JPH11261653A - Signal quality monitor circuit - Google Patents

Signal quality monitor circuit

Info

Publication number
JPH11261653A
JPH11261653A JP10062977A JP6297798A JPH11261653A JP H11261653 A JPH11261653 A JP H11261653A JP 10062977 A JP10062977 A JP 10062977A JP 6297798 A JP6297798 A JP 6297798A JP H11261653 A JPH11261653 A JP H11261653A
Authority
JP
Japan
Prior art keywords
threshold voltage
electric signal
comparator
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10062977A
Other languages
Japanese (ja)
Other versions
JP3410356B2 (en
Inventor
Akiko Oteru
晶子 大輝
Noboru Takachio
昇 高知尾
Masabumi Koga
正文 古賀
Haruhiko Ichino
晴彦 市野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06297798A priority Critical patent/JP3410356B2/en
Publication of JPH11261653A publication Critical patent/JPH11261653A/en
Application granted granted Critical
Publication of JP3410356B2 publication Critical patent/JP3410356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio

Abstract

PROBLEM TO BE SOLVED: To obtain a simple signal quality monitor circuit capable of checking the deterioration of transmission characteristics, independently of the signal format. SOLUTION: This circuit is provided with a threshold voltage generating means, that applies a threshold voltage 6 which changes at a prescribed interval to a comparator 7, the comparator 7 that compares a multi-value electric signal with the threshold voltage 6 changing at a prescribed interval, a counter 8 that counts an output of the comparator 7, and an arithmetic circuit 10, that obtains the intensity distribution of the electric signal, based on the threshold voltage 6 and an output of the counter 8 for measuring noise distribution in the electric signal. In place of changing a threshold, the circuit may be provided with a threshold voltage generating means that applies different threshold voltages 6 to the plural comparators 7 respectively and the plural counters 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気通信網におけ
る伝送特性の劣化を調べるための信号品質監視回路に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal quality monitoring circuit for examining deterioration of transmission characteristics in a telecommunication network.

【0002】[0002]

【従来の技術】電気通信網の伝送品質を特定するための
ファクタとして符号誤り率或いはQ値が用いられる。符
号誤り率を測定する方法の一つにSDH伝送方式におけ
るBIP−8と呼ばれる監視方式がある。BIP−8
は、全てのビットから符号誤り率を推定するのではな
く、或る周期毎に特定のビットのみを抜き出してそのビ
ットから符号誤り率を推定する。しかしこのBIP−8
はSDH伝送方式に限られたものであり、他の信号系、
例えばPHDのような場合には、別の方法を用いなけれ
ばならないので、SDH符号誤り監視回路はPHDには
適用できない。
2. Description of the Related Art A code error rate or a Q value is used as a factor for specifying the transmission quality of a telecommunication network. One of the methods for measuring the bit error rate is a monitoring method called BIP-8 in the SDH transmission method. BIP-8
Does not estimate the bit error rate from all the bits, but extracts only a specific bit every certain period and estimates the bit error rate from that bit. But this BIP-8
Is limited to the SDH transmission method, other signal systems,
For example, in the case of PHD, another method must be used, so that the SDH code error monitoring circuit cannot be applied to PHD.

【0003】その他のQ値測定方法の従来例には、マー
ク又はスペースを判断する閾値を変えて、その各々の値
に対して符号誤り率を測定した結果からQ値を算出する
ものがある(N.S.Bergano et al.,IEEE Photon.Techno
l.Lett.,Vol.5,No.3,pp304-306,1993参照)。しかし、
この方法では、回路の規模が大きくなり、測定に多くの
時間を要し、また、高価であるという問題があった。
[0003] As another conventional Q value measuring method, there is a method in which a threshold value for judging a mark or a space is changed and a Q value is calculated from a result of measuring a code error rate for each value. NSBergano et al., IEEE Photon.Techno
l. Lett., Vol. 5, No. 3, pp. 304-306, 1993). But,
This method has a problem that the scale of the circuit is large, a long time is required for measurement, and the method is expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述の問題
点に鑑み、信号フォーマットに依存しない簡便な信号品
質監視回路を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple signal quality monitoring circuit which does not depend on a signal format in view of the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】本発明の信号品質監視回
路は、上記の目的を達成するため、比較器に一定の間隔
で変化する閾値電圧を供給する閾値電圧発生手段、多値
の電気信号を一定の間隔で変化する閾値電圧と比較する
比較器、比較器の出力をカウントするカウンター、閾値
電圧とカウンター出力とを記録するメモリー、及び、メ
モリーのデータを読込み電気信号の強度分布を求める演
算回路を具備し、電気信号中の雑音分布を測定するよう
に構成されたことを特徴とする。
In order to achieve the above object, a signal quality monitoring circuit according to the present invention comprises: a threshold voltage generating means for supplying a threshold voltage which changes at a constant interval to a comparator; That compares the threshold voltage with the threshold voltage that changes at regular intervals, a counter that counts the output of the comparator, a memory that records the threshold voltage and the counter output, and an operation that reads the data in the memory and calculates the intensity distribution of the electric signal And a circuit configured to measure a noise distribution in the electric signal.

