JPH112616A - Humidity sensor using high polymer electrolyte composite membrane - Google Patents

Humidity sensor using high polymer electrolyte composite membrane

Info

Publication number
JPH112616A
JPH112616A JP9172898A JP17289897A JPH112616A JP H112616 A JPH112616 A JP H112616A JP 9172898 A JP9172898 A JP 9172898A JP 17289897 A JP17289897 A JP 17289897A JP H112616 A JPH112616 A JP H112616A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
humidity
composite membrane
humidity sensor
electrolyte composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9172898A
Other languages
Japanese (ja)
Inventor
Kyoko Hamamura
恭子 浜村
Masahiko Asaoka
賢彦 朝岡
Kazuo Kawahara
和生 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9172898A priority Critical patent/JPH112616A/en
Publication of JPH112616A publication Critical patent/JPH112616A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a humidity sensor capable of detecting changes in the humidity of an environment being monitored with high responsiveness from changes in electric resistance which changes due to moisture content adsorbed to an electrolyte composite membrane. SOLUTION: A humidity sensor 10 is constituted by providing platinum electrodes 12 and 12 at both sides of a high polymer electrolyte composite membrane 14 and connecting a resistance measuring part 16 between the electrodes. A major component of the high polymer electrolyte composite membrane 14 is a perfluorocarbon sulfonic acid, a water-absorbing polymer is mixed into it, and the crosslinking reaction of the water-absorbing polymer has taken place. As electric resistance changes with high responsiveness due to moisture content adsorbed to the electrolyte composite membrane 14, changes in the humidity of an environment being monitored are speedily detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質複合
膜を用いた湿度センサに関し、さらに詳しくは、固体高
分子電解質に吸着される水分の量によって変動する電気
抵抗値から湿度を検出する湿度センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity sensor using a polymer electrolyte composite membrane, and more particularly, to a humidity sensor for detecting humidity from an electric resistance value which varies depending on the amount of moisture adsorbed on a solid polymer electrolyte. It concerns a sensor.

【0002】[0002]

【従来の技術】従来この種の湿度センサとしては、その
測定原理による分類で膨潤型、電気抵抗型、電気容量型
等に分けられる。そのうち高分子電解質膜を用いた湿度
センサとしては、湿度による電気抵抗の変化を検出する
電気抵抗型や、吸着した水分を強制的に電解し、そのと
き流れる電流値と湿度を対応させることによって湿度の
検出を行う技術が既に提案されている。
2. Description of the Related Art Conventionally, this type of humidity sensor is classified into a swelling type, an electric resistance type, an electric capacity type and the like according to the classification based on the measurement principle. Among them, a humidity sensor using a polymer electrolyte membrane is an electric resistance type that detects a change in electric resistance due to humidity, or a sensor that forcibly electrolyzes absorbed water and matches the current value flowing at that time with the humidity. A technique for detecting the odor has already been proposed.

【0003】例えば、特開昭60−36947号公報及
びテクニカルレポートGSニュースvol.46,No.42 JUN,1
987 に開示されているものは、商品名「ナフィオン」
(デュポン社の登録商標)で代表されるパーフルオロカ
ーボンスルホン酸等の有機固体電解質膜を感湿素子とし
てその両面にロジウム等の白金族系金属や合金の電極を
設け、これに白金線を端子として接続したものである。
そしてこれを湿度センサとして用いるに際しては、両電
極間に直流電圧を印加して雰囲気ガス中の湿度と平衡し
て吸着される水分を強制的に電解し、その時流れる電流
値から湿度を検出するようにしている。ちなみにこのパ
ーフルオロカーボンスルホン酸系の「ナフィオン」の基
本的な分子構造を化1に示す(この場合m≧1、n=
2)。
[0003] For example, Japanese Patent Application Laid-Open No. 60-36947 and Technical Report GS News vol. 46, No. 42 JUN, 1
What is disclosed in 987 is the trade name "Nafion"
An organic solid electrolyte membrane such as perfluorocarbon sulfonic acid represented by (Dupont Corporation) is used as a moisture-sensitive element, and electrodes of a platinum group metal or alloy such as rhodium are provided on both surfaces thereof, and a platinum wire is used as a terminal. Connected.
When this is used as a humidity sensor, a direct current voltage is applied between both electrodes to forcibly electrolyze moisture adsorbed in equilibrium with the humidity in the atmosphere gas, and the humidity is detected from a current value flowing at that time. I have to. Incidentally, the basic molecular structure of this perfluorocarbon sulfonic acid type “Nafion” is shown in Chemical formula 1 (in this case, m ≧ 1, n =
2).

【0004】[0004]

【化1】 Embedded image

【0005】一方、燃料電池システムにおいて、例えば
特開平8−138691号公報には、反応ガス通路内
に、電池セルのイオン交換膜の端部と触媒担持体とを、
適当な距離をおいて配置し、イオン交換膜の吸水の程度
による膨潤、収縮によりこれらを接触/切断させる。こ
の接触/切断をスイッチとして電圧を測定し、湿度セン
サとして用いる技術が開示されている。
On the other hand, in a fuel cell system, for example, Japanese Patent Application Laid-Open No. 8-138691, the end of an ion exchange membrane of a battery cell and a catalyst carrier are provided in a reaction gas passage.
They are arranged at an appropriate distance, and are contacted / cut by swelling and shrinking depending on the degree of water absorption of the ion exchange membrane. A technique is disclosed in which the contact / disconnection is used as a switch to measure a voltage and used as a humidity sensor.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た特開昭60−36947号公報及びテクニカルレポー
トGSニュースVOl.46,No.42 JUN,1987 に開示された技
術は湿度センサは、広い湿度範囲で適用できるが、吸着
した水分を一旦強制的に電解するため、応答速度が遅い
(数分)という問題点が指摘されている。
However, the technology disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 60-36947 and the technical report GS News Vol. 46, No. 42 JUN, 1987 discloses that the humidity sensor is used in a wide humidity range. Although it can be applied, it is pointed out that the response speed is slow (several minutes) because the adsorbed water is forcibly electrolyzed once.

