JPH11264690A - Method for preventing corrosion of high temperature high pressure water system - Google Patents

Method for preventing corrosion of high temperature high pressure water system

Info

Publication number
JPH11264690A
JPH11264690A JP10088213A JP8821398A JPH11264690A JP H11264690 A JPH11264690 A JP H11264690A JP 10088213 A JP10088213 A JP 10088213A JP 8821398 A JP8821398 A JP 8821398A JP H11264690 A JPH11264690 A JP H11264690A
Authority
JP
Japan
Prior art keywords
temperature
water
corrosion
pressure
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10088213A
Other languages
Japanese (ja)
Inventor
Kiyotaka Hatada
畑田清隆
Yutaka Ikushima
豊 生島
Isao Saito
斎藤功夫
Osamu Sato
佐藤  修
Takashi Aizawa
相沢崇史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10088213A priority Critical patent/JPH11264690A/en
Publication of JPH11264690A publication Critical patent/JPH11264690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a system smoothly for a long time while preventing flow out of noxious metal by cooling a mixed fluid of organic and inorganic waters in high temperature high pressure condition of water while setting specified pressure and temperature thereby preventing corrosion and elution of noxious heavy metal due to temperature drop (cooling). SOLUTION: An inner tube is made of a material containing no noxious metal in a temperature region of 271-372 deg.C where significant corrosion and elution of various noxious metals take place when the temperature is dropped from the critical point (critical temperature 374 deg.C, critical pressure 21 MPa) of water in a candidate water system down to room temperature. The inner tube of this system is not subjected to pressure. Any material may be employed for the inner tube so long as a noxious substance, e.g. titanium alloy, ceramic or glass, is not contained. The prevention system is applicable to a supercritical water reaction system and a temperature drop line of various high temperature hot water associated with a high temperature hot water processing system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高温高圧の熱水流体を操
作するシステムの温度降下に伴う耐腐食性金属材料から
の有害金属の溶出とラインの腐食を防止する方法に関す
るものである。さらに詳しくいえば、従来の高温高圧水
の耐腐食金属材料は温度降下の操作で有害金属の溶出や
特定部位の腐食現象が生ずる。特に、耐腐食金属材料に
用いられるクロムの溶出は環境公害上の問題を含んでい
る。従って、高温高圧水を扱う化学工業フプラントは有
害金属の溶出と腐食を防止するシステムとしてこの防食
法は新手法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing elution of harmful metals from corrosion-resistant metal materials and corrosion of lines due to a temperature drop in a system for operating a high-temperature and high-pressure hydrothermal fluid. More specifically, in the conventional corrosion-resistant metal material of high-temperature and high-pressure water, the operation of lowering the temperature causes elution of harmful metals and corrosion of specific parts. In particular, the elution of chromium used in corrosion resistant metal materials involves environmental pollution problems. Therefore, in the chemical industry plant that handles high-temperature and high-pressure water, this anticorrosion method provides a new method as a system for preventing elution and corrosion of harmful metals.

【0002】[0002]

【従来の技術】従来、水の臨界点以上のシステムの構築
はインコネル、ハステロイ等の耐腐食金属材料で高温高
圧システムを構築するのが一般的となっている。しかし
ながら高温高圧の熱水流体の温度降下を操作するシステ
ムにおいて耐腐食性金属材料からの有害金属の溶出とラ
インの腐食を生ずる。
2. Description of the Related Art Heretofore, it has been common practice to construct a system above the critical point of water by constructing a high-temperature and high-pressure system using a corrosion-resistant metal material such as Inconel or Hastelloy. However, harmful metals are eluted from the corrosion-resistant metal material and the line is corroded in a system that operates the temperature drop of the high-temperature and high-pressure hydrothermal fluid.

【0003】ところで、このような高温高圧水に耐える
金属材料、ハステロイで構築されたライン(図1従来
型)の場合の、水素イオン濃度約2程度の400℃以上
からの高温高圧水を温度降下(冷却)させた場合にニッ
ケル、クロム、モリブデン等の構成金属元素の溶出が生
ずる。このような耐腐食材料はニッケルを主体としてク
ロムやモリブデンを主な構成金属元素としているが、溶
出液中にはこのような金属元素が確認される。特にこれ
は高圧ラインの腐食問題以上に有害重金属のクロムの溶
出が環境公害上の問題となる。
In the case of a line (conventional type shown in FIG. 1) constructed of a metal material that can withstand such high-temperature and high-pressure water, a high-temperature and high-pressure water having a hydrogen ion concentration of about 2 from 400.degree. (Cooling) causes elution of constituent metal elements such as nickel, chromium, and molybdenum. Such a corrosion-resistant material has nickel as a main component and chromium and molybdenum as main constituent metal elements, and such a metal element is confirmed in the eluate. In particular, the elution of chromium, a harmful heavy metal, becomes an environmental pollution problem in addition to the corrosion problem of high pressure lines.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このよう
な、耐腐食金属材料の高温高圧水の温度降下(冷却)に
伴う腐食と有害重金属溶出を防止することによってシス
テムの長時間の円滑な操作と有害重金属の流出防止技術
の提供を目的としてなされたものである。高温高圧水流
体の候補対象としては水を主体とした無機、有機物混合
流体である。候補対象の原料とその反応場を形成する水
系の具体例を以下に記す。候補対象の水系 水道水。 海水。 湖水。 蒸留水. 重水。 エントレーナー添加水。 塩酸、硫酸、硝酸等無機酸、トルエンスルホン酸、酢酸
等有機酸添加水。 金属イオン添加水。 塩類添加水。 光増感剤添加水。 溶解性を高めるための物質を添加した水。 反応性を高めるための物質を添加した水。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent the corrosion and the elution of harmful heavy metals due to the temperature drop (cooling) of high-temperature and high-pressure water of a corrosion-resistant metal material, thereby making the system smooth and prolonged. It is intended to provide techniques for operation and prevention of harmful heavy metal spills. A candidate for the high-temperature and high-pressure water fluid is a mixed fluid of inorganic and organic substances mainly composed of water. Specific examples of the raw materials to be candidates and the aqueous systems forming the reaction field are described below. Aqueous tap water for the candidate . Seawater. Lake water. Distilled water. Heavy water. Entrainer added water. Water added with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and organic acids such as toluenesulfonic acid and acetic acid. Metal ion added water. Salted water. Photosensitizer added water. Water with added substances to enhance solubility. Water with added substances to increase reactivity.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、高温高圧水の
温度降下における溶出液中に表1のような金属元素を確
認した。次ぎに、図1の従来型ラインを実験後縦に切断
して顕微鏡観察したところ特定温度領域に著しい腐食損
傷を見いだした。更に、特定腐食領域の温度分布を測定
し図3のような結果を得た。図3は著しい腐食は271
−372゜Cの亜臨界領域の特定部位が腐食されているこ
とを示している。この領域の水の誘電率は14.0−2
5.6であり、水のイオン解離度の高い領域であると考
えられる。従って、この特定腐食発生領域に防止システ
ム(図2)を設定することにより、その目的を達成しう
ることを見い出し、この知見に基づいて本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have confirmed metal elements as shown in Table 1 in an eluate at a temperature drop of high-temperature and high-pressure water. . Next, when the conventional line of FIG. 1 was cut vertically after the experiment and observed under a microscope, significant corrosion damage was found in a specific temperature region. Further, the temperature distribution in the specific corrosion area was measured, and the result as shown in FIG. 3 was obtained. Figure 3 shows significant corrosion at 271
This indicates that a specific portion of the subcritical region of -372 ° C is corroded. The dielectric constant of water in this region is 14.0-2.
5.6, which is considered to be a region where the degree of ion dissociation of water is high. Therefore, it has been found that the purpose can be achieved by setting a prevention system (FIG. 2) in this specific corrosion occurrence area, and the present invention has been completed based on this finding.

【0006】すなわち、本発明は、候補対象水系の水の
超臨点(臨界温度374゜C、臨界圧力21MPa)以上
の条件の温度から、例えば、室温に温度をさげるときの
顕著な腐食および種々の有害金属が溶出する領域、すな
わち271〜372゜Cの温度領域で有害金属を含まない材料を
内管として用いるものである。このシステムにおける内
管は圧力を受けないようにしている。内管の機材として
は例えばチタン、チタン合金、セラミック、ガラス等の
有害金属を含まない物であればシステムに用いて差し支
えない。本発明の防止システムは高温高圧の化学工業プ
ロセスにおける温度降下操作上に新たな手法を提供する
ものである。本発明方法が適用できる例としては、例え
ば、超臨界水反応システムやそれらの高温熱水処理シス
テムに付随する各種高温熱水の温度降下ラインが挙げら
れる。
That is, the present invention provides a method for remarkably corroding when the temperature of the water of the candidate water system is lowered to a room temperature from a temperature higher than the supercritical point (critical temperature: 374 ° C., critical pressure: 21 MPa). A material containing no harmful metal in a region where the harmful metal elutes, that is, in a temperature range of 271 to 372 ° C., is used as the inner tube. The inner tube in this system is kept free from pressure. As a device for the inner tube, any material that does not contain harmful metals such as titanium, titanium alloy, ceramic, and glass may be used for the system. The prevention system of the present invention provides a new method for lowering the temperature in a high temperature and high pressure chemical industrial process. As an example to which the method of the present invention can be applied, for example, supercritical water reaction systems and various high-temperature hot water temperature drop lines associated with such high-temperature hot water treatment systems can be mentioned.

【0007】本発明方法の防止システムを、高温高圧水
状態を温度降下させる過程の温度領域250〜450℃
に設置することにより温度降下による腐食の進行を防止
することができる。この際の温度はラインの流速によっ
てラインの設置箇所は多少異なってくるがその温度領域
は変わらない。圧力は、21MPa以上の範囲のシステ
ムで差し支えない。
[0007] The prevention system of the method of the present invention, the temperature range of 250-450 ° C in the process of lowering the temperature of high-temperature high-pressure water
In this case, the progress of corrosion due to a temperature drop can be prevented. The temperature at this time varies slightly depending on the flow speed of the line, but the temperature region does not change. The pressure can be in a system in the range of 21 MPa or more.

【0008】本件の高温熱水状態を形成する水系として
通常は水道水、井戸水、河川水等が用いられるが、蒸留
水、イオン交換水も用いることができる。更にこれらの
水に種々の物質を添加して溶解性を高めたり、反応性を
高めたりすることもでき、代表的な例を前述の候補対象
の水系としてあげたが、それに用いられている添加物は
これに限定される物ではない。
Usually, tap water, well water, river water and the like are used as the water system for forming the high-temperature hot water state of the present invention, but distilled water and ion-exchanged water can also be used. Furthermore, various substances can be added to these waters to increase the solubility or the reactivity. A typical example is given as the water system of the above-mentioned candidate object. An object is not limited to this.

【0009】本発明方法はあらゆる高温高圧ラインの温
度を降下させる操作にも使用あるいは応用することがで
きる。
The method of the present invention can be used or applied to the operation of lowering the temperature of any high-temperature high-pressure line.

【0010】[0010]

【発明の効果】本発明によると、高温高圧ラインの温度
降下時の腐食を防ぎ、腐食に伴って発生するハステロイ
やインコネル等の高価な材料からの有害金属の溶出が防
止できる。従って、本発明は耐腐食金属材料の高温高圧
水の温度降下(冷却)に伴う腐食と有害重金属溶出を防
止することによって高価な材料を交換する必要性がなく
なり、経済的メリットがあり、更に、高温高圧システム
の長時間の円滑な操作が期待され、また有害重金属の流
出防止ができるといった点で有用である。
According to the present invention, it is possible to prevent corrosion at the time of a temperature drop in a high-temperature and high-pressure line, and prevent elution of harmful metals from expensive materials such as Hastelloy and Inconel generated due to the corrosion. Therefore, the present invention eliminates the need for replacing expensive materials by preventing corrosion and elution of harmful heavy metals due to the temperature drop (cooling) of the high-temperature and high-pressure water of the corrosion-resistant metal material, and has an economic advantage. This is useful in that long-term smooth operation of the high-temperature and high-pressure system is expected, and harmful heavy metals can be prevented from flowing out.