【0006】本発明の他の信号品質監視回路は、複数の
比較器にそれぞれ異なる閾値電圧を供給する閾値電圧発
生手段、多値の電気信号から分岐された電気信号をそれ
ぞれ閾値電圧と比較する複数の比較器、比較器と対をな
す複数のカウンター、及び、閾値電圧とカウンター出力
とから電気信号の強度分布を求める演算回路を具備し、
電気信号中の雑音分布を測定するように構成されたこと
を特徴とする。
Another signal quality monitoring circuit according to the present invention comprises a threshold voltage generating means for supplying different threshold voltages to a plurality of comparators, and a plurality of comparators each for comparing an electric signal branched from a multi-valued electric signal with a threshold voltage. A comparator, a plurality of counters paired with the comparator, and an arithmetic circuit for calculating the intensity distribution of the electric signal from the threshold voltage and the counter output,
The apparatus is characterized in that it is configured to measure a noise distribution in an electric signal.

【0007】光多中継伝送において、ファイバを伝搬し
た光信号の強度損失を補償して光信号の強度を一定に保
つために各中継点で光増幅器が使用される。しかし、光
増幅器は自然放出光による雑音(amplified spontaneou
s emission noise: ASE雑音)を発生させ、このAS
E雑音は光信号と共に光ファイバ中を伝搬して中継点で
増幅される。従って、中継器の数の増加に伴ってASE
雑音が増加し、他の雑音と比較して支配的なものとな
る。
In optical multi-repeater transmission, an optical amplifier is used at each relay point in order to compensate for the intensity loss of an optical signal propagated through a fiber and keep the intensity of the optical signal constant. However, the optical amplifier has a problem of amplified spontaneou noise.
s emission noise (ASE noise)
The E noise propagates through the optical fiber together with the optical signal and is amplified at the relay point. Therefore, as the number of repeaters increases, ASE
The noise increases and becomes dominant compared to other noises.

【0008】ASE雑音が重畳された光信号を受信し復
調すると、スペース及びマークに対応する出力電圧の分
布がそれぞれ正規分布(ガウス分布)で近似できるよう
になる。ASE雑音がない場合の信号の時間波形及び強
度分布を図1(a) に、ASE雑音が重畳された場合の信
号の時間波形及び強度分布を図1(b) に示す。図1(b)
において、σ0 及びσ1 は、それぞれスペース及びマー
クに対応する出力電圧の標準偏差、μ0 及びμ1 は、そ
れぞれスペース及びマークに対応する出力電圧の平均値
である。スペース及びマークに対応する出力電圧が正規
分布で表されるとき、Q値及び符号誤り率は次式で表さ
れる。
When an optical signal on which ASE noise is superimposed is received and demodulated, the distribution of output voltages corresponding to spaces and marks can be approximated by a normal distribution (Gaussian distribution). FIG. 1 (a) shows the time waveform and intensity distribution of a signal without ASE noise, and FIG. 1 (b) shows the time waveform and intensity distribution of the signal with ASE noise superimposed. Fig. 1 (b)
, Σ 0 and σ 1 are the standard deviations of the output voltages corresponding to the space and the mark, respectively, and μ 0 and μ 1 are the average values of the output voltages corresponding to the space and the mark, respectively. When the output voltage corresponding to the space and the mark is represented by a normal distribution, the Q value and the bit error rate are represented by the following equations.

【0009】[0009]

【数1】 このように、符号誤り率BERは2値の電気信号からQ
値を直接測定して得られ、信号系の種類に依存せずに信
号品質を監視することができる。本発明はこの原理に基
づくものである。
(Equation 1) As described above, the bit error rate BER is calculated from the binary electric signal by Q
The value is obtained by directly measuring the value, and the signal quality can be monitored independently of the type of the signal system. The present invention is based on this principle.

