的に的確かつ十分に行
い得るようにするとともに、上述の吸水試験方法の場合
のような問題点を回避しようとするものである。
By the way, the material separation of the high-fluidity concrete is performed by releasing the aggregate at the end and the center of the flow test, bleeding due to excessive addition or over-hydration of the water reducing agent, and causing white color on the concrete surface. Or brown,
This is accompanied by the phenomenon that black-brown impurities precipitate. Therefore, in this state, the color of the concrete surface is changed by the suspended matter. The present invention pays attention to this point, and aims to quantitatively and accurately evaluate the material separation by changing the color, and to avoid the problems as in the above-described water absorption test method. Things.

【0006】[0006]

【課題を解決するための手段】上記目的達成のため、請
求項1の発明は、同一材料を用いた分離していないフレ
ッシュな普通コンクリート(例えばスランプ18cmの普
通コンクリート)とフレッシュな高流動コンクリートと
の表面を色差測定することで、高流動コンクリートの分
離状態を評価することを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that fresh unconcrete ordinary concrete (for example, slump 18 cm ordinary concrete) and fresh high-fluid concrete using the same material are used. The method is characterized by evaluating the separation state of high-fluidity concrete by measuring the color difference of the surface of the concrete.

【0007】請求項2の発明は、請求項1の高流動コン
クリートの分離状態評価法にあっては、両コンクリート
間の色差ΔEが、5乃至10以下で高流動コンクリート
に分離なし、5乃至10を超える場合に分離と判別す
る。
According to a second aspect of the present invention, there is provided a method for evaluating the state of separation of high-flowable concrete according to the first aspect, wherein the color difference ΔE between the two concretes is 5 to 10 or less, and the high-flowable concrete is not separated. If it exceeds, it is determined as separation.

【0008】[0008]

【発明の実施の形態】試験方法例を以下に示す。 1)基準となる分離していないコンクリート(高流動コ
ンクリートと同一の材料を用いたスランプ18cmの普通
コンクリート)と測定対象である高流動コンクリートを
作成する。 2)試料を作成した後、状態が落ちつくまで約5分間静
置させる。 3)色差計の先端部を有機系透明樹脂板、ガラス板等の
保護カバーで保護する。(試験器を保護する必要がない
場合、保護カバーは不要である。) 4)色差計を試料に垂直にセットし、計測を行う(図
1)。 5)計測した結果、色差計によりデジタル表示された色
差ΔEを読み取る。
BEST MODE FOR CARRYING OUT THE INVENTION An example of a test method is shown below. 1) Prepare unseparated concrete (standard slump 18 cm concrete using the same material as high-fluid concrete) and high-fluid concrete to be measured. 2) After preparing the sample, allow the sample to stand for about 5 minutes until the condition is settled. 3) Protect the tip of the color difference meter with a protective cover such as an organic transparent resin plate or a glass plate. (If the tester does not need to be protected, no protective cover is required.) 4) Set the colorimeter vertically on the sample and measure (Fig. 1). 5) As a result of the measurement, the color difference ΔE digitally displayed by the color difference meter is read.

【0009】[0009]