【0011】[0011]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0012】比較例 ここでは、図1の反応温度600度、反応圧力30MP
aの条件の例を述べる。ハステロイC−276製の高温
高圧ラインの配管の内径は約4ミリメーター、電気炉加
熱部にある管の全長は約40センチメーターで、それよ
り2−3センチメーター以降より約25センチメーター
が温度降下のための冷却装置を設けている。管内の温度
は約8ミリメーター間隔で温度を計測した。ここでは水
素イオン濃度約2の水の高温高圧流体を約1.2−2.
5ミリリッター/分で336時間連続操作した。流出液
は薄い黄色を帯びた水溶液が得られる。その水溶液の金
属元素のICP分析結果は表1のようであり、使用して
いるハステロイC−276製配管の構成金属元素とおぼ
同一である。更に、図3は腐食観察部と温度変化を示し
たものである。図3は271−372゜CのハステロイC
−276製配管の特定領域の腐食を示した。この結果は
溶出液の金属元素分析に一致する。 表1 図1の溶出液(ICP分析結果) ハステロイ構成 溶出液 元素 金属元素比率(%) 金属濃度(ppm) Fe 6.0 2.3 W 4.0 不検出 Ni 57.0 100.0 Mo 16.0 17.0 Cr 15.5 27.0 V 0.3 0.01 Co 1.1 C 0.01 *コバルトはニッケルの不純物として検出されている。
Comparative Example Here, the reaction temperature shown in FIG.
An example of the condition a will be described. The inner diameter of the Hastelloy C-276 high-temperature and high-pressure line is about 4 millimeters, the total length of the pipe in the heating furnace is about 40 centimeters, and the temperature is about 25 centimeters from 2-3 centimeters onwards. A cooling device for descent is provided. The temperature in the tube was measured at intervals of about 8 millimeters. Here, a high-temperature and high-pressure fluid of water having a hydrogen ion concentration of about 2 is used for about 1.
The operation was continuously performed at 5 milliliter / minute for 336 hours. The effluent is a pale yellowish aqueous solution. The results of ICP analysis of the metal elements in the aqueous solution are as shown in Table 1, and are almost the same as the metal elements constituting the Hastelloy C-276 piping used. Further, FIG. 3 shows a corrosion observation part and a temperature change. FIG. 3 shows Hastelloy C at 271-372 ° C.
Corrosion in a specific area of the -276 pipe was indicated. This result is consistent with the metal element analysis of the eluate. Table 1 Eluate of FIG. 1 (Results of ICP analysis) Hastelloy composition Eluent Element Metal element ratio (%) Metal concentration (ppm) Fe 6.0 2.3 W 4.0 Not detected Ni 57.0 100.0 Mo 16 0.0 17.0 Cr 15.5 27.0 V 0.3 0.01 Co 1.1 C 0.01 * Cobalt is detected as an impurity of nickel.

【0013】実施例 図2の反応温度600度、反応圧力30MPaの条件の
例を述べる。ハステロイC−276製の高温高圧ライン
の配管の内径は約4ミリメーター、電気炉加熱部にある
管の全長は約40センチメーターで、それより2−3セ
ンチメーター以降より約25センチメーターの位置に外
部から冷却する冷却装置の循環口が設置されている。内
管はアルミナ性セラミック管を温度領域200〜450度の間
に設定できる用に設置した、すなわち、問題となる温度
領域は注入量が1.2ミリリッター/分のとき約8セン
チメートルであり、その領域をカバーできるように設置
した。内管の外形は約2ミリメーターで内径は約1ミリ
メーターである。内管の固定部は常温部に設けた固定用
ユニオンによって支えられている。図2のように二重管
の部分の外管に内管冷却水の注入口を設置し、内圧と同
じ圧力で冷却水(約17度)を0.5−4ミリリッター
で注入できるようにした。メインの流体は水で約1.2
ミリリッター/分で注入されるが加熱炉の上部より塩化
物を注入することで水素イオン濃度約2の水の高温高圧
流体となって移動する。336時間連続操作ではメイン
の流体の流れは約1.2ミリリッター/分で、内管冷却
用注入水は塩などを含まない蒸留水で1ミリリッター/
分で注入した。図2で示されるように、内管と外管の間
に注入された水は加熱炉の方に上昇しやがて主流体と混
合され内管の内部を通過する。このとき通過流体は内管
と外管に注入された水によって段階的に冷却される。流
出液は無色透明な水溶液である。その水溶液の金属元素
のICP分析結果、ハステロイC−276の構成金属元
素は1ppm以下であった。また、実験後の管を裁断し
て観察した結果、従来型のような局部腐食は観察されな
かった。なお、これらの高温高圧ラインの温度は設定温
度に昇温され、設定圧力に昇圧されている。またライン
の冷却は約15゜Cの水を環流させるクーリング装置を使
用した。
EXAMPLE An example of the conditions in FIG. 2 at a reaction temperature of 600 degrees and a reaction pressure of 30 MPa will be described. The inner diameter of the Hastelloy C-276 high-temperature and high-pressure line is about 4 millimeters, and the total length of the pipe in the heating section of the electric furnace is about 40 centimeters, which is about 25 centimeters from 2-3 centimeters onwards. A circulation port of a cooling device for cooling from the outside is installed in the apparatus. The inner tube was set so that the alumina ceramic tube could be set in a temperature range of 200 to 450 degrees, that is, the temperature range in question was about 8 cm when the injection rate was 1.2 milliliter / minute. , So as to cover the area. The outer diameter of the inner tube is about 2 millimeters and the inner diameter is about 1 millimeter. The fixing portion of the inner tube is supported by a fixing union provided at the room temperature portion. As shown in Fig. 2, an inlet for cooling water in the inner pipe is installed in the outer pipe of the double pipe so that cooling water (about 17 degrees) can be injected at 0.5-4 milliliters at the same pressure as the internal pressure. did. The main fluid is water, about 1.2
It is injected at a rate of milliliters / minute, but by injecting chloride from the upper part of the heating furnace, it moves as a high-temperature high-pressure fluid of water having a hydrogen ion concentration of about 2. In the continuous operation for 336 hours, the main fluid flow was about 1.2 milliliter / minute, and the injection water for cooling the inner tube was 1 milliliter / distilled water containing no salt or the like.
Injected in minutes. As shown in FIG. 2, the water injected between the inner tube and the outer tube rises toward the heating furnace, is mixed with the main fluid, and passes through the inside of the inner tube. At this time, the passing fluid is gradually cooled by the water injected into the inner pipe and the outer pipe. The effluent is a clear, colorless aqueous solution. As a result of ICP analysis of the metal element in the aqueous solution, the constituent metal element of Hastelloy C-276 was 1 ppm or less. In addition, as a result of cutting and observing the tube after the experiment, local corrosion unlike the conventional type was not observed. In addition, the temperature of these high-temperature and high-pressure lines is raised to a set temperature and raised to a set pressure. For cooling the line, a cooling device for circulating water at about 15 ° C. was used.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年6月17日[Submission date] June 17, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】平面図 従来型の反応器経由の冷却ラインFig. 1 Plan view Cooling line via conventional reactor

【符号の説明】 400−600°C:400度から600度の温度領域
を表し、30MPaは圧力を表す(約300気圧)。反
応域は加熱炉に収まっている前述温度にさらされている
領域を表す。腐食領域は図3に示した腐食部の領域を表
す。冷却部:冷却水環流による冷却部分を表す。図1は
上端部から下端部に流体が流れること示している。
[Explanation of Signs] 400-600 ° C .: Represents a temperature range from 400 ° C. to 600 ° C., and 30 MPa represents pressure (about 300 atm). The reaction zone represents the area that has been exposed to the aforementioned temperature contained in the furnace. The corroded area represents the corroded area shown in FIG. Cooling part: represents a cooling part by cooling water reflux. FIG. 1 shows that the fluid flows from the upper end to the lower end.

【図2】平面図 特定腐食発生領域に防止システムFig. 2 Plan view Prevention system for specific corrosion occurrence area

【符号の説明】 400−600°C:400度から600度の温度領域
を表し、30MPaは圧力を表す(約300気圧)。反
応域は加熱炉に収まっている前述温度にさらされている
領域を表す。腐食領域は図3に示した腐食部の領域を表
す。内管傾斜冷却部:冷却水の圧入による温度傾斜した
冷却部分を表す。図2は上端部から下端部に流体が流れ
ること示している。セラミック内管は反応管の内部にあ
り、それは冷却水導入部より下部で支えられているが、
セラミック管それ自体には圧力はかからないように設定
されている。
[Explanation of Signs] 400-600 ° C .: Represents a temperature range from 400 ° C. to 600 ° C., and 30 MPa represents pressure (about 300 atm). The reaction zone represents the area that has been exposed to the aforementioned temperature contained in the furnace. The corroded area represents the corroded area shown in FIG. Inner pipe inclined cooling section: Represents a cooling section whose temperature is inclined by injection of cooling water. FIG. 2 shows that the fluid flows from the upper end to the lower end. The ceramic inner tube is inside the reaction tube, which is supported below the cooling water inlet,
The pressure is not applied to the ceramic tube itself.

【図3】図表図 腐食観察部と温度変化による特定腐食発生図表FIG. 3 Diagram of specific corrosion caused by corrosion observation part and temperature change

【符号の説明】 図3の左サイドの目盛りは温度であり、四角い点が上端
の冷却Tユニオン中央からの距離における温度変化をプ
ロットしたものである。図3の右サイドは水の誘電率で
あり、三角の点は同様に誘電率の変化を示したものであ
る。図表中のラインは反応器から冷却部までの平面図を
表の距離に合わせて提示したものである。腐食部:ライ
ンの平面切断により明らかとなった腐食領域(372−
271度)を示す。εr=15は水の誘電率15付近を
示す。
[Explanation of Symbols] The scale on the left side of FIG. 3 is a temperature, and a square point plots a temperature change at a distance from the center of the cooling T union at the upper end. The right side of FIG. 3 shows the dielectric constant of water, and the triangular points similarly show changes in the dielectric constant. The lines in the table show the plan view from the reactor to the cooling unit according to the distance in the table. Corroded area: Corroded area (372-
271 degrees). εr = 15 indicates the vicinity of the dielectric constant 15 of water.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

フロントページの続き (72)発明者 佐藤 修 宮城県仙台市宮城野区幸町3丁目 第二市 営住宅8−10−102 (72)発明者 相沢崇史 宮城県青葉区川内亀岡町68亀岡住宅第一地 区2−45Continued on the front page (72) Inventor Osamu Sato 3-chome, 2-chome, Miyagino-ku, Sendai-shi, Miyagi 8-10-102 (72) Inventor Takashi Aizawa 68 Kameoka-cho, Kawauchi-cho, Kawauchi-cho, Aoba-ku, Miyagi Pref. District 2-45

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】水の高温高圧状態にある有機及び無機の水
混合流体とし; (1)該混合水溶液を21MPa以上の圧力に圧縮し; (2)該混合水溶液を374゜C以上の高温とし; (3)該混合水溶液を冷却し;そしてこれらからなる温
度降下に伴う腐食防止法。
(1) Compressing the mixed aqueous solution to a pressure of 21 MPa or more; (2) Making the mixed aqueous solution a high temperature of 374 ° C. or more. (3) cooling the mixed aqueous solution; and a method for preventing corrosion associated with a temperature drop comprising the mixed aqueous solution.
【請求項2】該374゜C以上の高温流体の温度降下中、温
度領域250゜C〜400゜Cに防食システムを組み込む請求の範
囲第1項記載の方法。
2. The method according to claim 1, wherein the anticorrosion system is incorporated in a temperature range of 250 ° C. to 400 ° C. during the temperature drop of the high temperature fluid of 374 ° C. or more.
【請求項3】該水相は水道水、海水、湖水、蒸留水流で
供給される請求の範囲第1項記載の方法。
3. The method of claim 1 wherein said aqueous phase is provided in tap, sea, lake, or distilled water streams.
【請求項4】該水相の混合物として有機物および無機物
で供給される請求の範囲第1項記載の方法。
4. The method according to claim 1, wherein the mixture of the aqueous phase is supplied as an organic substance and an inorganic substance.
【請求項5】該374゜C以上の高温流体の温度降下中、温
度領域250゜C〜400゜Cを含む250゜C〜450゜C域を内管を組み
合わせて有害金属および腐食を防止する請求の範囲第1
項記載の方法。
5. During the temperature drop of the high temperature fluid of 374 ° C. or more, a 250 ° C. to 450 ° C. range including a temperature range of 250 ° C. to 400 ° C. is combined with an inner pipe to prevent harmful metals and corrosion. Claim 1
The method described in the section.
【請求項6】該374゜C以上の高温流体の温度降下中、温
度領域271゜C〜372゜Cを含む250゜C〜450゜C域を内管を組み
合わせて有害金属および腐食を防止する請求の範囲第1
項記載の方法。
6. During the temperature drop of the high-temperature fluid of 374 ° C. or more, a 250 ° C. to 450 ° C. area including a temperature range of 271 ° C. to 372 ° C. is combined with an inner pipe to prevent harmful metals and corrosion. Claim 1
The method described in the section.
【請求項7】防食システムの内管がチタン、チタン合
金、セラミック、ガラス又はこれらの組み合わせで構成
される群から選ばれる請求の範囲第5項記載の方法。
7. The method of claim 5, wherein the inner tube of the corrosion protection system is selected from the group consisting of titanium, titanium alloy, ceramic, glass, or a combination thereof.
【請求項8】防食システムの内管がセラミックである請
求の範囲第6項記載の方法。
8. The method of claim 6, wherein the inner tube of the anticorrosion system is ceramic.
【請求項9】防食システムの内管を複数として設定する
請求の範囲第6項記載の方法。
9. The method according to claim 6, wherein a plurality of inner pipes of the anticorrosion system are set.
JP10088213A 1998-03-16 1998-03-16 Method for preventing corrosion of high temperature high pressure water system Pending JPH11264690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10088213A JPH11264690A (en) 1998-03-16 1998-03-16 Method for preventing corrosion of high temperature high pressure water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10088213A JPH11264690A (en) 1998-03-16 1998-03-16 Method for preventing corrosion of high temperature high pressure water system