【0007】また特開平8−138691号公報に開示
された技術によれば、湿度変化に伴う電解質膜の膨潤・
収縮を利用したスイッチ形式のセンサのため迅速な応答
性や変化の過程を監視することが困難であるという問題
がある。
Further, according to the technique disclosed in Japanese Patent Application Laid-Open No. 8-138691, the swelling of the electrolyte membrane due to a change in humidity is caused.
There is a problem that it is difficult to monitor a quick response and a change process because of a switch type sensor using contraction.

【0008】本発明の解決しようとする課題は、固体高
分子電解質膜に吸着される水分の量によって変動する電
気抵抗の変化から、監視環境の湿度変化を応答性良く検
知することができる高分子電解質複合膜を用いた湿度セ
ンサを提供することにある。
An object of the present invention is to provide a polymer capable of detecting a change in the humidity of a monitoring environment with good responsiveness from a change in electric resistance which varies depending on the amount of water adsorbed on the solid polymer electrolyte membrane. An object of the present invention is to provide a humidity sensor using an electrolyte composite membrane.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明に係る湿度センサは、感湿層として、有機高分
子電解質に吸水性ポリマーを配合してなる高分子電解質
複合膜を用いたことを要旨とするものである。
To solve this problem, a humidity sensor according to the present invention uses, as a moisture-sensitive layer, a polymer electrolyte composite membrane obtained by blending a water-absorbing polymer with an organic polymer electrolyte. The gist is that.

【0010】この場合に感湿層となる高分子電解質複合
膜を構成する有機高分子電解質としては、デュポン社製
の商品名「ナフィオン」(登録商標)で代表されるパー
フルオロカーボンスルホン酸の他、フェノールスルホン
酸膜、ポリスチレンスルホン酸膜、ポリトリフルオロス
チレンスルホン酸膜等が挙げられる。またこの他の好適
な有機高分子電解質の例として高分子骨格がその全てあ
るいは一部がフッ素化されたフッ化炭素系あるいは炭化
水素系であって、イオン交換基が陽イオン交換型にあっ
てはスルホン酸、カルボン酸、ホスホン酸、亜ホスホン
酸あるいはフェノール等、陰イオン交換型にあっては
1,2,3,4級アミン等であるものも挙げられる。
In this case, the organic polymer electrolyte constituting the polymer electrolyte composite membrane serving as a moisture-sensitive layer includes perfluorocarbon sulfonic acid represented by the trade name “Nafion” (registered trademark) manufactured by DuPont. Examples include a phenolsulfonic acid film, a polystyrenesulfonic acid film, and a polytrifluorostyrenesulfonic acid film. Examples of other suitable organic polymer electrolytes include a polymer skeleton in which all or a part thereof is a fluorinated carbon or hydrocarbon, and an ion exchange group is a cation exchange type. Examples thereof include sulfonic acid, carboxylic acid, phosphonic acid, phosphonous acid and phenol, and in the case of anion exchange type, 1,2,3, quaternary amine and the like.

【0011】吸水性ポリマーとしては、架橋型のもので
あって上記高分子電解質と相溶性を備えるものが望まし
い。好適なものとしては、例えば、明成化学工業社製の
架橋型ポリエチレンオキサイド(PEO)系吸水性樹脂
「アクアプレンWS−105」、同じく「アクアプレン
WS−10」の他、ポリビニルアルコール系のポバール
の架橋物、アクリル系のポリアクリル酸ナトリウム架橋
物、デンプン系、セルロース系、ヒアルロン酸系の樹脂
が挙げられる。さらに吸水性ポリマー粒子としては、例
えばポリアクリル酸塩架橋体、澱粉−アクリル酸グラフ
ト重合体の中和物、架橋ポリビニルアルコール変性物、
架橋イソブチレン−無水マレイン酸共重合体、ポリエチ
レンオキサイド架橋体、アクリルアミド−アクリル酸架
橋重合体等も挙げられる。
The water-absorbing polymer is desirably a cross-linkable polymer having compatibility with the above-mentioned polymer electrolyte. Preferable examples thereof include a crosslinked polyethylene oxide (PEO) -based water-absorbent resin “Aquaprene WS-105” and “Aquaprene WS-10” manufactured by Meisei Chemical Industry Co., Ltd. And acrylic-based crosslinked sodium polyacrylate, starch-based, cellulose-based, and hyaluronic acid-based resins. Further as the water-absorbing polymer particles, for example, a crosslinked polyacrylate, a neutralized product of a starch-acrylic acid graft polymer, a crosslinked polyvinyl alcohol modified product,
Crosslinked isobutylene-maleic anhydride copolymers, polyethylene oxide crosslinked products, acrylamide-acrylic acid crosslinked polymers, and the like are also included.

【0012】そして有機高分子電解質と吸水性ポリマー
との比率は、高分子電解質99〜1重量%に対して吸水
性ポリマー1〜99%の広範囲な混合組成をとることが
できる。この場合に感湿層に取り付けられる電極として
は、白金族元素、金、銀の単体や合金等が用いられる。
The ratio of the organic polymer electrolyte to the water-absorbing polymer can take a wide range of a mixed composition of 1 to 99% of the water-absorbing polymer with respect to 99 to 1% by weight of the polymer electrolyte. In this case, as the electrode attached to the moisture-sensitive layer, a simple substance or alloy of a platinum group element, gold, or silver is used.