【実施例】上記試験方法例に従って次の通り実験を行っ
た。この実験には、図1に示すビックケミー・ジャパン
製の色差計を用い、かつ、該色差計の先端部を有機系透
明樹脂板の保護カバーで保護した。なお、図1は、実験
における一測定状態を示しており、図1において、1
は、色差計本体、2は、データ表示部、3は、保護カバ
ー(有機系透明樹脂板)、4は、コンクリートフロー試
験後の試料(高流動コンクリート)表面、5は、コンク
リートフロー板を示している。また、6は、遮光筒であ
る。該遮光筒は、周辺の状況、計測条件等により必要に
応じて使用すればよいが、該遮光筒を使用する場合は、
上記保護カバーを付設した保護カバーありのもの又はな
しのものを用いる。ビックケミー・ジャパン製の色差計
は、1976年CIEにて推奨されたL*** 表色
系に基づき(L* は明度に対応する数値、a* 、b*
色相、彩度に対応する数値であり、+a* が赤方向、−
* が緑方向、+b* が黄色方向、−b* が青方向に対
応する。)、明度の違い、彩度の違い、色相の違いを検
出して、総合的に数値化して表示するものである。とこ
ろで、色差計による測定をフレッシュコンクリートの試
験時に行う場合、色差計を直接試料にセットするケース
と、色差計の破損を防止するために上述のように有機系
透明樹脂板等の保護カバーを用いるケースがある。そこ
で、ここでは、同じ試料を用いて、保護カバー(有機系
透明樹脂板)ありと保護カバーなしとで色差ΔEの影響
度合がどの程度異なるかを予め比較検討した。その結果
を図2に示す。この図2の保護カバーなしに対する相対
系の比較から、保護カバー(有機系透明樹脂板)を用い
て検出した色差ΔEは保護カバーなしの場合と変わらな
いと判断できる。
EXAMPLES The following experiments were conducted in accordance with the above test method examples. In this experiment, a color difference meter manufactured by Big Chemie Japan shown in FIG. 1 was used, and the tip of the color difference meter was protected by a protective cover made of an organic transparent resin plate. FIG. 1 shows one measurement state in the experiment.
Is a color difference meter main body, 2 is a data display unit, 3 is a protective cover (organic transparent resin plate), 4 is a sample (high-fluidity concrete) surface after a concrete flow test, and 5 is a concrete flow plate. ing. Reference numeral 6 denotes a light-shielding cylinder. The light-shielding cylinder may be used as necessary depending on the surrounding conditions, measurement conditions, and the like, but when using the light-shielding cylinder,
One with or without a protective cover with the above protective cover is used. The color difference meter manufactured by Big Chemie Japan is based on the L * a * b * color system recommended by the CIE in 1976 (L * is a numerical value corresponding to lightness, and a * and b * are hues and saturations. + A * is red,-
a * corresponds to the green direction, + b * corresponds to the yellow direction, and -b * corresponds to the blue direction. ), A difference in brightness, a difference in saturation, and a difference in hue are detected and comprehensively digitized and displayed. By the way, when the measurement with a color difference meter is performed during a test of fresh concrete, a case where the color difference meter is directly set on a sample and a protective cover such as an organic transparent resin plate are used as described above to prevent damage to the color difference meter. There are cases. Therefore, here, using the same sample, the degree of influence of the color difference ΔE between the case with the protective cover (organic transparent resin plate) and the case without the protective cover was compared and examined in advance. The result is shown in FIG. From the comparison of the relative system to the case without the protective cover in FIG. 2, it can be determined that the color difference ΔE detected using the protective cover (organic transparent resin plate) is not different from the case without the protective cover.

【0010】実験:コンクリートの分離状態に対する目
視評価と色差ΔEとの関係に関する実験 本実験は、材料分離の指標とする色差ΔEの評価標準値
を検証したものである。その方法は、まず、分離してい
ないコンクリートと強制的に分離させたコンクリートを
用いて、高流動コンクリートの専門技術者による目視評
価を行った。次に、同じ試料を用いて、色差計で色差を
検出し、互いの相関結果より評価基準値を確認するもの
とした。
Experiment: Experiment on Relationship between Visual Evaluation of Concrete Separation State and Color Difference ΔE This experiment verified the evaluation standard value of color difference ΔE as an index of material separation. First of all, using a concrete that was forcibly separated from unseparated concrete, a high-performance concrete specialist visually evaluated it. Next, using the same sample, the color difference was detected by a color difference meter, and the evaluation reference value was confirmed from the mutual correlation result.

【0011】別紙表1には、本実験で用いたコンクリー
トの調合及び試験結果を、別紙表2には、同試料のL*
** 表色系と色差ΔEと分離目視評価を、また、図
3には、該試験結果における目視評価と色差ΔEの相関
関係を示す。別紙表1及び表2、図3における目視評価
は、高流動コンクリート開発スタッフ8名によって判断
したものである。ここでの目視評価に関しては、予め開
発スタッフ8名で目視に対する評価基準を明確にしてお
いたため、変動は 0.3〜0.5程度であった。コンクリー
トにおける材料分離の有無を目視評価値で判断すると、
評価値の境界は3〜4の間と考えられる。これを基準と
して相関関係にある色差ΔEを読み取ると、厳しい評価
で目視評価4を合格とすれば色差ΔE=5以下、ややゆ
るい評価で目視評価3を合格とすれば色差ΔE=10以
下が許容値と推測される。以上のことから、色差ΔE=
5から10をコンクリートにおける材料分離評価基準と
して用いることができる。
Table 1 shows the mix and test results of the concrete used in this experiment. Table 2 shows the L * of the same sample .
a * b * color system, color difference ΔE and separation visual evaluation, and FIG. 3 shows the correlation between visual evaluation and color difference ΔE in the test results. The visual evaluations in the attached Tables 1 and 2, and FIG. 3 were judged by eight highly fluid concrete development staff. Regarding the visual evaluation here, since the evaluation criteria for visual observation were clarified in advance by eight development staff, the fluctuation was about 0.3 to 0.5. Judging the presence or absence of material separation in concrete by visual evaluation value,
The boundary of the evaluation value is considered to be between 3 and 4. When the color difference ΔE having a correlation is read on the basis of this, the color difference ΔE = 5 or less is acceptable if the visual evaluation 4 is passed in a strict evaluation, and the color difference ΔE = 10 or less if the visual evaluation 3 is passed in a slightly loose evaluation. Guessed value. From the above, the color difference ΔE =
5 to 10 can be used as criteria for material separation in concrete.

【0012】[0012]

【発明の効果】本発明によれば、次の効果を奏する。 (1) 高流動コンクリートの材料分離を色差計で求めた色
差データより定量的に判断できるようになる。 (2) 材料分離の程度を目視で判断できる技術者が、高流
動コンクリートの製造及び施工に際して常駐する必要が
なくなる。 (3) 材料分離評価法を開発したことで、コンクリートの
分離によるポンプ圧送時の閉塞やコンクリート打設後に
引き起こす骨材とモルタルの分離を解消できる。
According to the present invention, the following effects can be obtained. (1) Material separation of high-fluidity concrete can be quantitatively judged from the color difference data obtained by the color difference meter. (2) A technician who can visually judge the degree of material separation does not need to be stationed when manufacturing and constructing high-fluidity concrete. (3) The development of the material separation evaluation method can eliminate blockage during pumping due to separation of concrete and separation of aggregate and mortar caused after concrete is poured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る色差計による測定
状況を示した概略図である。
FIG. 1 is a schematic diagram illustrating a measurement situation by a color difference meter according to an embodiment of the present invention.

【図2】 本発明の実施例に係る保護カバーありと保護
カバーなしの場合の色差ΔEの関係を示すグラフであ
る。
FIG. 2 is a graph showing a relationship between a color difference ΔE when a protective cover is provided and when a protective cover is not provided according to the embodiment of the present invention.

【図3】 本発明の実施例に係るコンクリートの目視評
価と色差ΔEとの関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a visual evaluation and a color difference ΔE of concrete according to an example of the present invention.

【符号の説明】 1…色差計本体 2…データ表示部 3…保護カバー(有機系透明樹脂板) 4…コンクリートフロー試験後の試料表面 5…コンクリートフロー板 6…遮光筒[Explanation of Signs] 1 ... Color difference meter main body 2 ... Data display section 3 ... Protective cover (organic transparent resin plate) 4 ... Sample surface after concrete flow test 5 ... Concrete flow plate 6 ... Light shielding tube

【表1】 [Table 1]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米澤 敏男 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 井上 和政 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 山田 敏昭 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Yonezawa 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside the Technical Research Institute, Takenaka Corporation (72) Inventor Kazuma Inoue 1-5-5 Otsuka, Inzai City, Chiba Prefecture 1 Takenaka Corporation Technical Research Institute Co., Ltd. (72) Inventor Toshiaki Yamada 8-21-1, Ginza, Chuo-ku, Tokyo Takenaka Civil Engineering Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 同一材料を用いた分離していないフレッ
シュな普通コンクリートとフレッシュな高流動コンクリ
ートとの表面を色差測定することで、高流動コンクリー
トの分離状態を評価することを特徴とする高流動コンク
リートの材料分離評価方法。
1. A method for evaluating the state of separation of high-fluidity concrete by measuring the color difference between the surfaces of unseparated fresh ordinary concrete and fresh high-fluidity concrete using the same material. Concrete material separation evaluation method.
【請求項2】 両コンクリート間の色差ΔEが、5乃至
10以下で高流動コンクリートに分離なし、5乃至10
を超える場合に分離と判別する請求項1記載の高流動コ
ンクリートの分離状態評価法。
2. When the color difference ΔE between the two concretes is 5 to 10 or less, there is no separation into high-fluidity concrete, and 5 to 10
The method for evaluating the state of separation of high-fluidity concrete according to claim 1, wherein the separation is determined when the value exceeds.
JP09078598A 1998-03-18 1998-03-18 Material separation evaluation method for high fluidity concrete Expired - Fee Related JP3627958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09078598A JP3627958B2 (en) 1998-03-18 1998-03-18 Material separation evaluation method for high fluidity concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09078598A JP3627958B2 (en) 1998-03-18 1998-03-18 Material separation evaluation method for high fluidity concrete

Publications (2)

Publication Number Publication Date
JPH11264794A true JPH11264794A (en) 1999-09-28
JP3627958B2 JP3627958B2 (en) 2005-03-09

Family

ID=14008262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09078598A Expired - Fee Related JP3627958B2 (en) 1998-03-18 1998-03-18 Material separation evaluation method for high fluidity concrete

Country Status (1)

Country Link
JP (1) JP3627958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250628A (en) * 2005-03-09 2006-09-21 Taiheiyo Cement Corp Alkali/silica reactivity testing method of aggregate and quality control method
JP2015081907A (en) * 2013-10-24 2015-04-27 太平洋セメント株式会社 Workability evaluation method of fresh concrete
JP2016037722A (en) * 2014-08-06 2016-03-22 太平洋セメント株式会社 Header stop block and header wall equipped with the same, laying block and retaining wall body part equipped with the same, and retaining wall
CN107340384A (en) * 2017-09-15 2017-11-10 闫大勇 A kind of device for slump detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859420B2 (en) * 2005-09-16 2012-01-25 鹿島建設株式会社 Concrete construction performance evaluation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250628A (en) * 2005-03-09 2006-09-21 Taiheiyo Cement Corp Alkali/silica reactivity testing method of aggregate and quality control method
JP2015081907A (en) * 2013-10-24 2015-04-27 太平洋セメント株式会社 Workability evaluation method of fresh concrete
JP2016037722A (en) * 2014-08-06 2016-03-22 太平洋セメント株式会社 Header stop block and header wall equipped with the same, laying block and retaining wall body part equipped with the same, and retaining wall
CN107340384A (en) * 2017-09-15 2017-11-10 闫大勇 A kind of device for slump detection
CN109001077A (en) * 2017-09-15 2018-12-14 长泰惠龙新材料科技有限公司 A kind of device and method for slump detection
CN109001077B (en) * 2017-09-15 2021-02-26 丽水市处州混凝土有限公司 Device and method for detecting concrete slump

Also Published As

Publication number Publication date
JP3627958B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
Wu et al. Influence of drying-induced microcracking and related size effects on mass transport properties of concrete
Liu et al. Effects of chloride ions on carbonation rate of hardened cement paste by X-ray CT techniques
Wong et al. Effect of entrained air voids on the microstructure and mass transport properties of concrete
Diamond Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials
Brough et al. Automated identification of the aggregate–paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste
Leemann et al. Influence of compaction on the interfacial transition zone and the permeability of concrete
Diamond et al. The ITZ in concrete–a different view based on image analysis and SEM observations
Alzyoud et al. Influence of reinforcement spacers on mass transport properties and durability of concrete structures
Megid et al. Effect of structural buildup at rest of self-consolidating concrete on mechanical and transport properties of multilayer casting
Beyene et al. Effect of Internal Curing as Mitigation to Minimize Alkali-Silica Reaction Damage.
JPH11264794A (en) Method of evaluating material separation of high fluid concrete
Malek et al. Post-event damage assessment of concrete using the fluorescent microscopy technique
McCarter Influence of surface finish on sorptivity on concrete
Pour-Ghaz et al. Moisture profiles and diffusion coefficients in mortars containing shrinkage reducing admixtures
Miranda et al. Chromatic design and application of restoration mortars on smooth surfaces of white and GRAY concrete
Feys et al. Comparing rheological properties of SCC obtained with the ConTec and ICAR rheometers
Breul et al. On-site concrete segregation estimation using image analysis
Fontana et al. Plastic shrinkage cracking risk of concrete–Evaluation of test methods
Da Silva et al. Evaluation of the effect of concrete compositional changes and the use of ethyl-alcohol and biodegradable-oil-based release agents on the final surface appearance of self-compacting concrete precast elements
Savukaitis et al. The influence of new and used formwork coated with different release agents on the appearance of the formed concrete surface
Shen et al. Testing static segregation of SCC
JP3523246B1 (en) Concrete durability evaluation method
Tawfiq et al. Permeability of concrete subjected to cyclic loading
Grattan-Bellew Petrographic methods foe distinguishing between alkali-silica, alkali-carbonate reactions and other mechanisms of concrete deterioration
Alzyoud Effect of reinforcement spacers on concrete microstructure and durability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Effective date: 20041203

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131217

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

LAPS Cancellation because of no payment of annual fees