【0010】[0010]

【発明の実施の形態】次に図面を用いて本発明の実施例
を説明する。 〔実施例1〕図2は本発明の信号品質監視回路の第1実
施例の構成を示す図である。図中、1は入力光信号、2
はO/E変換及びクロック抽出を行う受光器、3はクロ
ック信号、4は出力電圧に対する増幅器、5は出力電
圧、6は閾値電圧発生手段(図示せず)で発生される閾
値電圧、7は比較器、8はカウンター、9はカウンター
8の出力信号(カウント数)、10は演算回路、11はメモ
リー、12はメモリー11のデータである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. [Embodiment 1] FIG. 2 is a diagram showing the configuration of a first embodiment of the signal quality monitoring circuit of the present invention. In the figure, 1 is an input optical signal, 2
Is a photodetector that performs O / E conversion and clock extraction, 3 is a clock signal, 4 is an amplifier for an output voltage, 5 is an output voltage, 6 is a threshold voltage generated by threshold voltage generating means (not shown), 7 is A comparator, 8 is a counter, 9 is an output signal (count number) of the counter 8, 10 is an arithmetic circuit, 11 is a memory, and 12 is data in the memory 11.

【0011】受光器2では入力光信号1のO/E変換及
びクロック抽出を行う。抽出されたクロック信号3は比
較器7及びカウンター8に入力される。受光器2でO/
E変換された入力光信号1は、増幅器4で増幅されて出
力電圧5(=v)の電気信号になる。閾値電圧6(=v
i :i=0,1,...,n)は間隔Δv=vi −vi-1 で変化し、
比較器7は、増幅器4の出力電圧5を1ビット毎に閾値
電圧6と比較してv<vi の場合に信号を出力する。カ
ウンター8では、閾値電圧6がvi からvi+1に変化す
る度に一旦リセットしてから比較器7の出力をカウント
し、カウント数9をメモリー11に入力する。メモリー11
は閾値電圧6とその時のカウント数9(=F (vi ) )
を記録する。演算回路10では、メモリー11のデータ12か
らQ値を求める。
The optical receiver 2 performs O / E conversion and clock extraction of the input optical signal 1. The extracted clock signal 3 is input to the comparator 7 and the counter 8. O /
The E-converted input optical signal 1 is amplified by the amplifier 4 to become an electric signal having an output voltage 5 (= v). Threshold voltage 6 (= v
i: i = 0,1, ..., n) changes in the interval Δv = v i -v i-1 ,
The comparator 7 outputs a signal when compared to the threshold voltage 6 the output voltage 5 of the amplifier 4 for each bit v of <v i. In counter 8 counts the output of the comparator 7 is once reset each time the threshold voltage 6 is changed to v i + 1 from the v i, and inputs the counted number 9 in the memory 11. Memory 11
Count number 9 at that time of the threshold voltage 6 (= F (v i) )
Record The arithmetic circuit 10 obtains a Q value from the data 12 in the memory 11.

【0012】図3(a) は、閾値電圧vi と出力電圧vが
閾値電圧未満であると判定した回数F (vi ) との関係
の一例を示す図である。ここで、 f (vi ) =F (vi ) −F (vi-1 ) (2) とおくと、f (vi ) は、出力電圧vがvi-1 ≦v<v
i の範囲にあると判定できる回数を表している。即ち、
出力電圧vの分布を示す図3(b) は、出力電圧vがv
i-1 ≦v<vi となると判定した回数を示す。従って、
閾値電圧vi の設定は、出力電圧vの度数分布を求めて
いることになり、出力電圧そのものの分布を表してい
る。
[0012] FIG. 3 (a) is a diagram showing an example of the relationship between the number of times the threshold voltage v i and the output voltage v is determined to be less than the threshold voltage F (v i). Here, f (v i) = F (v i) putting the -F (v i-1) ( 2), f (v i) , the output voltage v is v i-1 ≦ v <v
It represents the number of times that it can be determined that it is within the range of i . That is,
FIG. 3B showing the distribution of the output voltage v shows that the output voltage v
i-1 ≦ v indicates the number of times it is determined that a <v i. Therefore,
Setting the threshold voltage v i is will be seeking a frequency distribution of the output voltage v, it represents the distribution of the output voltage itself.

