JPH11264789A - Rotary viscometer - Google Patents

Rotary viscometer

Info

Publication number
JPH11264789A
JPH11264789A JP11000395A JP39599A JPH11264789A JP H11264789 A JPH11264789 A JP H11264789A JP 11000395 A JP11000395 A JP 11000395A JP 39599 A JP39599 A JP 39599A JP H11264789 A JPH11264789 A JP H11264789A
Authority
JP
Japan
Prior art keywords
cylinder
detection
fluid
test fluid
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11000395A
Other languages
Japanese (ja)
Inventor
Haruhisa Takatani
晴久 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAYA ENGINEERING KK
Original Assignee
TAKAYA ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAYA ENGINEERING KK filed Critical TAKAYA ENGINEERING KK
Priority to JP11000395A priority Critical patent/JPH11264789A/en
Publication of JPH11264789A publication Critical patent/JPH11264789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the viscosity of a fluid inspected of non-Newtonian fluid, in particular having a high viscosity, in the condition that it remains in a liquid chamber, etc., unchangedly. SOLUTION: A sensing spindle 10 is rotated at a very low speed in such a condition as set on a liquid chamber 25, and a fluid to be tested 26 is allowed to flow up in the gap relative to the inner wall surface of a bushing 17a of an outer cylinder 7 by a groove 24, and the gap between the outside circumferential surface of the spindle 10 and the inner wall surface of the bushing 17a is all wetted so that a uniform film thickness is obtained. In association with slide flow of the fluid 26 inside the gap, the reaction force due to the viscosity resistance acts on the spindle 10 in the reverse direction to its rotation. With this reaction force, the whole rotational drive part 1 and the base cylinder 8 rotate in the reverse direction to the rotational drive direction. Also an arm member 20 installed on the base cylinder 8 rotates, and an arm 21 abuts to a sensor arm 13a of a load cell 13. Because the abutting force at this time is proportioning to the reaction force due to the viscosity resistance of the fluid tested, the viscosity of the fluid 26 can be determined from the output value of the load cell 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非ニュートン流体
の粘度を測定可能な回転粘度計に関する。
The present invention relates to a rotational viscometer capable of measuring the viscosity of a non-Newtonian fluid.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】回転粘
度計は従来から非ニュートン流体の粘度を測定するため
の装置として広く知られている。回転粘度計には種々の
形態のものが存在しているが、一般的には回転駆動部、
検出部及び計測部とからなり、検出部を共軸の内筒及び
外筒から構成し、外筒を固定して内筒を回転駆動部によ
り回転駆動し、内筒が回転時に受ける粘性トルクを計測
部で計測する内筒回転型と、逆に内筒を固定して外筒を
回転させる外筒回転型と称するものがある。いずれにし
てもこのタイプの回転粘度計は、一般に、被験流体を投
入する円筒形状のカップ(外筒)と、このカップ内部に
投入された被験流体に接触しつつカップの中心軸の周り
にカップとは独立に回転可能に支持した円筒形状のロー
タ(内筒)と、このロータあるいはカップをそれらの中
心軸の周りに回転させる回転駆動手段とを備え、ロータ
あるいはカップの回転によりロータあるいはカップの他
方に被験流体を介して伝達される回転トルクを計測する
ことにより被験流体の粘度を測定するようになってい
る。カップあるいはロータは、必ずしも円筒形状である
とは限らず、円錐形状その他形状のものも広く利用され
ている。なおこのような粘度計及びその測定原理につい
ては、周知であるので詳細は省略する。
BACKGROUND OF THE INVENTION Rotational viscometers have been widely known as devices for measuring the viscosity of non-Newtonian fluids. There are various types of rotational viscometers, but in general, a rotational drive unit,
It consists of a detection unit and a measurement unit.The detection unit is composed of a coaxial inner cylinder and an outer cylinder.The outer cylinder is fixed and the inner cylinder is driven to rotate by the rotation drive unit. There is an inner cylinder rotation type that measures by the measuring unit, and conversely, an outer cylinder rotation type that fixes the inner cylinder and rotates the outer cylinder. In any case, this type of rotational viscometer generally includes a cylindrical cup (outer cylinder) into which a test fluid is charged, and a cup around the center axis of the cup while being in contact with the test fluid charged inside the cup. A rotor (inner cylinder) which is rotatably supported independently of the rotor and a rotation driving means for rotating the rotor or the cup around the central axis thereof. On the other hand, the viscosity of the test fluid is measured by measuring the rotational torque transmitted via the test fluid. The cup or the rotor is not always cylindrical, and conical or other shapes are widely used. Since such a viscometer and its measuring principle are well known, the details are omitted.

【0003】このような従来の回転粘度計で公知のもの
は、すべて上述のようにバッチ式のもので、例えば液槽
や配管中の被験流体の粘度を液槽内筒にあるそのままの
状態で計測するものではなく、いったん液槽等から被験
流体を試料として取り出して計測するものであり、した
がって測定値が実際に液槽中等に入っている状態での被
験流体の粘度を示すかどうかについては全く保証でき
ず、解決が望まれていた。
[0003] All of the known rotary viscometers of this type are of the batch type as described above. For example, the viscosity of a test fluid in a liquid tank or piping is measured as it is in the liquid tank inner cylinder. Rather than measuring, the test fluid is once taken out of the liquid tank etc. as a sample and measured.Therefore, whether the measured value actually indicates the viscosity of the test fluid when it is in the liquid tank etc. There was no guarantee, and a solution was desired.

【0004】そこで本発明は、上記従来の問題点に鑑
み、被験流体が実際に液槽や配管中にある状態で、換言
すればインライン的に粘度を測定可能な回転粘度計を提
供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a rotary viscometer capable of measuring viscosity in a state where a test fluid is actually in a liquid tank or piping, in other words, inline. Aim.