【0013】本発明に係る湿度センサは、例えば、次の
ようにして作製される。すなわち、有機固体電解質複合
膜についてはまず初めに有機高分子電解質と吸水性ポリ
マーとを適当な混合比で超音波を当てながらブレンドす
る。次いでブレンドした混合物を放置しておき溶媒を蒸
発除去する。その後、所定の温度(120℃)及び圧力
(50kg/cm2 )の環境下で数分〜数十分間程度、
ホットプレス機を用いて加熱し、架橋反応によって電解
質複合膜が得られる。ブレンド法としては、撹拌や超音
波振動、混練等、溶媒の除去法としては蒸発や加熱、減
圧等、硬化法としては加熱や架橋剤による硬化法があ
る。そしてこの高分子電解質複合膜への電極の取り付け
は、メッキ、圧着、熱圧着等により行う。
The humidity sensor according to the present invention is manufactured, for example, as follows. That is, for the organic solid electrolyte composite membrane, first, the organic polymer electrolyte and the water-absorbing polymer are blended while applying ultrasonic waves at an appropriate mixing ratio. The blended mixture is then left to evaporate off the solvent. Thereafter, under an environment of a predetermined temperature (120 ° C.) and pressure (50 kg / cm 2 ), for several minutes to several tens minutes,
Heating is performed using a hot press machine, and an electrolyte composite membrane is obtained by a crosslinking reaction. Examples of the blending method include stirring, ultrasonic vibration, and kneading. Examples of the method for removing the solvent include evaporation, heating, and reduced pressure. Examples of the curing method include heating and a curing method using a crosslinking agent. The electrodes are attached to the polymer electrolyte composite membrane by plating, crimping, thermocompression, or the like.

【0014】上記構成を有する湿度センサによれば、有
機スルホン酸系ポリマーを主成分とする有機高分子電解
質に吸水性ポリマーが配合されることにより、使用環境
における湿度変化によって応答の速い吸湿、あるいは乾
燥の変化が生じる。そのため高分子電解質単独の場合に
較べて電解質膜の湿度変化に対する電気抵抗変化が速く
なる。変化した湿度は、瞬時に金属電極を介して電気抵
抗値として測定される。これにより湿度センサの応答性
が速くなり、電解質膜の乾燥が迅速に検出されることに
なる。
According to the humidity sensor having the above-described structure, the water-absorbing polymer is blended with the organic polymer electrolyte containing the organic sulfonic acid-based polymer as a main component, so that the moisture-absorbing material has a fast response due to a change in humidity in the use environment, or Changes in drying occur. Therefore, the change in electrical resistance with respect to the change in humidity of the electrolyte membrane is faster than in the case of using only the polymer electrolyte. The changed humidity is instantaneously measured as an electric resistance value via the metal electrode. As a result, the responsiveness of the humidity sensor is increased, and the drying of the electrolyte membrane is quickly detected.

【0015】[0015]

【発明の実施の形態】以下、本発明の好適な一実施の形
態を図面を参照して説明する。図1は、本発明の一実施
の形態に係る高分子電解質複合膜を用いた湿度センサの
概略構成を示したものである。同図において湿度センサ
10は、白金からなる電極12,12が取り付けられた
高分子電解質複合膜14に吸着される水分の量によって
変動する電気抵抗値を抵抗測定部16で測定することに
よって湿度を検出するものである。この高分子電解質複
合膜14は、感湿層としての機能を有するものであり、
有機スルホン酸系ポリマーを主成分とする有機高分子電
解質に吸水性ポリマーを配合し、架橋反応させることに
より形成されるものである。これにより高分子電解質複
合膜14に吸着される水分の変化すなわち湿度変化に対
する電気抵抗変化が促進される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a humidity sensor using a polymer electrolyte composite membrane according to an embodiment of the present invention. In FIG. 1, the humidity sensor 10 measures humidity by measuring an electric resistance value, which varies depending on the amount of moisture adsorbed on the polymer electrolyte composite membrane 14 to which the electrodes 12 and 12 made of platinum are attached, by a resistance measuring unit 16. It is to detect. This polymer electrolyte composite membrane 14 has a function as a moisture-sensitive layer,
It is formed by blending a water-absorbing polymer with an organic polymer electrolyte containing an organic sulfonic acid-based polymer as a main component and causing a crosslinking reaction. This promotes a change in electric resistance with respect to a change in moisture adsorbed on the polymer electrolyte composite membrane 14, that is, a change in humidity.

【0016】本実施例としていくつかの条件により作製
した高分子電解質複合膜を用いて各種の湿度センサを作
製した。以下に各実施例及び比較例について説明する。
In this embodiment, various types of humidity sensors were manufactured using a polymer electrolyte composite membrane manufactured under several conditions. Hereinafter, Examples and Comparative Examples will be described.