【0013】ここで、前に述べたように、復調された出
力電圧の度数分布はASE雑音の影響で、スペース又は
マークに対応する値を平均とする二つの正規分布の和で
表される。図3(b) において、vm0及びvm1は、
Here, as described above, the frequency distribution of the demodulated output voltage is represented by the sum of two normal distributions whose average is a value corresponding to a space or mark due to the influence of ASE noise. In FIG. 3B, v m0 and v m1 are:

【数2】 となる時の閾値電圧である。(Equation 2) Is the threshold voltage when

【0014】正規分布の一般式General formula of normal distribution

【数3】 から、スペースに対応する出力電圧の分布f0(vi ) 及
びマークに対応する出力電圧の分布f1(vi ) は、
(Equation 3) From the following, the distribution f 0 (v i ) of the output voltage corresponding to the space and the distribution f 1 (v i ) of the output voltage corresponding to the mark are:

【数4】 となる。但し、K0 及びK1 はカウント数の総数に依存
する。σ0 及びσ1 はそれぞれスペース及びマークに対
応する出力電圧の標準偏差、vm0及びvm1はそれぞれス
ペース及びマークに対応する出力電圧の平均値である。
(Equation 4) Becomes However, K 0 and K 1 depend on the total number of counts. σ 0 and σ 1 are standard deviations of output voltages corresponding to spaces and marks, respectively, and v m0 and v m1 are average values of output voltages corresponding to spaces and marks, respectively.

【0015】標準偏差σ0 及びσ1 を求める際には、v
m0<vi <vm1では、f0(vi ) とf1(vi ) とが重な
っているため、v1 <vi <vm0(図3(c) )、vm1
i<vn (図3(d) )の範囲の値を用いる。
When obtaining the standard deviations σ 0 and σ 1 , v
In m0 <v i <v m1, f 0 (v i) and f 1 (v i) and because the overlap, v 1 <v i <v m0 ( Fig 3 (c)), v m1 <
v i <v n using the values in the range (FIG. 3 (d)).

【0016】一般に、平均がμである度数分布g(x)
の標準偏差σは次式で表される。
In general, a frequency distribution g (x) having an average μ
Is expressed by the following equation.

【数5】 (Equation 5)

【0017】式(3)及び(6)からFrom equations (3) and (6)

【数6】 となる。(Equation 6) Becomes

【0018】平均値vm0及びvm1並びに標準偏差σ0
びσ1 が分かれば、Q値及び符号誤り率は式(1)から
求められる。演算回路10で、以上の式(1)、(2)、
(3)及び(7)の演算を行い、出力電圧5の度数分布
f(vi )、平均値vm0及びvm1、標準偏差σ0 及びσ
1 並びにQ値を求める。
If the average values v m0 and v m1 and the standard deviations σ 0 and σ 1 are known, the Q value and the bit error rate can be obtained from equation (1). In the arithmetic circuit 10, the above equations (1), (2),
The calculations of (3) and (7) are performed, and the frequency distribution f (v i ) of the output voltage 5, the average values v m0 and v m1 , and the standard deviations σ 0 and σ
Find 1 and Q value.

【0019】〔実施例2〕図4は本発明の信号品質監視
回路の第2実施例の構成を示す図である。図中、6-
0,...,6-n は閾値電圧発生手段(図示せず)で発生され
る閾値電圧、7-0,...,7-n は比較器、8-0,...,8-n はカ
ウンター、9-0,...,9-n はカウンター8-0,...,8-n の出
力信号即ちカウント数であり、その他は図2の同符号の
部分と同一である。
[Embodiment 2] FIG. 4 is a diagram showing the configuration of a signal quality monitoring circuit according to a second embodiment of the present invention. In the figure, 6-
0, ..., 6-n are threshold voltages generated by threshold voltage generating means (not shown), 7-0, ..., 7-n are comparators, 8-0, ..., 8 -n is the counter, 9-0, ..., 9-n are the output signals of the counters 8-0, ..., 8-n, that is, the count numbers. is there.