Publications (1)

Publication Number Publication Date
JPH11264690A true JPH11264690A (en) 1999-09-28

Family

ID=13936636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10088213A Pending JPH11264690A (en) 1998-03-16 1998-03-16 Method for preventing corrosion of high temperature high pressure water system

Country Status (1)

Country Link
JP (1) JPH11264690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318501A1 (en) * 1992-06-03 1993-12-23 Hitachi Ltd Diagnosis appts. for testing combustion conditions of multicylinder IC engine - measures revolution rate for each cylinder and computes state parameter deviations using stored function patterns

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318501A1 (en) * 1992-06-03 1993-12-23 Hitachi Ltd Diagnosis appts. for testing combustion conditions of multicylinder IC engine - measures revolution rate for each cylinder and computes state parameter deviations using stored function patterns
DE4318501C2 (en) * 1992-06-03 1999-07-15 Hitachi Ltd Diagnostic device for combustion conditions of a multi-cylinder engine

Similar Documents

Publication Publication Date Title
AU2010222160B2 (en) Method and system for controlling water quality in power generation plant
EP1224151B1 (en) A high pressure and high temperature reaction system
JPS63130198A (en) Fluid treater and manufacture thereof
CN102249461A (en) Supercritical water oxidation treatment system for high-salt high-chlorine organic wastewater
JP2009509739A (en) Reactor and method for treating materials in an oxygen-deficient state in a fluid reaction medium
Yang et al. Effect of high flow velocity on corrosion behavior of Ni based and Ni-Fe based alloys in supercritical water oxidation environment
Konys et al. Corrosion of high-temperature alloys in chloride-containing supercritical water oxidation systems
JPH11264690A (en) Method for preventing corrosion of high temperature high pressure water system
JP2014535002A (en) Method and apparatus for treating hydrocarbon streams
JP4334162B2 (en) Reaction vessel
Rebak Environmentally assisted cracking of commercial Ni-Cr-Mo alloys-a review
Boukis et al. Corrosion screening tests with Ni-base alloys in supercritical water containing hydrochloric acid and oxygen
JP3131778B2 (en) Corrosion prevention method for temperature drop line of high temperature and high pressure hot water
DE102007013983B3 (en) Device for the purification of waste sulfuric acid, comprises reactor, circulation pump, vertically or horizontally arranged heat exchangers having inner and outer tubes, mixer for oxidation agent and the acid, and connection pipelines
US4791227A (en) Method for handling reaction mixtures containing hydrogen fluoride
Weisert High alloys to combat corrosion
Alves et al. A new developed Ni-Cr-Mo alloy with improved corrosion resistance in flue gas desulfurization and chemical process applications
Grönwall et al. Intercrystalline stress corrosion cracking of INCONEL 600 inspection tubes in the Ågesta reactor
Spink Reactive metals. Zirconium, hafnium, and titanium
Agarwal Nickel base alloys and newer 6Mo stainless steels meet corrosion challenges of the modern day chemical process industries
Goldberg Comments on the use of 316L stainless steel cladding at the geothermal Niland Test Facility
Agarwal et al. Nickel base alloys: corrosion challenges in the new millennium
Hatakeda et al. Corrosion on continuous supercritical water oxidation for polychlorinated biphenyls
EP0015515A1 (en) Apparatuses and conduits with multi-layered walls for manipulating corrosive and hot gases
Sourabh et al. Internal nitridation of Alloy 690 during creep deformation at 1100° C