【0017】(実施例1)吸水性ポリマーとして明成化
学工業社製の架橋型ポリエチレンオキサイド(PEO)
系吸水性樹脂「アクアプレンWS−105」(吸収倍率
約5倍)と、有機高分子電解質としてデュポン社製のパ
ーフルオロカーボンスルホン酸系樹脂「ナフィオン」の
5%溶液とを、「アクアプレンWS−105」の重量百
分率が12.5wt%の割合となるように配合し、超音
波を印加しながら10分間混合した。その後、ガラス基
板上で25℃温度環境下でそのまま二晩放置して溶媒を
蒸発除去した。これを70℃の温度環境下で2時間乾燥
した後、ホットプレス機を用いて温度120℃、プレス
圧力50kg/cm2 の条件下で13分間(昇温3分・
保持10分)、加熱硬化処理を行い膜厚約60μmの高
分子電解質複合膜を得た。そしてこの高分子電解質複合
膜の対向する両端面に白金電極を接合し、抵抗測定部と
電極とを接続して湿度センサを「本発明品1」として作
製した。
Example 1 Crosslinked polyethylene oxide (PEO) manufactured by Meisei Chemical Industry Co., Ltd. as a water-absorbing polymer
Water-absorbent resin “Aquaprene WS-105” (absorption ratio about 5 times) and a 5% solution of a perfluorocarbon sulfonic acid resin “Nafion” manufactured by DuPont as an organic polymer electrolyte were mixed with “Aquaprene WS-105”. Was mixed so that the weight percentage of the mixture was 12.5 wt%, and mixed for 10 minutes while applying ultrasonic waves. Then, the solvent was evaporated and removed by leaving the glass substrate in a 25 ° C. temperature environment for two nights. This was dried under a temperature environment of 70 ° C. for 2 hours, and then 13 minutes under a condition of a temperature of 120 ° C. and a pressing pressure of 50 kg / cm 2 using a hot press machine (heating for 3 minutes.
Holding 10 minutes), a heat curing treatment was performed to obtain a polymer electrolyte composite membrane having a film thickness of about 60 μm. Then, platinum electrodes were joined to the opposite end surfaces of the polymer electrolyte composite membrane, and the resistance measuring section and the electrodes were connected to prepare a humidity sensor as "Product 1 of the present invention".

【0018】(実施例2)吸水性ポリマーとして明成化
学工業社製の架橋型PEO系吸水性樹脂「アクアプレン
WS−10」(吸収倍率約10倍)と、有機高分子電解
質としてデュポン社製のパーフルオロカーボンスルホン
酸系樹脂「ナフィオン」の5%溶液とを、「アクアプレ
ンWS−10」の重量百分率が12.5wt%の割合と
なるように配合し、超音波を印加しながら10分間混合
した。その後、ガラス基板上で25℃温度環境下でその
まま二晩放置して溶媒を蒸発除去した。これを70℃の
温度環境下で2時間乾燥した後、ホットプレス機を用い
て温度120℃、プレス圧力50kg/cm2 の条件下
で13分間(昇温3分・保持10分)、加熱硬化処理を
行い膜厚約60μmの高分子電解質複合膜を得た。そし
てこの高分子電解質複合膜の対向する両端面に白金電極
を接合し、抵抗測定部と電極とを接続して湿度センサを
「本発明品2」として作製した。さらに、実施例2と同
様なプロセスで、膜厚30μmの高分子電解質複合膜を
用い、「本発明品3」の湿度センサを作製した。
(Example 2) A crosslinked PEO-based water-absorbing resin "Aquaprene WS-10" manufactured by Meisei Chemical Industry Co., Ltd. (absorption capacity: about 10 times) was used as a water-absorbing polymer, and a DuPont polymer was used as an organic polymer electrolyte. A 5% solution of a fluorocarbon sulfonic acid resin "Nafion" was blended so that the weight percentage of "Aquaprene WS-10" was 12.5 wt%, and mixed for 10 minutes while applying ultrasonic waves. Then, the solvent was evaporated and removed by leaving the glass substrate in a 25 ° C. temperature environment for two nights. This was dried under a temperature environment of 70 ° C. for 2 hours, and then heated and cured using a hot press machine at a temperature of 120 ° C. and a pressing pressure of 50 kg / cm 2 for 13 minutes (heating 3 minutes, holding 10 minutes). By performing the treatment, a polymer electrolyte composite membrane having a thickness of about 60 μm was obtained. Then, platinum electrodes were joined to both opposing end surfaces of the polymer electrolyte composite membrane, and the resistance measuring section and the electrodes were connected to prepare a humidity sensor as "Product 2 of the present invention". Further, a humidity sensor of "Product 3 of the present invention" was produced in the same process as in Example 2, using a polymer electrolyte composite film having a thickness of 30 μm.

【0019】(比較例)有機高分子電解質としてデュポ
ン社製のパーフルオロカーボンスルホン酸系樹脂「ナフ
ィオン」の5%溶液を、ガラス基板上で25℃温度環境
下でそのまま二晩放置し、これを実施例1と同一条件下
で加熱処理を行い膜厚約60μmのナフィオンリキャス
ト膜を得た。そしてこの単独膜の対向する両端面に白金
電極を接合し、抵抗測定部と電極とを接続して湿度セン
サを「比較品」として作製した。
(Comparative Example) A 5% solution of a perfluorocarbon sulfonic acid resin "Nafion" manufactured by DuPont as an organic polymer electrolyte was left on a glass substrate under a temperature environment of 25 ° C. for 2 nights, and this was carried out. A heat treatment was carried out under the same conditions as in Example 1 to obtain a Nafion recast film having a thickness of about 60 μm. Then, platinum electrodes were joined to both opposing end faces of the single film, and the resistance measurement part and the electrodes were connected to prepare a humidity sensor as a “comparative product”.

【0020】次いで本発明品及び比較品について膜抵抗
の経時変化を測定した。これは、本発明品及び比較品を
固体高分子型燃料電池の反応ガスの流路である電池セル
の内部に配置して、湿潤状態(相対湿度で95.3%)
から乾燥状態(相対湿度で0%)に湿度変化させたとき
の膜抵抗の経時変化を25℃の温度環境下で交流を印加
してそのインピーダンスを測定することによりなされた
ものである。図2及び図3は、これらの測定結果をグラ
フにして示したものであり、横軸に時間(秒)をとり縦
軸に抵抗値(Ω)の常用対数をとっている。以下これら
の図を参照して本発明品及び比較品についての比較検討
及び評価を行う。
Next, the change with time of the film resistance of the product of the present invention and the comparative product was measured. This is because the product of the present invention and the comparative product are arranged inside a battery cell which is a flow path of a reaction gas of a polymer electrolyte fuel cell, and are in a wet state (95.3% relative humidity).
The change with time of the film resistance when the humidity was changed from 0 to a dry state (0% relative humidity) was obtained by measuring the impedance by applying an alternating current under a temperature environment of 25 ° C. 2 and 3 are graphs showing the results of these measurements, in which the horizontal axis represents time (seconds) and the vertical axis represents the common logarithm of the resistance value (Ω). Hereinafter, comparison and evaluation of the product of the present invention and the comparative product will be performed with reference to these drawings.

【0021】図2は、吸水性ポリマーを配合した高分子
電解質複合膜(本発明品1)とナフィオンリキャスト膜
(比較品)の膜抵抗の経時変化を比較して示したもので
ある。相対湿度が95.3%の燃料電池の反応ガス中に
湿度センサを置き、電気抵抗の測定を開始するとともに
運転状態が安定してから計時を開始した。そして約60
0秒が経過した時(図中Aにて矢示)に反応ガスの相対
湿度を0%にし、そのまま計時開始から約3600(変
化開始から50分)秒が経過するまで電気抵抗の測定を
継続した。
FIG. 2 shows a comparison of the change over time in the membrane resistance of the polymer electrolyte composite membrane containing the water-absorbing polymer (Product 1 of the present invention) and the Nafion recast membrane (Comparative product). A humidity sensor was placed in a reaction gas of a fuel cell having a relative humidity of 95.3%, measurement of electric resistance was started, and time measurement was started after the operation state was stabilized. And about 60
When 0 seconds have elapsed (indicated by an arrow A in the figure), the relative humidity of the reaction gas is set to 0%, and the measurement of the electrical resistance is continued until approximately 3600 seconds (50 minutes from the start of the change) have elapsed from the start of the time measurement. did.

【0022】本発明品1は、計時開始時のlog(電気
抵抗値)が約4.4を示し、相対湿度を変化させるまで
若干の低下が見られるもののほぼ横ばいの値を示した。
反応ガスの相対湿度を0%にすると、その直後から急激
に電気抵抗値が直線的な上昇を開始し計時を開始してか
ら約1000秒、相対湿度を0%にしてから約400秒
が経過した時に最大値(6.2)を示し、その後はなだ
らかな減少をみせ計時を開始してから約2000秒が経
過した時に約6.0を示した。そしてそのまま測定が終
了するまでほぼ横ばいの値(約6.0)を安定して示し
た。
The product 1 of the present invention exhibited a log (electrical resistance value) of about 4.4 at the start of timekeeping, and showed a value which was almost flat although a slight decrease was observed until the relative humidity was changed.
When the relative humidity of the reaction gas is set to 0%, the electric resistance value starts to increase linearly rapidly immediately after that, and about 1000 seconds have elapsed since the time measurement was started, and about 400 seconds have elapsed since the relative humidity was set to 0%. The value showed a maximum value (6.2) when the measurement was performed, and thereafter showed a gradual decrease, and reached approximately 6.0 when about 2000 seconds had elapsed since the start of the timing. Until the measurement was completed, the value remained almost flat (about 6.0) stably.

【0023】これに対し比較品は、計時開始時のlog
(電気抵抗値)が約3.5を示し、相対湿度を変化させ
るまでほぼ横ばいの値を示した。反応ガスの相対湿度を
0%にすると、その直後から電気抵抗値の上昇が見られ
たがその上昇は本発明品1に較べるとかなり緩やかなも
のであった。そして計時を開始してから約1600秒、
相対湿度を0%にしてから1000秒が経過した時にl
og(電気抵抗値)が約5.5となり、これを境にして
その上昇の度合はさらに緩やかなものとなり、そのまま
測定が終了するまで電気抵抗値は上昇を続けた。
On the other hand, the comparison product has a log
(Electric resistance value) was about 3.5, and remained almost unchanged until the relative humidity was changed. When the relative humidity of the reaction gas was set to 0%, an increase in the electrical resistance was observed immediately after that, but the increase was much more gradual than that of the product 1 of the present invention. And about 1600 seconds after starting the timing,
When 1000 seconds have passed since the relative humidity was reduced to 0%, l
og (electrical resistance value) was about 5.5, and after this, the degree of the increase became more gradual, and the electric resistance value continued to increase until the measurement was completed.

【0024】本発明品1によれば、相対湿度を93.5
%から0%と急激に変化させた場合でも電気抵抗値が最
大値を示すまでに、約400秒しかかからず、比較品に
較べると応答性に優れて速く高い抵抗値に到達すること
ができる。したがって湿潤状態から乾燥状態への湿度変
化の検出が迅速かつ正確になされることになる。
According to the product 1 of the present invention, the relative humidity is 93.5.
It takes only about 400 seconds for the electrical resistance to reach its maximum value even when the resistance is suddenly changed from 0% to 0%. it can. Therefore, a change in humidity from a wet state to a dry state can be detected quickly and accurately.

【0025】比較品によれば、相対湿度を93.5%か
ら0%にした場合の電気抵抗値が変化したことが検知さ
れるまでに約1000秒以上もかかり、3000秒たっ
ても平衡状態に達せず、かなり応答性が悪いうえ正確さ
と迅速さに欠けたものとなる。
According to the comparative product, it takes about 1000 seconds or more until it is detected that the electric resistance value has changed when the relative humidity is changed from 93.5% to 0%. It is not very responsive and lacks accuracy and speed.

【0026】図3は、吸水性ポリマーを配合した高分子
電解質複合膜(本発明品2)と膜厚が1/2の高分子電
解質複合膜(本発明品3)とナフィオンリキャスト膜
(比較品)の膜抵抗の経時変化を比較して示したもので
ある。本発明品1と同様にして電気抵抗の測定を行った
ものであり、約600秒が経過した時(図中Bにて矢
示)に反応ガスの相対湿度を0%にし、そのまま約36
00秒が経過するまで電気抵抗の測定を継続した。
FIG. 3 shows a polymer electrolyte composite membrane containing the water-absorbing polymer (Product 2 of the present invention), a polymer electrolyte composite membrane having a thickness of 1/2 (Product 3 of the present invention), and a Nafion recast membrane (Comparison product). 2) shows the change with time of the film resistance in comparison. The electric resistance was measured in the same manner as the product 1 of the present invention. When about 600 seconds had elapsed (indicated by an arrow B in the figure), the relative humidity of the reaction gas was set to 0%, and the relative humidity was kept at about 36%.
The measurement of the electrical resistance was continued until 00 seconds had elapsed.

【0027】本発明品2は、経時開始時のlog(電気
抵抗値)が約4.2を示し、相対湿度を変化させるま
で、ほぼ横ばいの値を示した。反応ガスの相対湿度を0
%にすると、その直後から急激に電気抵抗値が直線的な
上昇を開始し、計時開始後から約1000秒、相対湿度
を0%にしてから約400秒が経過した時に、最大値
6.2を示し、その後はなだらかに減少し、計時開始か
ら約2000秒で約5.9を示した。そして、そのまま
測定が終了するまでほぼ横ばいの値を安定して示した。
The product 2 of the present invention had a log (electric resistance value) at the start of aging of about 4.2, and remained almost unchanged until the relative humidity was changed. Set the relative humidity of the reaction gas to 0
%, The electric resistance value starts to increase linearly rapidly immediately after that, and when about 400 seconds have elapsed after the start of timekeeping and about 400 seconds after the relative humidity was set to 0%, the maximum value was 6.2. , And then gradually decreased to about 5.9 at about 2000 seconds from the start of timing. Then, a value almost leveling out was stably shown until the measurement was completed.

【0028】本発明品2を薄膜化した(60μm→30
μm)本発明品3では、経時開始時のlog(電気抵抗
値)が約4.5を示し、相対湿度を変化させるまでほぼ
横ばいの値を示した。反応ガスの相対湿度を0%にする
と、その直後から約100秒の間に電気抵抗値が急峻に
上昇して、最大値(6.2)を示し、その後は安定値に
向かって急激に減少し、それから約100秒もたたない
うちに約6.0の安定した状態となり、そのまま測定が
終了するまでほぼ横ばいの値を安定して示した。
The product 2 of the present invention was thinned (60 μm → 30
μm) In the case of the product 3 of the present invention, the log (electric resistance value) at the start of aging showed about 4.5, and remained almost unchanged until the relative humidity was changed. When the relative humidity of the reaction gas is set to 0%, the electric resistance value rises sharply for about 100 seconds immediately after that, reaches the maximum value (6.2), and then decreases rapidly toward a stable value. Then, within about 100 seconds after that, a stable state of about 6.0 was obtained, and the value remained almost unchanged until the measurement was completed.

【0029】本発明品2によれば、相対湿度を93.5
%から0%と急激に変化させた場合でも、電気抵抗値が
最大値を示すまでに、約400秒と本発明品1と同様な
優れた応答性を示した。さらに本発明品3によれば、複
合膜を薄膜化することによって相対湿度を93.5%か
ら0%にした場合の電気抵抗値が最大値を示すまでに
は、約100秒(約1〜2分)しかかからず、膜厚が2
倍の本発明品1、2にも増して極めて応答性に優れて速
く高い抵抗値に到達することができる。したがって湿潤
状態から乾燥状態への湿度変化の検出がさらに迅速かつ
正確になされることになる。
According to the product 2 of the present invention, the relative humidity was 93.5.
Even when the ratio was rapidly changed from 0% to 0%, the same excellent response as the product 1 of the present invention was exhibited for about 400 seconds until the electric resistance value reached the maximum value. Further, according to the product 3 of the present invention, it takes about 100 seconds (about 1 to 1) for the electrical resistance to reach the maximum value when the relative humidity is reduced from 93.5% to 0% by thinning the composite film. 2 minutes) and the film thickness is 2
It is extremely excellent in responsiveness even when the present invention products 1 and 2 are doubled, and can quickly reach a high resistance value. Therefore, the change in humidity from the wet state to the dry state can be detected more quickly and accurately.

【0030】図4は、上述した本発明の湿度センサを固
体高分子型燃料電池の固体電解質膜の乾湿状態の監視に
用いた状態の概略構成を示したものである。固体高分子
型燃料電池は、図4に示したように、セルのアノード側
に水素(燃料)を供給し、カソード側に酸素(酸化剤)
を供給することにより、アノード側で生成した水素イオ
ン(H+ )が、固体高分子電解質膜中のイオン交換基を
介してカソード側へ移動し、カソード側の酸素と反応し
て水(H2O) が生成されるもので、この時に電気エネ
ルギーが外部に取り出される。
FIG. 4 shows a schematic configuration of a state in which the above-described humidity sensor of the present invention is used for monitoring the dry / wet state of a solid electrolyte membrane of a polymer electrolyte fuel cell. As shown in FIG. 4, the polymer electrolyte fuel cell supplies hydrogen (fuel) to the anode side of the cell and oxygen (oxidant) to the cathode side.
, Hydrogen ions (H + ) generated on the anode side move to the cathode side via ion exchange groups in the solid polymer electrolyte membrane, and react with oxygen on the cathode side to form water (H 2 O) is generated, and at this time, electric energy is extracted to the outside.

【0031】そしてこの固体高分子型燃料電池は、電解
質膜が適切な含水状態に保たれて高いプロトン電導性を
示している必要があり、水が不足すると電解質の抵抗が
増大し、逆に水が過剰になると電極でフラッディング状
態になって反応ガスの供給が阻害され、いずれの場合に
おいても安定した電圧が得られなくなる。
In this polymer electrolyte fuel cell, it is necessary that the electrolyte membrane be kept in an appropriate water-containing state and exhibit high proton conductivity. If water is insufficient, the resistance of the electrolyte increases, and conversely, water becomes insufficient. Becomes excessive, the electrodes become flooded, and the supply of the reaction gas is hindered. In any case, a stable voltage cannot be obtained.

【0032】そこでこの図4に示したように、固体高分
子型燃料電池の固体高分子電解質膜に本発明の湿度セン
サ10を設けておけば、この燃料電池の電解質膜が乾燥
してきた時に、湿度センサ10の高分子電解質複合膜1
4も同様に乾燥してきて、図2や図3について説明した
ように急激な電気抵抗値の変化を電解質膜自体よりも速
く示すために、燃料電池の電解質膜を適度に湿潤させる
必要があることが迅速に検知される。
Therefore, as shown in FIG. 4, if the humidity sensor 10 of the present invention is provided on the solid polymer electrolyte membrane of the polymer electrolyte fuel cell, when the electrolyte membrane of the fuel cell becomes dry, Polymer electrolyte composite membrane 1 of humidity sensor 10
4, the electrolyte membrane of the fuel cell needs to be appropriately wetted in order to show a rapid change in electric resistance faster than the electrolyte membrane itself, as described with reference to FIGS. 2 and 3. Is quickly detected.

【0033】そして図示はしないが、この湿度センサ1
0の抵抗測定部16の検知信号に基づいて加湿器により
自動的にこの燃料電池に用いられる反応ガス(水素、空
気)を加湿するようにすれば、この燃料電池の固体高分
子電解質膜は常時所望の湿潤状態が保たれ、安定した発
電状態が維持されることになる。
Although not shown, the humidity sensor 1
If the reaction gas (hydrogen, air) used in the fuel cell is automatically humidified by the humidifier based on the detection signal of the resistance measuring unit 16 of 0, the solid polymer electrolyte membrane of the fuel cell is always The desired wet state is maintained, and a stable power generation state is maintained.

【0034】本発明に係る湿度センサを、固体高分子型
燃料電池に組み込めば、水分管理が重要な固体高分子電
解質膜の加湿状態が連続的に監視され、固体高分子電解
質膜が何らかの原因で乾燥状態になった時にその異常が
迅速に検出され、加湿制御がなされることになる。これ
により最適な湿度状態での燃料電池の運転が可能にな
り、固体高分子型燃料電池の性能向上が期待されること
になる。
If the humidity sensor according to the present invention is incorporated in a solid polymer electrolyte fuel cell, the humidification state of the solid polymer electrolyte membrane for which moisture management is important is continuously monitored, and the solid polymer electrolyte membrane may be damaged for some reason. When it becomes dry, the abnormality is quickly detected, and humidification control is performed. As a result, the fuel cell can be operated in an optimum humidity state, and the performance of the polymer electrolyte fuel cell is expected to be improved.

【0035】本発明は、上記した実施例に何ら限定され
るものではなく、本発明の趣旨を逸脱しない範囲で種々
の改変が可能である。例えば上記した実施例において
は、固体高分子型燃料電池の固体電解質膜の監視(モニ
タ)に適用した例を示したが、それ以外に空調機器、治
療器(呼吸器系)、食品や植物の管理、培養雰囲気の管
理、その他絵画・漆器等の芸術品の管理等、特に乾燥を
嫌うものの湿度管理に用いることができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, an example in which the present invention is applied to monitoring (monitoring) of a solid electrolyte membrane of a polymer electrolyte fuel cell is described. However, in addition to the above, air conditioning equipment, therapeutic equipment (respiratory system), food and plants, etc. It can be used for the management of culture, the management of culture atmosphere, the management of artistic objects such as paintings and lacquerware, and the like, especially for the humidity control of those that do not like drying.

【0036】[0036]

【発明の効果】以上説明したように、本発明に係る湿度
センサは、ナフィオンのような有機高分子電解質に吸水
性ポリマーを配合したものであり、この電解質複合膜に
吸着される水分量の変化すなわち湿度変化によって変動
するその膜抵抗値の変動を迅速かつ正確に検知すること
ができる。したがってこの湿度センサを固体高分子型燃
料電池の電解質膜の加湿状態の監視用に適用すれば、燃
料電池のさらなる性能向上が期待されるし、その他の用
途にも適用し得る。
As described above, the humidity sensor according to the present invention is obtained by blending a water-absorbing polymer with an organic polymer electrolyte such as Nafion, and changes in the amount of water adsorbed on the electrolyte composite membrane. That is, it is possible to quickly and accurately detect a change in the film resistance value that changes due to a change in humidity. Therefore, if this humidity sensor is applied for monitoring the humidified state of the electrolyte membrane of a polymer electrolyte fuel cell, further improvement in the performance of the fuel cell is expected, and it can be applied to other uses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る湿度センサの概略
構成を示した図である。
FIG. 1 is a diagram showing a schematic configuration of a humidity sensor according to an embodiment of the present invention.

【図2】本発明の湿度センサの加湿状態の変化における
電気抵抗の経時変化を示した図である。
FIG. 2 is a diagram showing a change over time of electric resistance in a change in a humidification state of the humidity sensor of the present invention.

【図3】同じく本発明の他の実施例に係る湿度センサの
電気抵抗の経時変化を示した図である。
FIG. 3 is a diagram showing a change over time of an electric resistance of a humidity sensor according to another embodiment of the present invention.

【図4】本発明の湿度センサを固体高分子型燃料電池の
電解質膜の加湿状態の監視(モニタ)に適用した例を示
した図である。
FIG. 4 is a diagram showing an example in which the humidity sensor of the present invention is applied to monitoring of a humidified state of an electrolyte membrane of a polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

10 湿度センサ 12 電極 14 高分子電解質複合膜 16 抵抗測定部 DESCRIPTION OF SYMBOLS 10 Humidity sensor 12 Electrode 14 Polymer electrolyte composite film 16 Resistance measurement part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機高分子電解質に吸水性ポリマーを配
合してなることを特徴とする高分子電解質複合膜を用い
た湿度センサ。
1. A humidity sensor using a polymer electrolyte composite membrane, comprising a water absorbing polymer mixed with an organic polymer electrolyte.
JP9172898A 1997-06-12 1997-06-12 Humidity sensor using high polymer electrolyte composite membrane Pending JPH112616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9172898A JPH112616A (en) 1997-06-12 1997-06-12 Humidity sensor using high polymer electrolyte composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9172898A JPH112616A (en) 1997-06-12 1997-06-12 Humidity sensor using high polymer electrolyte composite membrane

Publications (1)

Publication Number Publication Date
JPH112616A true JPH112616A (en) 1999-01-06

Family

ID=15950391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9172898A Pending JPH112616A (en) 1997-06-12 1997-06-12 Humidity sensor using high polymer electrolyte composite membrane

Country Status (1)

Country Link
JP (1) JPH112616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073414A3 (en) * 2000-03-24 2002-10-17 Regenesys Tech Ltd Membrane moisture measurement
DE102016007722A1 (en) 2015-06-30 2017-01-05 Fanuc Corporation Rotary encoder capable of obtaining a moisture absorption amount of a desiccant
KR20190140217A (en) * 2018-06-11 2019-12-19 한밭대학교 산학협력단 High speed breath humidity sensor device and fabrication method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073414A3 (en) * 2000-03-24 2002-10-17 Regenesys Tech Ltd Membrane moisture measurement
DE102016007722A1 (en) 2015-06-30 2017-01-05 Fanuc Corporation Rotary encoder capable of obtaining a moisture absorption amount of a desiccant
US10317258B2 (en) 2015-06-30 2019-06-11 Fanuc Corporation Rotary encoder having function to obtain moisture absorbing amount of desiccant
KR20190140217A (en) * 2018-06-11 2019-12-19 한밭대학교 산학협력단 High speed breath humidity sensor device and fabrication method thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation
Rubinger et al. Sulfonated polystyrene polymer humidity sensor: synthesis and characterization
Arico et al. Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells
Li et al. Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell
JP4231110B2 (en) Novel polymer electrolyte membrane for fuel cells
Vargas et al. New proton conducting membranes based on PVAL/H3PO2/H2O
Wan et al. Preliminary evaluation of an alkaline chitosan-based membrane fuel cell
JP4920889B2 (en) Membrane electrode assembly, polymer membrane, polymer electrolyte fuel cell, method for producing membrane electrode assembly, and method for producing polymer electrolyte fuel cell
Sambandam et al. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells
KR20160060131A (en) Humidification control device
CN112710718B (en) Ceramic hollow microsphere electrochemical sensor and application thereof
Fattoum et al. Conductivity and dielectric relaxation in crosslinked PVA by oxalic and citric acids
US20080014474A1 (en) Fuel cell system and activation method for fuel cell
JPH112616A (en) Humidity sensor using high polymer electrolyte composite membrane
Wan et al. New solid polymer electrolyte membranes for alkaline fuel cells
Wang et al. In situ gelation of aqueous sulfuric acid solution for fuel cells
US20040053102A1 (en) Proton conductor film and method for preparation thereof, and fuel cell having proton conductor film and method for manufacturing the cell
JP4672165B2 (en) Polymer electrolyte fuel cell
Velayutham et al. Nafion based amperometric hydrogen sensor
JP4576784B2 (en) Proton conductor membrane and production method thereof, membrane-electrode assembly and production method thereof, and electrochemical device
US20110091793A1 (en) Proton conducting electrolyte
CN101356216A (en) Manufacturing method for electrolyte membrane, electrolyte membrane, and fuel cell
Kim et al. Study of a highly durable low-humidification membrane electrode assembly using crosslinked polyvinyl alcohol for polymer electrolyte membrane fuel cells
JP2005019285A (en) Fuel cell cell
KR20140076475A (en) Electrolyte membrane, manufacturing method thereof, and membrane electrode assembly and fuel cell including the membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

RD04 Notification of resignation of power of attorney

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A02 Decision of refusal

Effective date: 20070711

Free format text: JAPANESE INTERMEDIATE CODE: A02