【0020】出力電圧5は、分岐されてそれぞれ比較器
7-0,...,7-n に入力される。閾値電圧6-0,...,6-n は固
定値vi =v0 +i・Δv(i=0,1,...,n )に設定さ
れており、比較器7-0,...,7-n では、出力電圧5(=
v)と閾値電圧6-0,...,6-n (=vi )とを比較してv
<vi の場合に信号を出力する。カウンター8-0,...,8-
n は、比較器7-0,...,7-n の出力をカウントしてカウン
ト数9-0,...,9-n を演算回路10に入力する。
The output voltage 5 is branched to each of the comparators.
Input to 7-0, ..., 7-n. Threshold voltages 6-0, ..., 6-n is a fixed value v i = v 0 + i · Δv (i = 0,1, ..., n) is set to the comparator 7-0,. .., 7-n, the output voltage 5 (=
v) the threshold voltage 6-0, ..., 6-n ( = v i) and by comparing the v
And it outputs a signal in the case of <v i. Counter 8-0, ..., 8-
n counts the outputs of the comparators 7-0,..., 7-n and inputs the count numbers 9-0,.

【0021】カウント数9-0,...,9-n は出力電圧5が閾
値電圧6-0,...,6-n 未満の累積度数F (vi ) に相当す
るので、演算回路10では、実施例1と同様にして式
(1)、(2)、(3)及び(7)の演算を行い、出力
電圧5の度数分布f(vi )、平均値vm0及びvm1、標
準偏差σ0 及びσ1 並びにQ値を求める。
The count number 9-0, ..., 9-n is the output voltage 5 is the threshold voltage 6-0, ..., it is equal to the cumulative frequency F of less than 6-n (v i), the arithmetic circuit in 10, wherein in the same manner as in example 1 (1), (2), (3) and performs the operation of (7), the output voltage 5 frequency distribution f (v i), the average value v m0 and v m1 , Standard deviations σ 0 and σ 1 and the Q value.

【0022】[0022]

【発明の効果】以上説明したように、本発明の信号品質
監視回路によれば、信号系に依存せずに直接Q値を測定
して信号品質を監視できるという効果を奏する。
As described above, according to the signal quality monitoring circuit of the present invention, the signal quality can be monitored by directly measuring the Q value without depending on the signal system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ASE雑音がない場合(a) 及びASE雑音が重
畳された場合(b) の信号の時間波形及び強度分布を示す
図である。
FIG. 1 is a diagram showing a time waveform and intensity distribution of a signal when there is no ASE noise (a) and when ASE noise is superimposed (b).

【図2】本発明の信号品質監視回路の第1実施例の構成
を示す図である。
FIG. 2 is a diagram showing a configuration of a first embodiment of a signal quality monitoring circuit of the present invention.

【図3】閾値電圧とカウンターのカウント数及び出力電
圧の分布との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a threshold voltage, a count number of a counter, and a distribution of an output voltage.

【図4】本発明の信号品質監視回路の第2実施例の構成
を示す図である。
FIG. 4 is a diagram showing a configuration of a second embodiment of the signal quality monitoring circuit of the present invention.

【符号の説明】[Explanation of symbols]

1 入力光信号 2 受光器 3 クロック信号 4 増幅器 5 出力電圧 6 閾値電圧 7 比較器 8 カウンター 9 カウンターの出力信号(カウント数) 10 演算回路 11 メモリー 12 メモリーのデータ Reference Signs List 1 input optical signal 2 light receiver 3 clock signal 4 amplifier 5 output voltage 6 threshold voltage 7 comparator 8 counter 9 counter output signal (count number) 10 arithmetic circuit 11 memory 12 memory data

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市野 晴彦 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Haruhiko Ichino 3-19-2 Nishi Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比較器に一定の間隔で変化する閾値電圧
を供給する閾値電圧発生手段、多値の電気信号を一定の
間隔で変化する閾値電圧と比較する比較器、比較器の出
力をカウントするカウンター、閾値電圧とカウンター出
力とを記録するメモリー、及び、メモリーのデータを読
込み電気信号の強度分布を求める演算回路を具備し、電
気信号中の雑音分布を測定するように構成されたことを
特徴とする信号品質監視回路。
1. A threshold voltage generating means for supplying a threshold voltage varying at a constant interval to a comparator, a comparator comparing a multi-valued electric signal with a threshold voltage varying at a constant interval, and counting an output of the comparator. A counter, a memory for recording a threshold voltage and a counter output, and an arithmetic circuit for reading data of the memory and obtaining an intensity distribution of the electric signal, and configured to measure a noise distribution in the electric signal. Characteristic signal quality monitoring circuit.
【請求項2】 複数の比較器にそれぞれ異なる閾値電圧
を供給する閾値電圧発生手段、多値の電気信号から分岐
された電気信号をそれぞれ閾値電圧と比較する複数の比
較器、比較器と対をなす複数のカウンター、及び、閾値
電圧とカウンター出力とから電気信号の強度分布を求め
る演算回路を具備し、電気信号中の雑音分布を測定する
ように構成されたことを特徴とする信号品質監視回路。
2. A threshold voltage generating means for supplying different threshold voltages to a plurality of comparators, a plurality of comparators each comparing an electric signal branched from a multi-valued electric signal with a threshold voltage, and a pair with the comparator. A signal quality monitoring circuit comprising: a plurality of counters; and an arithmetic circuit for determining an intensity distribution of the electric signal from the threshold voltage and the counter output, and configured to measure a noise distribution in the electric signal. .
JP06297798A 1998-03-13 1998-03-13 Signal quality monitoring circuit Expired - Fee Related JP3410356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06297798A JP3410356B2 (en) 1998-03-13 1998-03-13 Signal quality monitoring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06297798A JP3410356B2 (en) 1998-03-13 1998-03-13 Signal quality monitoring circuit