【0005】[0005]

【課題を解決するための手段】本発明の回転粘度計のう
ち請求項1に係るものは、上記目的を達成するために、
回転駆動部、検出部及び計測部とからなり、非ニュート
ン流体である被験流体の粘度を測定するための回転粘度
計であって、上記検出部が、共軸の内筒及び外筒からな
り、該外筒を固定して該内筒を上記回転駆動部により回
転駆動可能とし、上記内筒が回転時に受ける粘性トルク
を上記計測部で計測する内筒回転型の回転粘度計におい
て、上記内筒が、上記回転駆動部を搭載するとともに上
記外筒内で自由に回転可能に支持した基筒と、基端を上
記回転駆動部に連結して該基筒内を貫通するとともに該
基筒内で自由に回転可能に支持した回転軸と、外周面に
螺旋状の溝を形成した部位を有するとともに上記回転軸
の先端に連結固定した検出筒とからなり、上記外筒と上
記検出筒の溝形成部位との嵌合部位の隙間を、上記検出
筒の回転を許すとともに、該隙間に入り込んだ上記被験
流体が上記検出筒の回転によってずり速度を与えられて
ずり流動する寸法とし、上記計測部が、上記回転軸を介
して上記回転駆動部により上記検出筒を回転駆動したと
きに、上記検出筒が上記隙間に入り込んだ上記被験流体
のずり流動によるずり応力によって受ける粘性トルクの
反力で、上記検出筒の回転駆動方向と反対方向に回転す
る上記基筒及び上記回転駆動部の回転トルクを検出する
ことを特徴とする。
According to the present invention, there is provided a rotational viscometer according to claim 1 for achieving the above object.
A rotation viscometer for measuring the viscosity of a test fluid that is a non-Newtonian fluid, comprising a rotation drive unit, a detection unit, and a measurement unit, wherein the detection unit includes a coaxial inner cylinder and an outer cylinder, The inner cylinder rotating type viscometer, wherein the outer cylinder is fixed and the inner cylinder is rotatable by the rotation drive unit, and the viscous torque received by the inner cylinder during rotation is measured by the measurement unit. A base cylinder mounted with the rotation drive unit and rotatably supported in the outer cylinder, and a base end connected to the rotation drive unit to penetrate through the base cylinder and pass through the base cylinder. A rotating shaft freely rotatably supported, and a detection cylinder having a portion formed with a spiral groove on the outer peripheral surface and connected and fixed to the tip of the rotation shaft, and forming a groove between the outer cylinder and the detection cylinder. When the gap of the fitting part with the part is allowed to rotate the detection cylinder, In addition, the test fluid that has entered the gap has a shear flow speed given by the rotation of the detection cylinder, and has a dimension that allows the test fluid to flow, and the measurement unit controls the rotation cylinder to rotate the detection cylinder through the rotation shaft. When driven to rotate, the base cylinder rotates in the direction opposite to the rotational drive direction of the detection cylinder, by the reaction force of viscous torque that is caused by the shear stress due to the shear flow of the test fluid into which the detection cylinder has entered the gap. The rotation torque of the rotation drive unit is detected.

【0006】同請求項2に係るものは、上記回転駆動部
が、上記回転軸及び上記検出筒を微速で回転させるもの
であることを特徴とする。
According to a second aspect of the present invention, the rotation drive section rotates the rotation shaft and the detection cylinder at a very low speed.

【0007】同請求項3に係るものは、上記検出筒の先
端を、上記外筒との嵌合部位から上記溝の一部が露出す
る程度に突出させてなることを特徴とする。
According to a third aspect of the present invention, the tip of the detection tube is projected from the fitting portion with the outer tube so that a part of the groove is exposed.

【0008】同請求項4に係るものは、上記外筒の上記
検出筒の溝形成部位との嵌合部位の上部に、上記隙間を
上昇してきた上記被験流体をオーバーフローさせて排出
するための開口を設けてなることを特徴とする。
According to a fourth aspect of the present invention, an opening for overflowing and discharging the test fluid which has risen in the gap is provided above a fitting portion of the outer cylinder with the groove forming portion of the detection cylinder. Is provided.

【0009】同請求項5に係るものは、上記外筒の内周
面及び上記基筒の外周面にそれぞれ磁性体を臨ませると
ともに、両磁性体を、それらの磁界が反発しあいかつ上
記基筒を押し上げるように配置してなることを特徴とす
る。
According to a fifth aspect of the present invention, a magnetic body is made to face each of the inner peripheral surface of the outer cylinder and the outer peripheral surface of the base cylinder. Are arranged so as to push up.

【0010】同請求項6に係るものは、上記基筒の外周
面に設ける磁性体を、上記外筒の内周面に設ける磁性体
よりも上方へずらして配してなることを特徴とする。
According to a sixth aspect of the present invention, the magnetic body provided on the outer peripheral surface of the base cylinder is arranged so as to be shifted upward from the magnetic body provided on the inner peripheral surface of the outer cylinder. .

【0011】[0011]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。なお以下では被験流体が配管中を流
れているものについての粘度測定例のみを説明するが、
本発明はこれに限定されず、被験流体が流れていること
は必須の条件ではなく、後述の説明を参照すれば、貯蔵
等されていて流れていない状態の被験流体についてもあ
る一定の条件下において同様に測定可能であることが明
らかである。
Embodiments of the present invention will be described below with reference to the drawings. In the following, only the viscosity measurement example for the test fluid flowing in the pipe will be described,
The present invention is not limited to this, and it is not an essential condition that the test fluid is flowing.Referring to the description below, the test fluid that has been stored and is not flowing may have a certain condition. It is apparent that the measurement can be performed similarly.

【0012】図1は本発明に係る回転粘度計の一実施形
態を示す断面図、図2は同平面図である。本実施形態の
回転粘度計は主に、回転駆動部1、検出部2及び計測部
3とからなる。回転駆動部1は、DCサーボモータ4、
減速機5及びカップリング6からなる。また検出部2
は、外筒7、外筒7と共軸の内筒を構成する基筒8、回
転軸9及び検出スピンドル10からなる。さらに計測部
3は、回転軸9に取り付けた歯車11と近接センサ1
2、及びロードセル13からなる。図中14はベース板
で、このベース板14上には、近接センサ12とロード
セル13と外筒7を固定してある。
FIG. 1 is a sectional view showing an embodiment of a rotational viscometer according to the present invention, and FIG. 2 is a plan view thereof. The rotational viscometer according to the present embodiment mainly includes a rotation drive unit 1, a detection unit 2, and a measurement unit 3. The rotation drive unit 1 includes a DC servo motor 4,
It comprises a speed reducer 5 and a coupling 6. Detector 2
Is composed of an outer cylinder 7, a base cylinder 8, which forms an inner cylinder coaxial with the outer cylinder 7, a rotating shaft 9, and a detection spindle 10. The measuring unit 3 further includes a gear 11 mounted on the rotating shaft 9 and the proximity sensor 1.
2 and a load cell 13. In the figure, reference numeral 14 denotes a base plate, on which the proximity sensor 12, the load cell 13, and the outer cylinder 7 are fixed.

【0013】外筒7は中空の筒体で、ベース板14に空
けた穴を通して先端側を下方へ突出させ、上端をベース
板14上に固定してある。また中空内部の上部側には、
一対のベアリング15、15を介して内筒を構成する基
筒8を自由に回転できるように支持している。また基筒
8を支持した部分の下側には、一対の開口16、16を
設け、さらにその下側が検出スピンドル10との嵌合部
17となっている。なお嵌合部17の内側にはブシュ1
7aを取り付けてある。
The outer cylinder 7 is a hollow cylinder having a distal end projecting downward through a hole formed in the base plate 14 and an upper end fixed to the base plate 14. Also, on the upper side of the hollow interior,
The base cylinder 8 constituting the inner cylinder is supported via a pair of bearings 15 and 15 so as to be freely rotatable. A pair of openings 16, 16 is provided below the portion supporting the base cylinder 8, and the lower side is a fitting portion 17 for fitting to the detection spindle 10. The bush 1 is located inside the fitting portion 17.
7a is attached.

【0014】内筒を構成する基筒8も中空の筒体で、上
述のように外筒7内に自由回転可能に支持してあり、中
空内部に一対のベアリング18、18を設けて回転軸9
を自由に回転できるように支持している。回転軸9は基
筒8の中空内部を貫通し、上端をカップリング6を介し
て回転駆動部1の減速機5の出力軸に連結し、下端を検
出スピンドル10に連結固定してある。回転軸9のカッ
プリング6の連結部のすぐ下側には、既に述べたように
歯車11を取り付けてあり、歯車11は回転軸9ととも
に回転するようになっている。
The base cylinder 8 constituting the inner cylinder is also a hollow cylinder, which is supported in the outer cylinder 7 so as to be freely rotatable as described above, and provided with a pair of bearings 18 and 18 in the hollow interior. 9
Is supported so that it can rotate freely. The rotating shaft 9 penetrates through the hollow inside of the base cylinder 8, has an upper end connected to an output shaft of the speed reducer 5 of the rotary drive unit 1 via a coupling 6, and has a lower end connected and fixed to a detection spindle 10. The gear 11 is attached to the rotary shaft 9 immediately below the coupling portion of the coupling 6 as described above, and the gear 11 rotates with the rotary shaft 9.

【0015】基筒8の上端には、回転トルクを検出する
ためのアーム部材20を共軸にして基筒8とともに回転
するように取り付けてある。なお図示のアーム部材20
は、一対のアーム21、21を有するが、これはバラン
スのためであって、一方のアーム21のみがロードセル
13のセンサアーム13aと回転時に当接するようにな
っている。またアーム部材20の上面には、4本の支柱
22・・・を介してブラケット23を搭載し、このブラ
ケット23上に上述のDCサーボモータ4、減速機5を
設け、カップリング6はブラケット23に設けた穴の下
方で回転軸9と連結している。なお図示の例では、アー
ム部材20の中央部とブラケット23とが同形状である
ため、平面図である図2では重なっている。
An arm member 20 for detecting a rotational torque is mounted on the upper end of the base cylinder 8 so as to rotate together with the base cylinder 8 around a coaxial axis. The illustrated arm member 20
Has a pair of arms 21 for the purpose of balance, so that only one arm 21 comes into contact with the sensor arm 13a of the load cell 13 during rotation. A bracket 23 is mounted on the upper surface of the arm member 20 via four columns 22..., And the DC servo motor 4 and the speed reducer 5 are provided on the bracket 23. Is connected to the rotating shaft 9 below the hole provided in the shaft. In the illustrated example, since the central portion of the arm member 20 and the bracket 23 have the same shape, they overlap in FIG. 2 which is a plan view.

【0016】検出スピンドル10は、外筒7の嵌合部1
7内に位置する先端部の外周面に螺旋状の溝24を形成
してある。溝24は右ネジに切ってあり、図3、図4に
拡大して示すように回転時に被験流体を上昇させるため
に溝底面側を外方向へ下降傾斜する斜面状の断面として
ある。また溝上面は水平に外方向へ伸びる断面形状とし
てある。もっともこの溝24の断面形状は、単なる一例
であって、本発明がこの溝形状に限定されることはな
い。さらに検出スピンドル10の先端部は、外筒7に装
着した状態で嵌合部17よりも例えば数mm突出する長
さを有するとともに、嵌合部17の内壁面との間に生じ
る隙間を、検出スピンドル10が回転できるようにする
とともに、隙間に入り込んだ被験流体が回転によってず
り速度を与えられてずり流動する寸法とする。この寸法
は、従来公知の諸研究結果、実験結果等に基づいて定め
ればよい。
The detection spindle 10 is connected to the fitting portion 1 of the outer cylinder 7.
A spiral groove 24 is formed on the outer peripheral surface of the distal end located inside 7. The groove 24 is cut with a right-hand thread, and as shown in an enlarged view in FIGS. 3 and 4, has a slope-shaped cross-section that is inclined downward outward to lower the groove bottom in order to raise the test fluid during rotation. The upper surface of the groove has a cross-sectional shape extending horizontally outward. However, the cross-sectional shape of the groove 24 is merely an example, and the present invention is not limited to this groove shape. Further, the tip of the detection spindle 10 has a length protruding, for example, several mm from the fitting portion 17 when attached to the outer cylinder 7, and detects a gap formed between the tip portion and the inner wall surface of the fitting portion 17. The spindle 10 is designed to be rotatable, and the test fluid that has entered the gap is given a shearing speed by the rotation so as to be sheared. This size may be determined based on conventionally known research results, experimental results, and the like.

【0017】すなわち上述の構成では、基筒8、回転軸
9、検出スピンドル10、アーム部材20のみならず、
DCサーボモータ4、減速機5、支柱22、ブラケット
23等からなる回転駆動部1全体が、外力により、例え
ば手で回せば自由に回転可能になっている。またDCサ
ーボモータ4や減速機5を回転駆動していない状態で検
出スピンドル10を外力により、例えば手で回せば、回
転軸9との連結によりDCサーボモータ4や減速機5内
の回転体が連れ回りし、回転体を支持する部材、要素の
回転抵抗によりDCサーボモータ4や減速機5全体及び
基筒8も結局は検出スピンドル10の外力による回転に
連れ回りするようになっている。
That is, in the above configuration, not only the base cylinder 8, the rotating shaft 9, the detection spindle 10, and the arm member 20 but also the
The entire rotation drive unit 1 including the DC servo motor 4, the speed reducer 5, the support 22, the bracket 23, and the like can be freely rotated by external force, for example, by turning by hand. If the detection spindle 10 is rotated by an external force, for example, by hand in a state where the DC servo motor 4 and the speed reducer 5 are not driven to rotate, the rotating body in the DC servo motor 4 and the speed reducer 5 is connected to the rotating shaft 9. The DC servomotor 4, the entire reduction gear 5, and the base cylinder 8 are eventually rotated by the external force of the detection spindle 10 due to the rotational resistance of the members and elements that support the rotating body.

【0018】次に上記各図及び図5を参照して本実施形
態の回転粘度計の使用形態を説明する。例えば被験流体
を入れた液槽25上に上述の構成とした回転粘度計のベ
ース板14を適宜の保持手段により固定してセットし、
外筒7の嵌合部17を中ほどまで液槽25内の被験流体
26に浸け、液槽25内での流動、傾斜等により被験流
体26の液面が変化しても、検出スピンドル10の溝2
4を設けた先端部が、液面上に出ないようにする。即
ち、本実施形態の回転粘度計では後述するように検出ス
ピンドル10の外周面とブシュ17aの内壁面との隙間
における被験流体26の状態を一定に保つことが重要な
ためで、計測中に検出スピンドル10の先端側が液面上
に出たりすると、一定の状態を保てなくなるためであ
る。
Next, the use of the rotational viscometer according to the present embodiment will be described with reference to the above-mentioned drawings and FIG. For example, the base plate 14 of the rotational viscometer having the above-described configuration is fixed and set by a suitable holding means on a liquid tank 25 containing a test fluid,
The fitting part 17 of the outer cylinder 7 is immersed in the test fluid 26 in the liquid tank 25 to the middle, and even if the liquid level of the test fluid 26 changes due to flow, inclination, etc. in the liquid tank 25, the detection spindle 10 Groove 2
The tip provided with 4 does not come out of the liquid surface. That is, in the rotational viscometer of the present embodiment, as described later, it is important to keep the state of the test fluid 26 constant in the gap between the outer peripheral surface of the detection spindle 10 and the inner wall surface of the bush 17a. This is because if the tip side of the spindle 10 comes out above the liquid level, a certain state cannot be maintained.

【0019】そしてDCサーボモータ4を駆動し、減速
機5で減速することにより、回転軸9をできるだけ微速
で回転駆動し、できるだけ被験流体26に構造破壊を生
じさせないようにしつつ検出スピンドル10を回転させ
る。すると検出スピンドル10の先端部近傍を流れる被
験流体26は、高粘度のものであっても検出スピンドル
10の溝24によって外筒7の嵌合部17に取り付けた
ブシュ17aの内壁面との隙間に入り込み、被験流体2
6自身の粘性と溝24の断面形状とにより溝24に沿っ
て螺旋状に上昇する。すなわち、この上昇運動は、検出
スピンドル10の外周面とブシュ17aの内壁面との隙
間での被験流体26のずり流動であり、検出スピンドル
10が受ける回転駆動力がずり応力となって生じる。ず
り応力が生じると、周知のように被験流体26にはずり
変形が生じ、検出スピンドル10の外周面とブシュ17
aの内壁面との隙間における被験流体26のずり変形を
引き起こす。このずり変形によって生じる速度勾配が周
知のようにずり速度であるが、上述のずり流動を検出ス
ピンドル10の外周面とブシュ17aの内壁面との隙間
の全面にわたって生じさせることにより、被験流体26
にある値のずり速度を与え、これによるずり応力の変化
を見ることにより被験流体26の粘度を測定する。
Then, by driving the DC servo motor 4 and decelerating by the speed reducer 5, the rotating shaft 9 is driven to rotate at the lowest possible speed, and the detection spindle 10 is rotated while preventing the test fluid 26 from causing structural destruction as much as possible. Let it. Then, the test fluid 26 flowing near the distal end of the detection spindle 10 has a gap with the inner wall surface of the bush 17 a attached to the fitting portion 17 of the outer cylinder 7 by the groove 24 of the detection spindle 10 even if it has a high viscosity. Entry, test fluid 2
6 rises spirally along the groove 24 due to its own viscosity and the cross-sectional shape of the groove 24. That is, the upward movement is a shear flow of the test fluid 26 in a gap between the outer peripheral surface of the detection spindle 10 and the inner wall surface of the bush 17a, and the rotational driving force received by the detection spindle 10 is generated as shear stress. When shear stress occurs, shear deformation occurs in the test fluid 26 as is well known, and the outer peripheral surface of the detection spindle 10 and the bush 17
This causes shear deformation of the test fluid 26 in the gap between the inner surface of the test fluid 26a. As is well known, the velocity gradient caused by this shear deformation is the shear velocity. By causing the above-mentioned shear flow over the entire gap between the outer peripheral surface of the detection spindle 10 and the inner wall surface of the bush 17a, the test fluid 26
Is given, and the viscosity of the test fluid 26 is measured by observing the change in the shear stress caused by the shear speed.

【0020】検出スピンドル10をある時間にわたって
回転させ続けると、検出スピンドル10の外周面とブシ
ュ17aの内壁面との隙間を上昇してきた被験流体26
が、基筒8下部の開口16からオーバーフローするよう
になる。この状態を保つかぎり、検出スピンドル10の
外周面とブシュ17aの内壁面が全て被験流体26で濡
れ、隙間内の被験流体26は膜厚が均等で、移動速度、
移動状態等が一定の状態に保たれる。
When the detection spindle 10 is continuously rotated for a certain period of time, the test fluid 26 which has risen in the gap between the outer peripheral surface of the detector spindle 10 and the inner wall surface of the bush 17a is raised.
Overflows from the opening 16 at the bottom of the base cylinder 8. As long as this state is maintained, the outer peripheral surface of the detection spindle 10 and the inner wall surface of the bush 17a are all wet with the test fluid 26, and the test fluid 26 in the gap has a uniform film thickness, a moving speed,
The moving state and the like are kept constant.

【0021】もちろん検出スピンドル10の外周面とブ
シュ17aの内壁面との隙間に被験流体26が入り込み
始めた状態から始まるが、隙間内での被験流体26のず
り流動に伴って粘性トルクによる反力が検出スピンドル
10に対してその回転方向と逆方向に外力として掛か
る。すると、上述のように検出スピンドル10に対して
掛かる外力によってDCサーボモータ4や減速機5全体
及び基筒8も連れ回りし、これらはDCサーボモータ4
による回転駆動方向(図2中の矢印A方向)とは逆方向
(図2中の矢印B方向)にごくゆっくりと回転する。す
ると基筒8に取り付けたアーム部材20も回転し、ロー
ドセル13側のアーム21がロードセル13のセンサア
ーム13aに当接する。
Of course, the test fluid 26 begins to enter the gap between the outer peripheral surface of the detection spindle 10 and the inner wall surface of the bushing 17a, but the reaction force due to the viscous torque accompanying the shear flow of the test fluid 26 in the gap. Is applied to the detection spindle 10 as an external force in a direction opposite to the rotation direction. Then, as described above, the external force applied to the detection spindle 10 also causes the DC servo motor 4, the entire reduction gear 5, and the base cylinder 8 to rotate.
2 rotates very slowly in the opposite direction (the direction of the arrow B in FIG. 2) to the rotational drive direction (the direction of the arrow A in FIG. 2). Then, the arm member 20 attached to the base cylinder 8 also rotates, and the arm 21 on the load cell 13 side contacts the sensor arm 13a of the load cell 13.

【0022】このアーム21の当接力は、被験流体26
の粘性トルクによる反力の回転トルクに比例するので、
予め粘度が既知の流体による出力値を知っておけば、被
験流体26が上述したような一定状態下にあるときのロ
ードセル13の出力値を検出することにより、被験流体
26の粘度を測定できる。被験流体26に応じて検出ス
ピンドル10の回転速度を変更することにより、種々の
ずり速度に対して粘度測定が可能なことは従来の一般的
な回転粘度計と同様である。なお本実施形態では、ロー
ドセル13の出力信号は、歯車11の山を近接センサ1
2で検出するタイミングでサンプリングするが、もちろ
ん歯車や近接センサに代えてロータリエンコーダと光セ
ンサ等の適宜のタイミング検知手段を用いればよい。ま
たロードセル13の出力信号の変換、処理等については
ごく周知の事項であるので説明は省略する。もちろんロ
ードセル以外の荷重センサを用いることも可能である。
すなわち計測手段については種々公知の手段を採用すれ
ばよい。
The contact force of this arm 21 is
Is proportional to the rotational torque of the reaction force due to the viscous torque of
If the output value of a fluid having a known viscosity is known in advance, the viscosity of the test fluid 26 can be measured by detecting the output value of the load cell 13 when the test fluid 26 is in the above-described constant state. By changing the rotation speed of the detection spindle 10 according to the test fluid 26, it is possible to measure the viscosity at various shear speeds as in the case of a conventional general rotation viscometer. In the present embodiment, the output signal of the load cell 13 indicates the peak of the gear 11 by the proximity sensor 1.
Sampling is performed at the timing detected in step 2. Needless to say, appropriate timing detecting means such as a rotary encoder and an optical sensor may be used instead of the gear and the proximity sensor. Further, conversion and processing of the output signal of the load cell 13 are very well-known items, and thus description thereof is omitted. Of course, it is also possible to use a load sensor other than the load cell.
That is, various known means may be adopted as the measuring means.

【0023】図6は本発明に係る回転粘度計の第2実施
形態を示す断面図である。本実施形態の回転粘度計は、
基筒8をベアリング15で支持するのではなく、外筒7
及び基筒8にそれぞれ強い磁石を取り付けていわば自動
調心的に支持したものである。
FIG. 6 is a sectional view showing a second embodiment of the rotational viscometer according to the present invention. The rotational viscometer of the present embodiment includes:
Instead of supporting the base cylinder 8 with the bearings 15, the outer cylinder 7
In addition, a strong magnet is attached to each of the base cylinder 8 and the base cylinder 8 is self-centeringly supported.

【0024】外筒7の中空内部の上下端には保持部材2
7、28を設けて一対の環状の磁石29、30が設けて
ある。また基筒8外周の上下端には、外筒7の環状の磁
石29、30の内径より若干小径の環状の磁石31、3
2が設けてある。これら磁石31、32は、上下方向で
ほぼ同じ高さ位置にある外筒7の磁石29、30と極性
を逆にしてある。図中33はスペーサで、外筒7の上側
の磁石29と基筒8の上側の磁石31との間の間隙を強
制的に維持するために設けてある。
The holding member 2 is provided at the upper and lower ends of the hollow inside of the outer cylinder 7.
7 and 28 are provided, and a pair of annular magnets 29 and 30 are provided. Also, at the upper and lower ends of the outer periphery of the base cylinder 8, annular magnets 31, 3 slightly smaller in diameter than the inner diameters of the annular magnets 29, 30 of the outer cylinder 7.
2 are provided. These magnets 31 and 32 have opposite polarities to the magnets 29 and 30 of the outer cylinder 7 which are located at substantially the same height in the vertical direction. In the drawing, a spacer 33 is provided for forcibly maintaining a gap between the magnet 29 on the upper side of the outer cylinder 7 and the magnet 31 on the upper side of the base cylinder 8.

【0025】また基筒8側の磁石31、32は、外筒7
の磁石29、30よりも若干上方へずらして配置してあ
る。このため外筒7と基筒8の間では、磁石29、3
1、磁石30、32間で磁界が反発しあって働く付勢力
がそれぞれ基筒8を上方へ押し上げるように働く。また
基筒8に対しては付勢力が外周から均等に掛かる。この
ため、基筒8がその自重で外筒7内へ落ち込もうとする
のと上述の押し上げ力とがバランスし、基筒8は自動調
心的に支持される。すなわち先の実施例では基筒8の回
転時にベアリング15との摺接によって半回転方向へ摩
擦力を受け、微妙な粘度の検出の障害となることがあり
得たが、本実施形態ではベアリング等との摺接がないた
め、まったく障害なく被験流体26の粘性トルクによる
反力の回転トルクを検出できる。その他の構成、作用は
先の実施形態と同様につき、説明を省略する。
The magnets 31 and 32 on the side of the base cylinder 8 are
The magnets 29 and 30 are slightly shifted upward. Therefore, between the outer cylinder 7 and the base cylinder 8, the magnets 29, 3
1. The biasing force that acts upon the repulsion of the magnetic field between the magnets 30 and 32 acts to push the base cylinder 8 upward. Further, the urging force is uniformly applied to the base cylinder 8 from the outer periphery. For this reason, when the base cylinder 8 tries to fall into the outer cylinder 7 by its own weight and the above-described pushing force are balanced, the base cylinder 8 is supported in a self-centering manner. That is, in the previous embodiment, when the base cylinder 8 rotates, the sliding contact with the bearing 15 may cause a frictional force in a half-rotational direction, which may hinder the detection of the delicate viscosity. Because there is no sliding contact, the rotational torque of the reaction force due to the viscous torque of the test fluid 26 can be detected without any obstacle. Other configurations and operations are the same as those of the previous embodiment, and a description thereof will be omitted.

【0026】図7は本発明に係る回転粘度計の第3実施
形態を示す断面図である。本実施形態の回転粘度計は、
外筒7は上端に設けた上方が広く開口したラッパ状の磁
石34のみとし、下端側には下方が広く開口した部位を
設け、基筒8の磁石35、36を截頭円錐形として構成
したものである。基筒8の磁石35は、外筒7のラッパ
状の磁石34内に入り込むように設け、基筒8の磁石3
6は、外筒7の下端側の開口部分に設ける。また基筒8
の磁石35は、外筒7のラッパ状の磁石34と反発しあ
うように極性を設定し、磁石36は磁石34と引きあう
ように極性を設定する。そして先の実施形態と同様に、
上側の磁石34、35の位置を、基筒8の磁石35が外
筒7の磁石34よりも若干上方に位置するように設け
る。このように構成すると、磁石34、35は反発しあ
い、磁石34、36が引きつけあうので、上述した第2
実施形態と同様に基筒8が自重で外筒7内へ落ち込もう
とするのと磁石間の反発及び引きつけによって力がバラ
ンスし、自動調心的に基筒8が支持される。その他の構
成、作用は先の実施形態と同様につき、説明を省略す
る。
FIG. 7 is a sectional view showing a third embodiment of the rotational viscometer according to the present invention. The rotational viscometer of the present embodiment includes:
The outer cylinder 7 has only a trumpet-shaped magnet 34 provided at the upper end and having a wide opening at the upper side, and a portion having a wide opening at the lower side at the lower end side, and the magnets 35 and 36 of the base cylinder 8 are formed as truncated cones. Things. The magnet 35 of the base cylinder 8 is provided so as to enter the trumpet-shaped magnet 34 of the outer cylinder 7.
6 is provided at an opening on the lower end side of the outer cylinder 7. In addition, base cylinder 8
The polarity of the magnet 35 is set so as to repel the trumpet-shaped magnet 34 of the outer cylinder 7, and the polarity of the magnet 36 is set so as to attract the magnet 34. And like the previous embodiment,
The upper magnets 34 and 35 are provided such that the magnet 35 of the base cylinder 8 is located slightly above the magnet 34 of the outer cylinder 7. With this configuration, the magnets 34 and 35 repel each other, and the magnets 34 and 36 attract each other.
As in the case of the embodiment, the base cylinder 8 tends to fall into the outer cylinder 7 by its own weight, and the repulsion and the attraction between the magnets balance the forces, and the base cylinder 8 is supported in a self-centering manner. Other configurations and operations are the same as those of the previous embodiment, and a description thereof will be omitted.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、被
験流体が実際に液槽内や配管中にあるそのままの状態
で、被験流体を別の場所等へ取り出すことなく、いわば
インライン的に粘度を測定でき、取り出し時に構造破壊
が生じる流体でも一定の状態で正確な粘度を測定できる
という効果がある。
As described above, according to the present invention, the test fluid is not taken out to another place or the like in a state where the test fluid is actually in the liquid tank or the pipe, so to say, in-line. Viscosity can be measured, and there is an effect that accurate viscosity can be measured in a constant state even for a fluid that causes structural destruction at the time of removal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る回転粘度計の一実施形態を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a rotational viscometer according to the present invention.

【図2】同平面図である。FIG. 2 is a plan view of the same.

【図3】内筒を構成する検出スピンドルの拡大部分断面
図である。
FIG. 3 is an enlarged partial cross-sectional view of a detection spindle constituting the inner cylinder.

【図4】検出スピンドルに設けた溝の拡大断面図であ
る。
FIG. 4 is an enlarged sectional view of a groove provided in a detection spindle.

【図5】本発明に係る回転粘度計の一実施形態の使用状
態を示す断面図である。
FIG. 5 is a sectional view showing a use state of an embodiment of the rotational viscometer according to the present invention.

【図6】本発明に係る回転粘度計の第2実施形態を示す
断面図である。
FIG. 6 is a sectional view showing a second embodiment of the rotational viscometer according to the present invention.

【図7】本発明に係る回転粘度計の第3実施形態を示す
断面図である。
FIG. 7 is a sectional view showing a third embodiment of the rotational viscometer according to the present invention.

【符号の説明】[Explanation of symbols]

1 回転駆動部 2 検出部 3 計測部 4 DCサーボモータ 5 減速機 6 カップリング 7 外筒 8 基筒 9 回転軸 10 検出スピンドル 11 歯車 12 近接センサ 13 ロードセル 14 ベース板 15 ベアリング 16 開口 17 嵌合部 17a ブシュ 18 ベアリング 20 アーム部材 21 アーム 13a ロードセルのセンサアーム 22 支柱 23 ブラケット 24 検出スピンドルの溝 25 配管 26 被験流体 27、28 保持部材 29、30、31、32、34、35、36 磁石 33 スペーサ DESCRIPTION OF SYMBOLS 1 Rotation drive part 2 Detecting part 3 Measurement part 4 DC servomotor 5 Reduction gear 6 Coupling 7 Outer cylinder 8 Base cylinder 9 Rotating shaft 10 Detection spindle 11 Gear 12 Proximity sensor 13 Load cell 14 Base plate 15 Bearing 16 Opening 17 Fitting part 17a bush 18 bearing 20 arm member 21 arm 13a load cell sensor arm 22 support 23 bracket 24 detection spindle groove 25 piping 26 test fluid 27, 28 holding member 29, 30, 31, 32, 34, 35, 36 magnet 33 spacer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転駆動部、検出部及び計測部とから
なり、非ニュートン流体である被験流体の粘度を測定す
るための回転粘度計であって、上記検出部が、共軸の内
筒及び外筒からなり、該外筒を固定して該内筒を上記回
転駆動部により回転駆動可能とし、上記内筒が回転時に
受ける粘性トルクを上記計測部で計測する内筒回転型の
回転粘度計において、 上記内筒が、上記回転駆動部を搭載するとともに上記外
筒内で自由に回転可能に支持した基筒と、基端を上記回
転駆動部に連結して該基筒内を貫通するとともに該基筒
内で自由に回転可能に支持した回転軸と、外周面に螺旋
状の溝を形成した部位を有するとともに上記回転軸の先
端に連結固定した検出筒とからなり、 上記外筒と上記検出筒の溝形成部位との嵌合部位の隙間
を、上記検出筒の回転を許すとともに、該隙間に入り込
んだ上記被験流体が上記検出筒の回転によってずり速度
を与えられてずり流動する寸法とし、 上記計測部が、上記回転軸を介して上記回転駆動部によ
り上記検出筒を回転駆動したときに、上記検出筒が上記
隙間に入り込んだ上記被験流体のずり流動によるずり応
力によって受ける粘性トルクの反力で、上記検出筒の回
転駆動方向と反対方向に回転する上記基筒及び上記回転
駆動部の回転トルクを検出することを特徴とする回転粘
度計。
1. A rotational viscometer for measuring the viscosity of a test fluid that is a non-Newtonian fluid, comprising: a rotation drive unit, a detection unit, and a measurement unit, wherein the detection unit includes: a coaxial inner cylinder; An inner cylinder rotating type viscometer, comprising an outer cylinder, fixing the outer cylinder, enabling the inner cylinder to be rotationally driven by the rotation drive unit, and measuring the viscous torque received by the inner cylinder during rotation by the measuring unit. In the above, the inner cylinder is mounted with the rotation drive unit and supported freely rotatably in the outer cylinder, and a base end is connected to the rotation drive unit and penetrates through the base cylinder. A rotating shaft freely rotatably supported in the base cylinder, and a detection tube having a portion formed with a spiral groove on the outer peripheral surface and being connected and fixed to the tip of the rotating shaft; The gap between the fitting part and the groove forming part of the detection cylinder is While allowing rotation, the test fluid having entered the gap has a shear flow rate given by the rotation of the detection tube and has a dimension such that the test fluid flows, and the measuring unit detects the fluid by the rotation drive unit via the rotation shaft. When the cylinder is rotationally driven, the detection cylinder is rotated in a direction opposite to the rotational driving direction of the detection cylinder by a reaction force of viscous torque received by the shear stress due to the shear flow of the test fluid having entered the gap. A rotational viscometer for detecting rotational torque of a cylinder and the rotational drive unit.
【請求項2】 上記回転駆動部が、上記回転軸及び上記
検出筒を微速で回転させるものであることを特徴とする
請求項1の回転粘度計。
2. The rotational viscometer according to claim 1, wherein the rotation drive section rotates the rotation shaft and the detection cylinder at a very low speed.
【請求項3】 上記検出筒の先端を、上記外筒との嵌合
部位から上記溝の一部が露出する程度に突出させてなる
ことを特徴とする請求項1または2の回転粘度計。
3. The rotational viscometer according to claim 1, wherein a tip of the detection cylinder is projected from the fitting portion with the outer cylinder so that a part of the groove is exposed.
【請求項4】 上記外筒の上記検出筒の溝形成部位との
嵌合部位の上部に、上記隙間を上昇してきた上記被験流
体をオーバーフローさせて排出するための開口を設けて
なることを特徴とする請求項1ないし3のいずれかの回
転粘度計。
4. An opening for overflowing and discharging the test fluid that has risen in the gap is provided above a fitting portion of the outer cylinder with a groove forming portion of the detection cylinder. The rotational viscometer according to any one of claims 1 to 3, wherein
【請求項5】 上記外筒の内周面及び上記基筒の外周面
にそれぞれ磁性体を臨ませるとともに、両磁性体を、そ
れらの磁界が反発しあいかつ上記基筒を押し上げるよう
に配置してなることを特徴とする請求項1ないし4のい
ずれかの回転粘度計。
5. A magnetic body is made to face each of an inner peripheral surface of the outer cylinder and an outer peripheral surface of the base cylinder, and both magnetic bodies are arranged so that their magnetic fields repel each other and push up the base cylinder. The rotational viscometer according to any one of claims 1 to 4, wherein:
【請求項6】 上記基筒の外周面に設ける磁性体を、上
記外筒の内周面に設ける磁性体よりも上方へずらして配
してなることを特徴とする請求項5の回転粘度計。
6. The rotational viscometer according to claim 5, wherein the magnetic material provided on the outer peripheral surface of the base cylinder is arranged to be shifted upward from the magnetic material provided on the inner peripheral surface of the outer cylinder. .
JP11000395A 1998-01-05 1999-01-05 Rotary viscometer Pending JPH11264789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000395A JPH11264789A (en) 1998-01-05 1999-01-05 Rotary viscometer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-12064 1998-01-05
JP1206498 1998-01-05
JP11000395A JPH11264789A (en) 1998-01-05 1999-01-05 Rotary viscometer

Publications (1)

Publication Number Publication Date
JPH11264789A true JPH11264789A (en) 1999-09-28

Family

ID=26333374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000395A Pending JPH11264789A (en) 1998-01-05 1999-01-05 Rotary viscometer

Country Status (1)

Country Link
JP (1) JPH11264789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172557A1 (en) 2021-02-10 2022-08-18 パナソニックIpマネジメント株式会社 Rotary viscometer and fluid conveyance device
WO2023082049A1 (en) * 2021-11-09 2023-05-19 阳普医疗科技股份有限公司 Thromboelastogram detection module and detection method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172557A1 (en) 2021-02-10 2022-08-18 パナソニックIpマネジメント株式会社 Rotary viscometer and fluid conveyance device
WO2023082049A1 (en) * 2021-11-09 2023-05-19 阳普医疗科技股份有限公司 Thromboelastogram detection module and detection method therefor

Similar Documents

Publication Publication Date Title
US3363468A (en) Liquid sampling device
US4045999A (en) Rotational viscometers
CN102830041B (en) Stepping scanning torque measuring device in magnetic-levitation bearing support structure
MX2013012889A (en) Mixer sensors and methods for using same.
US3667286A (en) Viscometer
US3269171A (en) Apparatus for measuring the viscosity of liquid and plastic materials
US4131370A (en) Micro stirrer
JPH11264789A (en) Rotary viscometer
JP2007024744A (en) Rotational viscosimeter
US3233825A (en) Self-contained centrifuge
JPS5848053B2 (en) Kogakubun Sekiyoueki Oileruyouki
US5031443A (en) Apparatus for measuring bearing torque
US8511148B2 (en) Dissolution test vessel with integral centering
US4352300A (en) Combined linear and circular drive mechanism
US6119511A (en) Method and apparatus to measure surface tension by inverted vertical pull
JP3448998B2 (en) Rotation test equipment for rolling bearings
JP2003013956A (en) Hydrostatic air bearing and rotary viscometer using same bearing
CN2206958Y (en) Induction rotary viscosimeter
JPS60237369A (en) Continuous measuring apparatus for reaction solution in very small container
GB2066483A (en) Viscosity measuring device
JP3299436B2 (en) Measuring device for measuring the rheological properties of substances
JP2559174B2 (en) Fluid viscosity measuring device and fluid force detecting device
JPS63188739A (en) Viscometer
CN214584701U (en) High-strength grouting material fluidity detection equipment
Jaffe et al. A recording rotational viscometer in glass-laden Teflon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090612

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100612

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120612

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130612

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250