Publications (2)

Publication Number Publication Date
JPH11261653A true JPH11261653A (en) 1999-09-24
JP3410356B2 JP3410356B2 (en) 2003-05-26

Family

ID=13215937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06297798A Expired - Fee Related JP3410356B2 (en) 1998-03-13 1998-03-13 Signal quality monitoring circuit

Country Status (1)

Country Link
JP (1) JP3410356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076121A1 (en) * 2000-03-31 2001-10-11 Anritsu Corporation Autocorrelation bit error detection device and method for optical signal by optical branching method
WO2009016742A1 (en) * 2007-07-31 2009-02-05 Fujitsu Limited Semiconductor device, and noise measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442061A (en) * 1990-06-06 1992-02-12 Fujitsu Ltd Method and apparatus for detecting signal level
JPH06237231A (en) * 1993-01-11 1994-08-23 Nec Corp Waveform discriminating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442061A (en) * 1990-06-06 1992-02-12 Fujitsu Ltd Method and apparatus for detecting signal level
JPH06237231A (en) * 1993-01-11 1994-08-23 Nec Corp Waveform discriminating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076121A1 (en) * 2000-03-31 2001-10-11 Anritsu Corporation Autocorrelation bit error detection device and method for optical signal by optical branching method
US7035553B2 (en) 2000-03-31 2006-04-25 Anritsu Corporation Autocorrelation bit error detection device and method for optical signal by optical branching method
WO2009016742A1 (en) * 2007-07-31 2009-02-05 Fujitsu Limited Semiconductor device, and noise measuring method

Also Published As

Publication number Publication date
JP3410356B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
Bergano et al. Margin measurements in optical amplifier system
JP4180738B2 (en) Digital signal quality monitoring method and communication apparatus using the method
US7233962B2 (en) Optical error simulation system
JP2775721B2 (en) Digital data link evaluation method and data timing jitter evaluation circuit
US20020154353A1 (en) Method and apparatus for measuring and estimating optical signal to noise ratio in photonic networks
JP2530904B2 (en) Optimal discrimination level control method
US6433899B1 (en) Eye quality monitor for a 2R regenerator
KR20170079147A (en) Bluetooth signal receiving method and device using improved carrier frequency offset compensation
US11233565B2 (en) Quantum detection and tracking of pulsed optical signals
US7116454B2 (en) Method for determining signal quality in optical transmission systems
JP3930886B2 (en) Optical signal quality monitor
CN106033996B (en) The monitoring device and receiver of optical signal to noise ratio
US7418212B1 (en) Electrical detection of optical symbols
US6904237B2 (en) Circuit for measurement of the signal quality in digital optical fiber transmission networks by interpreting the signal histogram
JPH11261653A (en) Signal quality monitor circuit
US6836620B1 (en) Method for monitoring the signal quality in transparent optical networks
EP1800422A1 (en) Method and apparatus for recognizing a disturbing effect in an information channel
US6744496B2 (en) Method of measuring the error rate of an optical transmission system and apparatus for implementing the method
US7813899B2 (en) Method and circuit for statistical estimation
Downie et al. Performance monitoring of optical networks with synchronous and asynchronous sampling
CA2519392A1 (en) Bit error rate monitoring method and device
EP2214331A1 (en) Optical channel quality monitor
JP3459213B2 (en) Optical signal quality evaluation method, optical signal quality evaluation device, and storage medium
CN116232597B (en) Plug-and-play measurement device independent quantum digital signature method based on untrusted source
JP4129005B2 (en) Optical signal quality degradation factor monitoring method and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees