JPH11261155A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPH11261155A JPH11261155A JP10061418A JP6141898A JPH11261155A JP H11261155 A JPH11261155 A JP H11261155A JP 10061418 A JP10061418 A JP 10061418A JP 6141898 A JP6141898 A JP 6141898A JP H11261155 A JPH11261155 A JP H11261155A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gaas
- semiconductor laser
- quantum well
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体レーザ素
子、特に光通信用の半導体レ−ザ素子に関する。The present invention relates to a semiconductor laser device, and more particularly to a semiconductor laser device for optical communication.
【0002】[0002]
【従来の技術】高度情報処理社会において、映像情報な
どの大容量の情報を高速伝送し、記録媒体に記録する技
術は必須のものである。近年の光通信ネットワ−クや光
ディスク等の光情報処理技術の発展は目覚ましく、21
世紀のマルチメディア社会に向けてさらなる発展が期待
されている。半導体発光ダイオ−ド(LED)や半導体
レ−ザダイオ−ド(LD)などの半導体発光素子は、こ
れらの光技術における光源として優れた特性を有するた
め、これまでに様々のタイプのものが研究開発されてき
た。2. Description of the Related Art In an advanced information processing society, a technology for transmitting large-capacity information such as video information at a high speed and recording the information on a recording medium is essential. In recent years, the development of optical information processing technologies for optical communication networks and optical disks has been remarkable.
Further development is expected for the multimedia society of the 21st century. Semiconductor light emitting devices such as semiconductor light emitting diodes (LEDs) and semiconductor laser diodes (LDs) have excellent characteristics as light sources in these optical technologies. It has been.
【0003】光通信用LDの普及のためには、低価格で
かつ高い環境温度でも使用できることが望ましい。しか
し、高い環境温度では活性層に注入された電子キャリア
が活性層からクラッド層に溢れ出やすくなり、発光効率
が著しく低下する。このようなキャリアのオ−バ−フロ
−を抑制するためには、クラッド層としてバンドギャッ
プ(禁制帯幅)の大きい半導体混晶を用いるのが効果的
である。しかしながら、クラッド層に用いられる半導体
混晶の種類と組成は、クラッド層と基板の格子整合条件
を満たす範囲に制限され、高い環境温度でも使用できる
LDを得ることは容易ではない。In order to spread the LD for optical communication, it is desirable that the LD can be used at a low cost and at a high ambient temperature. However, at a high environmental temperature, the electron carriers injected into the active layer easily overflow from the active layer to the cladding layer, and the luminous efficiency is significantly reduced. In order to suppress such carrier overflow, it is effective to use a semiconductor mixed crystal having a large band gap (forbidden band width) as the cladding layer. However, the type and composition of the semiconductor mixed crystal used for the cladding layer are limited to a range that satisfies the lattice matching condition between the cladding layer and the substrate, and it is not easy to obtain an LD that can be used even at a high ambient temperature.
【0004】光通信用LDは、通常InP基板上にIn
Pクラッド層を用いて形成される。GaAs基板上に
は、AlGaAsやAlGaInPといったInPより
禁制帯幅の大きい材料を格子整合させることができるの
で、この様な材料をLDのクラッド層に用いれば温度特
性の優れた光通信用LDが得られる可能性がある。しか
し禁制帯幅の小さいInGaAsを活性層に用いて、光
通信に必要な1.3μm帯で発光するLDをGaAs基
板上に形成する場合は、InGaAs活性層に強い歪が
かかり、結晶品質が劣化して、高性能のLDを形成でき
ないという問題がある。あるいは活性層の多重量子井戸
化による発光効率の増大を図れないという問題がある。[0004] LDs for optical communication are usually made of InP on an InP substrate.
It is formed using a P clad layer. Since a material having a larger bandgap than InP such as AlGaAs or AlGaInP can be lattice-matched on the GaAs substrate, an optical communication LD having excellent temperature characteristics can be obtained by using such a material for the LD cladding layer. Could be However, in the case where an LD that emits light in the 1.3 μm band required for optical communication is formed on a GaAs substrate by using InGaAs having a small forbidden band width as an active layer, a strong strain is applied to the InGaAs active layer and crystal quality is degraded. Therefore, there is a problem that a high-performance LD cannot be formed. Alternatively, there is a problem that the luminous efficiency cannot be increased due to the multiple quantum wells of the active layer.
【0005】この様な問題を解決するために、様々な材
料が研究されている。例えば、1997年のIEEEジ
ャ−ナル オブ セレクティッド トピックス イン
クアンタム エレクトロニクスの3巻の3番の719ペ
−ジに「長波長半導体レ−ザの新しい材料:GaInN
As」(従来例1)と題した報告がある。図8にこの従
来例のGaInNAs半導体レ−ザの断面層構造を示
す。この従来例は、GaAs基板上の半導体レ−ザで、
その活性層にGaInNAs(4元半導体混晶。Gaは
ガリウム、Inはインジウム、Asは砒素、Nは窒素を
表す)をウエル層とする量子井戸を1つ設けたものであ
る。GaInNAsの層厚は10nm、In組成は約3
0%、N組成は0.4%程度であり、1.18μmの発
光が得られている。しかしながら、光通信に必要な1.
3μmの発振は得られていない。In order to solve such a problem, various materials have been studied. For example, the IEEE Journal of Selected Topics in 1997
"Quantum Electronics' New Material for Long-Wavelength Semiconductor Lasers: GaInN"
There is a report entitled "As" (Conventional Example 1). FIG. 8 shows a sectional layer structure of the conventional GaInNAs semiconductor laser. This conventional example is a semiconductor laser on a GaAs substrate.
The active layer is provided with one quantum well having a well layer of GaInNAs (quaternary semiconductor mixed crystal; Ga is gallium, In is indium, As is arsenic, and N is nitrogen). The thickness of the GaInNAs layer is 10 nm, and the In composition is about 3 nm.
0%, the N composition is about 0.4%, and light emission of 1.18 μm is obtained. However, 1.
No oscillation of 3 μm was obtained.
【0006】[0006]
【発明が解決しようとする課題】GaAs基板上の半導
体レ−ザで、優れた温度特性を有する1.3μm帯LD
を実現するための新しい材料とLD構造を提供すること
が課題である。SUMMARY OF THE INVENTION A 1.3 μm band LD having excellent temperature characteristics, which is a semiconductor laser on a GaAs substrate.
The challenge is to provide new materials and LD structures to achieve the above.
【0007】1997年のアプライド・フィジックス・
レタ−誌の70巻の1608ペ−ジに、室温におけるG
aAs1-YNYのバンドギャップのN組成Yに対する依存
性の実験結果が記されている。図9にGaAs1-YNYの
バンドギャップのN組成Yに対する依存性を示す。図9
から、N組成が0.5%以内ではバンドギャップはN組
成に比例して大きく減少するが、N組成が0.5%を超
えると飽和傾向を示しはじめ、N組成が1%を超えると
飽和することが分かる。これらの結果から、GaInN
Asをウエル層とする従来の半導体レ−ザでは、1.3
μmの発振を得るのは困難であることが分かってきた。[0007] Applied Physics, 1997
Letter 1 at page 1608 in Volume 70 contains G at room temperature.
GaAs 1-Y N Y dependence of experimental results for N composition Y bandgap of are marked. FIG. 9 shows the dependence of the band gap of GaAs 1-Y N Y on the N composition Y. FIG.
Therefore, the band gap greatly decreases in proportion to the N composition when the N composition is less than 0.5%, but begins to show a saturation tendency when the N composition exceeds 0.5%, and becomes saturated when the N composition exceeds 1%. You can see that From these results, GaInN
In a conventional semiconductor laser using As as a well layer, 1.3 is used.
Obtaining oscillations of μm has proven difficult.
【0008】また、実用化されている通常の半導体LD
ではウエル層の歪量は1.8%以内のものが用いられて
いるが、GaInNAsをウエル層とする従来の半導体
レ−ザでは、GaInNAsが強歪(歪量2%程度)で
あり、その歪量では、N組成が0.5%を超えると、結
晶品質の低下が著しいという問題点があった。[0008] In addition, a practical semiconductor LD
In the conventional semiconductor laser using GaInNAs as a well layer, GaInNAs has strong strain (about 2% strain). With respect to the amount of strain, when the N composition exceeds 0.5%, there is a problem that the crystal quality is significantly reduced.
【0009】特開平8−195522号公報(従来例
2)には、GaAs基板上に光を発生する活性層と光を
閉じ込めるクラッド層と発生した光からレーザ光を得る
ための共振器構造を有する半導体レーザにおいて、活性
層の少なくとも一部にNを含むIII−V族半導体を用い
た1.3μm帯又は1.55μm帯発振可能な半導体レ
ーザが開示されている。該公報には、 Nを含むIII−V
族半導体の例としてGaNAsSbの例示があり、ま
た、実施例7には具体的にGaN(0.03)As(0.82)Sb
(0.15)無歪活性層(層厚50nm)を有する1.3μm
帯分布帰還型半導体レーザが示されている。JP-A-8-195522 (conventional example 2) has an active layer for generating light on a GaAs substrate, a cladding layer for confining light, and a resonator structure for obtaining laser light from the generated light. As a semiconductor laser, a 1.3 μm band or 1.55 μm band oscillating semiconductor laser using a III-V semiconductor containing N in at least a part of an active layer is disclosed. The gazette contains III-V containing N
As an example of the group III semiconductor, there is an example of GaNAsSb. In Example 7, GaN (0.03) As (0.82) Sb
(0.15) 1.3 μm having a strain-free active layer (layer thickness: 50 nm)
A band distributed feedback semiconductor laser is shown.
【0010】しかしながら、前記したように、III−V
族半導体では、N組成が0.5%を越えると結晶品質の
低下が著しいという問題が明らかとなってきたことか
ら、この従来例2の実施例7に記載された活性層でもN
組成は1.5%もあり、また、層厚も50nmと臨界膜
厚を大きく越えているために結晶性は極めて低下してい
ると予想される。つまり、この従来例2に示された半導
体レーザでは1.3μm帯発振は不可能である。However, as described above, III-V
In group III semiconductors, it has become apparent that the crystal quality is significantly degraded when the N composition exceeds 0.5%. Therefore, even in the active layer described in the seventh embodiment of the conventional example 2, the N
Since the composition is as high as 1.5%, and the thickness of the layer greatly exceeds the critical thickness of 50 nm, the crystallinity is expected to be extremely reduced. In other words, the semiconductor laser shown in Conventional Example 2 cannot oscillate in the 1.3 μm band.
【0011】[0011]
【課題を解決するための手段】本発明は、GaAs
1-X-YSbXNY材料をLDの活性層に用いた優れた温度
特性を有する1.3μm帯LDを提供するものである。
具体的に、本発明は、 活性層を構成する少なくとも1つの半導体層がGaA
s1-X-YSbXNY(0<X≦0.3かつ0<Y≦0.0
15)であることを特徴とするGaAs基板上に形成さ
れた半導体レ−ザ素子であり、 キャリアを注入するクラッド層がAlGaAs、Ga
InP、AlInPもしくはAlGaInPなどのGa
Asに格子整合する半導体、 もしくは、その活性層を構成する半導体層の内でバン
ドギャップが最小の半導体層がGaAs1-X-YSbXNY
(0.16≦X≦0.23かつ0.003≦Y≦0.0
12)である、 もしくは、その活性層がGaAs1-X-YSbXN
Y(0.16≦X≦0.23かつ0.003≦Y≦0.
012)ウエル層とGaAsバリア層を交互に隣接させ
て形成した量子井戸構造である、 もしくは、その活性層がGaAs1-X-YSbXN
Y(0.16≦X≦0.23かつ0.003≦Y≦0.
012)ウエル層とGaAs1-pPp(0<p≦0.2)
バリア層を交互に隣接させて形成した量子井戸構造であ
る、 もしくは、その活性層がGaAs1-X-YSbXN
Y(0.16≦X≦0.23かつ0.003≦Y≦0.
012)ウエル層とGaqIn1-qP(0.50<q≦
0.7)バリア層を交互に隣接させて形成した量子井戸
構造である、 もしくは、前記又はの半導体レ−ザ素子におい
て、その量子井戸活性層のウエル層とバリア層の間に1
〜5分子層厚のGaAsもしくはGaAsに格子整合す
る半導体層が設けられている、ことを特徴とする半導体
レ−ザ素子である。SUMMARY OF THE INVENTION The present invention provides a GaAs
An object of the present invention is to provide a 1.3 μm band LD having excellent temperature characteristics using a 1- XYSb X N Y material for an active layer of an LD.
Specifically, according to the present invention, at least one semiconductor layer constituting the active layer is made of GaAs.
s 1-XY Sb X N Y (0 <X ≦ 0.3 and 0 <Y ≦ 0.0
15) A semiconductor laser device formed on a GaAs substrate, wherein the cladding layer for injecting carriers is made of AlGaAs or Ga.
Ga such as InP, AlInP or AlGaInP
A semiconductor lattice-matched to As or a semiconductor layer having the smallest band gap among the semiconductor layers constituting the active layer is GaAs 1-XY Sb X N Y
(0.16 ≦ X ≦ 0.23 and 0.003 ≦ Y ≦ 0.0
12) or the active layer is GaAs 1-XY Sb X N
Y (0.16 ≦ X ≦ 0.23 and 0.003 ≦ Y ≦ 0.
012) A quantum well structure in which well layers and GaAs barrier layers are alternately formed adjacent to each other, or the active layer is formed of GaAs 1-XY Sb X N
Y (0.16 ≦ X ≦ 0.23 and 0.003 ≦ Y ≦ 0.
012) Well layer and GaAs 1-p P p (0 <p ≦ 0.2)
It has a quantum well structure formed by alternately adjoining barrier layers, or its active layer is GaAs 1-XY Sb X N
Y (0.16 ≦ X ≦ 0.23 and 0.003 ≦ Y ≦ 0.
012) Well layer and Ga q In 1-q P (0.50 <q ≦
0.7) It has a quantum well structure in which barrier layers are formed alternately adjacent to each other, or in the semiconductor laser device described above, the quantum well active layer has a quantum well structure between the well layer and the barrier layer.
GaAs or a semiconductor layer lattice-matched to GaAs having a thickness of about 5 molecular layers is provided.
【0012】[0012]
【発明の実施の形態】本発明は、例えば、LDの量子井
戸活性層のウエル層にGaAs1-X-YSbXN Y(0.1
6≦X≦0.23かつ0.003≦Y≦0.012)、
バリア層にGaAsを用いることを特徴とする。GaA
s1-X-YSbXNYウエル層のSb組成とN組成を所定の
値の領域に制限し、ウエル層厚を適切に設定すること
で、優れた結晶品質と高い温度特性を有する1.3μm
帯LDを実現する作用があることを以下に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to, for example, a quantum well of an LD.
GaAs in the well layer of the door active layer1-XYSbXN Y(0.1
6 ≦ X ≦ 0.23 and 0.003 ≦ Y ≦ 0.012),
GaAs is used for the barrier layer. GaAs
s1-XYSbXNYThe Sb composition and N composition of the well layer
Restrict to the value range and set well layer thickness appropriately
1.3 μm with excellent crystal quality and high temperature characteristics
The fact that there is an operation for realizing the band LD will be described below.
【0013】図10に、GaAs1-XSbX(0≦X≦
0.5)のGaAsに対する格子不整合度のSb組成X
による依存性を示す。図10から、格子不整合度が1.
8%以内というLDに適用可能な条件を満たすSb組成
の領域は0<X≦0.23であることがわかる。FIG. 10 shows GaAs 1-X Sb X (0 ≦ X ≦
0.5) Sb composition X of lattice mismatch for GaAs
Shows dependencies. From FIG. 10, the lattice mismatch degree is 1.
It can be seen that the region of the Sb composition satisfying the LD applicable condition of 8% or less is 0 <X ≦ 0.23.
【0014】図11に、GaAs1-XSbX、GaAs
1-YNY、InZGa1-ZAs(0≦X,Y,Z≦0.5)
のバンド端エネルギーのSb組成X、N組成Y、In組
成Zに対する依存性を示す。但しGaAsの価電子帯の
エネルギー準位(Ev)を0とした。図11において、
GaAs1-YNYはN組成の増大とともに急激に伝導帯エ
ネルギーが低下する。しかし伝導帯エネルギーの低下は
N組成1%で飽和してしまう。FIG. 11 shows GaAs 1-x Sb x , GaAs
1-Y N Y, In Z Ga 1-Z As (0 ≦ X, Y, Z ≦ 0.5)
Shows the dependence of the band edge energy on the Sb composition X, the N composition Y, and the In composition Z. However, the energy level (Ev) of the valence band of GaAs was set to 0. In FIG.
GaAs 1-Y N Y sharply conduction band energy decreases with increasing N composition. However, the decrease in the conduction band energy is saturated at an N composition of 1%.
【0015】一方、GaAs1-XSbX(0≦X≦0.
5)は、Sb組成Xの増大とともに価電子帯エネルギー
が大きく増大する。しかし、伝導帯エネルギーの変化は
小さいため、GaAs1-XSbX/GaAs量子井戸はウ
エル層とバリア層界面での伝導帯のヘテロ障壁が小さ
く、電子を有効にウエル内に閉じこめることができな
い。図11で、Sb組成X=0.23のときGaAs
1-XSbXのバンドギャップは1eV以上あり、1.3μ
mの発振に必要なバンドギャップ(0.95eV以下)
が得られない。1.3μm発光を実現するSb組成は、
図11からわかるようにX=0.3の時であるが、この
時の格子不整合度は2.4%と大きくなってしまい、高
い結晶品質が得られない。On the other hand, GaAs 1-X Sb X (0 ≦ X ≦ 0.
In 5), the valence band energy greatly increases as the Sb composition X increases. However, since the change in conduction band energy is small, the GaAs 1-x Sb x / GaAs quantum well has a small conduction band hetero-barrier at the interface between the well layer and the barrier layer, and cannot effectively confine electrons in the well. In FIG. 11, when the Sb composition X = 0.23, GaAs
The band gap of 1-X Sb X is 1 eV or more and 1.3 μm.
Band gap required for m oscillation (0.95 eV or less)
Can not be obtained. The Sb composition that achieves 1.3 μm emission is
As can be seen from FIG. 11, when X = 0.3, the degree of lattice mismatch at this time is as large as 2.4%, and high crystal quality cannot be obtained.
【0016】ところが、これらの材料を組み合わせた本
発明のGaAs1-X-YSbXNY(0<X≦0.3かつ0
<Y≦0.12)は両者の特性を併せ持つことができ
る。すなわち、GaAs1-X-YSbXNY/GaAsの量
子井戸では、ウエル層とバリア層界面での価電子帯と伝
導帯のヘテロ障壁が同程度に大きくなる。従って電子と
ホ−ルを深いエネルギーポテンシャルに閉じこめること
ができるので、高いLDの温度特性が実現できる。However, the GaAs 1-XY Sb X N Y of the present invention (0 <X ≦ 0.3 and 0
<Y ≦ 0.12) can have both characteristics. That is, in the GaAs 1- XYSb X N Y / GaAs quantum well, the hetero-barrier of the valence band and the conduction band at the interface between the well layer and the barrier layer becomes substantially the same. Therefore, since electrons and holes can be confined to a deep energy potential, a high LD temperature characteristic can be realized.
【0017】図12に、本発明のGaAs0.8-YSb0.2
NY(10nm)/GaAs量子井戸のバンド端エネル
ギーのN組成Yに対する依存性を示す。GaAs1-YNY
ウエルの場合のバンド端エネルギーのN組成依存性も同
時に示した。GaAs1-YNYウエル層にSbを加えるこ
とによって、価電子帯のエネルギ準位が増大する。Ga
As0.8-YSb0.2NY(10nm)はN組成の増大とと
もに急激に伝導帯エネルギーが低下する。その結果、N
組成0.5%で1.3μmの発光が実現する。この時の
ウエル層とバリア層界面での価電子帯のヘテロ障壁は2
50meV、伝導帯のヘテロ障壁は360meVという
大きな値が得られる。従って電子とホ−ルを効率よく閉
じこめることができるので、高い温度特性が実現でき
る。FIG. 12 shows the GaAs 0.8-Y Sb 0.2 of the present invention.
The dependence of the band edge energy of N Y (10 nm) / GaAs quantum well on the N composition Y is shown. GaAs 1-Y N Y
The dependence of band edge energy on N composition in the case of wells is also shown. By adding Sb to the GaAs 1-YN Y well layer, the valence band energy level is increased. Ga
As 0.8-Y Sb 0.2 N Y (10 nm), the conduction band energy sharply decreases as the N composition increases. As a result, N
Light emission of 1.3 μm is realized with a composition of 0.5%. At this time, the valence band hetero barrier at the interface between the well layer and the barrier layer is 2
A large value of 50 meV and a hetero barrier of the conduction band of 360 meV can be obtained. Therefore, since electrons and holes can be efficiently confined, high temperature characteristics can be realized.
【0018】以上が、本発明の作用の基本的な説明であ
る。本発明のGaAs1-X-YSbXN Yウエル層のSb組
成XとN組成Yは、例えば、0.16≦X≦0.23か
つ0.003≦Y≦0.012の領域に制限されたもの
である。以下に、その組成領域が効果を有する根拠を、
ウエル層厚10nmの場合を用いて説明する。The above is a basic description of the operation of the present invention.
You. GaAs of the present invention1-XYSbXN YWell layer Sb group
The composition X and the N composition Y are, for example, 0.16 ≦ X ≦ 0.23
Limited to the range of 0.003 ≦ Y ≦ 0.012
It is. Below, the grounds that the composition region has an effect,
Description will be made using a case where the well layer thickness is 10 nm.
【0019】図13に、本発明のGaAs1-X-YSbXN
Y(層厚10nm)/GaAs(X=0.145、0.
16、0.20、0.23)の量子井戸構造の遷移波長
のN組成Y依存性を示す。ウエル層厚10nmは量子井
戸の典型的な厚さである。このとき、図13から遷移波
長1.3μmを実現するためには、少なくともN組成Y
が0<Y≦0.15の範囲では、Sb組成XについてX
≧0.16が必要である事が分かる。しかも図10から
格子不整合度が1.8%以内のSb組成Xの領域は0<
X≦0.23が必要であった。従って、本発明のSb組
成Xの領域は0.16≦X≦0.23と定めた。FIG. 13 shows a GaAs 1-XY Sb X N of the present invention.
Y (layer thickness 10 nm) / GaAs (X = 0.145, 0.
16 shows the dependence of the transition wavelength of the quantum well structure on the N composition and Y of (0.2, 0.20, 0.23). A well layer thickness of 10 nm is a typical thickness of a quantum well. At this time, in order to realize a transition wavelength of 1.3 μm from FIG.
Is in the range of 0 <Y ≦ 0.15, the Sb composition X
It is understood that ≧ 0.16 is required. Moreover, from FIG. 10, the region of the Sb composition X where the degree of lattice mismatch is within 1.8% is 0 <
X ≦ 0.23 was required. Therefore, the region of the Sb composition X of the present invention is defined as 0.16 ≦ X ≦ 0.23.
【0020】図14に、本発明のLDの活性層のウエル
層のGaAs1-X-YSbXNY(0.16≦X≦0.23
かつ0.003≦Y≦0.012)の(X、Y)組成領
域を示す。領域内の曲線は、ウエル幅が10nmの時の
発振波長が1.3μmとなるXとYの関係を示す。例え
ば、曲線上の点である、X=0.2、Y=0.005
(0.5%)のGaAs1-X-YSbXNYをウエル層に用
いたLDの場合、1.3μmの発光が得られる。この時
の格子不整合度は1.5%以内であり、多重量子井戸を
形成するのが可能な歪量である。またN組成は0.5%
であり、高品質の結晶が得られる値である。従って、本
発明のGaAs1-X-YSbXNY結晶はLDに適用可能で
かつ優れた品質である。FIG. 14 shows GaAs 1- XYSb X N Y (0.16 ≦ X ≦ 0.23) of the well layer of the active layer of the LD of the present invention.
And (X, Y) composition region of 0.003 ≦ Y ≦ 0.012). The curve in the region shows the relationship between X and Y at which the oscillation wavelength is 1.3 μm when the well width is 10 nm. For example, a point on the curve, X = 0.2, Y = 0.005
In the case of an LD using (0.5%) GaAs 1-XY Sb X N Y for the well layer, light emission of 1.3 μm is obtained. The degree of lattice mismatch at this time is within 1.5%, which is a strain amount capable of forming a multiple quantum well. The N composition is 0.5%
Which is a value at which a high quality crystal can be obtained. Therefore, the GaAs 1-XY Sb X N Y crystal of the present invention is applicable to LD and has excellent quality.
【0021】図15に本発明のLDのGaAs0.8-YS
b0.2NY(10nm)/GaAs量子井戸の遷移波長の
N組成Yに対する依存性を示す。本発明のLDの量子井
戸のN組成が0.5%のとき、1.3μmの発光が実現
する。一方、同程度の格子不整合を有する従来のLDの
In0.2Ga0.8As1-YNY量子井戸では、1.3μmの
発光が実現しない。FIG. 15 shows the GaAs 0.8- YS of the LD of the present invention.
The dependence of the transition wavelength of b 0.2 N Y (10 nm) / GaAs quantum well on the N composition Y is shown. When the N composition of the quantum well of the LD of the present invention is 0.5%, light emission of 1.3 μm is realized. On the other hand, 1.3 μm emission cannot be realized in the conventional In 0.2 Ga 0.8 As 1 -Y N Y quantum well of the LD having the same degree of lattice mismatch.
【0022】GaAs1-XSbX/GaAs量子井戸は、
伝導帯のヘテロ障壁が非常に小さいので電子を閉じこめ
られず、注入した電子がオ−バ−フロ−してしまうた
め、LDの温度特性が低い。本発明のGaAs1-X-YS
bXNY/GaAs量子井戸はウエル層とバリア層界面で
の価電子帯と伝導帯のヘテロ障壁が同程度に大きくなる
特徴を有する。従って電子とホ−ルを効率よく閉じこめ
ることができるので、高いLDの温度特性が実現でき
る。The GaAs 1-x Sb x / GaAs quantum well is
Since the hetero-barrier in the conduction band is very small, electrons cannot be confined and injected electrons overflow, resulting in low temperature characteristics of the LD. GaAs 1-XY S of the present invention
b X N Y / GaAs quantum wells having the features hetero barrier of the valence band and the conduction band in the well layer and the barrier layer interface is increased to the same extent. Therefore, electrons and holes can be efficiently confined, so that a high LD temperature characteristic can be realized.
【0023】[0023]
【実施例】本発明の半導体レ−ザは、基本的には、MB
E(分子線エピタキシ)法、ガスソ−スMBE法、MO
MBE(有機金属分子線エピタキシ)法、MOVPE
(有機金属気相エピタキシ)法等の気相成長法を用いて
作製できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor laser according to the present invention basically has
E (molecular beam epitaxy) method, gas source MBE method, MO
MBE (organic metal molecular beam epitaxy) method, MOVPE
It can be manufactured using a vapor phase growth method such as a (organic metal vapor phase epitaxy) method.
【0024】ここではガスソ−スMBE法を用いてLD
を成長する方法を説明する。本発明はAs、P、Sbの
3種類のV族元素が必要である。As、PはAsH3、
PH3を熱分解(クラッキング温度は1000℃)し
て、GaAs基板に供給する。Sbは固体原料を用い、
ルツボに入れて加熱して蒸発させて供給する。N源は、
窒素ガスを高周波で分解し、Nラジカルで供給する。N
源の詳細は従来例1の文献等に記載されている。III族
原料は、Ga、Al、In等の金属原料を用い、同様に
ルツボに入れて加熱して蒸発させて供給する。ガスソ−
スMBE法は、比較的高いV族原料の供給量制御が可能
であり、本発明のLDを作製するのに適している。Here, gas source MBE is used to
The method of growing is described. The present invention requires three group V elements of As, P and Sb. As and P are AsH 3 ,
PH 3 is thermally decomposed (cracking temperature is 1000 ° C.) and supplied to a GaAs substrate. Sb uses a solid material,
Heat it in a crucible and evaporate it before supplying. The N source is
Nitrogen gas is decomposed at high frequency and supplied as N radicals. N
Details of the source are described in the literature of Conventional Example 1. The group III raw material is a metal raw material such as Ga, Al, In or the like, and is similarly supplied in a crucible, heated and evaporated. Gas source
The SMBE method can control a relatively high supply amount of the group V raw material and is suitable for manufacturing the LD of the present invention.
【0025】以下の発明のLDでは、n型ド−パントに
はSi、p型ド−パントにはBeを用いる。n型、p
型、共に、LDのクラッド層のド−ピング濃度は4×1
017〜1×1018cm-3、光閉じこめ層は2×1017〜
8×1017cm-3程度とする。p型コンタクト層のド−
ピング濃度は5×1018〜1×1019cm-3とする。但
し量子井戸活性層はアンド−プとする。GaAs基板の
導電型や面方位特に限定しないが、通常はn型(00
1)面を用いる。nのド−ピング濃度は8×1017〜3
×1018cm-3とする。In the LD of the invention described below, Si is used for the n-type dopant and Be is used for the p-type dopant. n-type, p
In both cases, the doping concentration of the cladding layer of the LD is 4 × 1
0 17 to 1 × 10 18 cm −3 , the light confinement layer is 2 × 10 17 to
It is about 8 × 10 17 cm −3 . Doping of p-type contact layer
The ping concentration is 5 × 10 18 to 1 × 10 19 cm −3 . However, the quantum well active layer is undoped. The conductivity type and plane orientation of the GaAs substrate are not particularly limited, but are usually n-type (00
1) Use a surface. The doping concentration of n is 8 × 10 17 to 3
× 10 18 cm -3 .
【0026】成長条件は成長層の種類によって変える。
成長装置にも依るが、ガスソ−スMBE法では、成長速
度は約1μm/hで、n−GaAs層、n−Al0.3G
a0.7As層、n−Al0.7Ga0.3As層は成長温度を
600〜680℃で成長する。GaInPの成長温度は
500〜560℃、GaAsSbNは460〜520℃
で成長する。AsH3、PH3の流量は3〜8sccmで
ある。基板表面の酸化膜を蒸発させてから成長を行う。The growth conditions are changed depending on the type of the growth layer.
Although depending on the growth apparatus, the growth rate of the gas source MBE method is about 1 μm / h, and the n-GaAs layer and the n-Al 0.3 G
The a 0.7 As layer and the n-Al 0.7 Ga 0.3 As layer grow at a growth temperature of 600 to 680 ° C. The growth temperature of GaInP is 500-560 ° C., and GaAsSbN is 460-520 ° C.
Grow in. The flow rates of AsH 3 and PH 3 are 3 to 8 sccm. Growth is performed after evaporating the oxide film on the substrate surface.
【0027】V族元素は、MBE成長装置等の成長室内
に供給されると、成長室のV族圧を著しく高め、供給を
停止した後も、成長室内に残留し背景圧を形成する。背
景圧が高いと背景から基板表面に供給されるV族原子が
無視できなくなる。従って、V族組成を制御し、急峻な
ヘテロ界面を有する半導体層を成長させるためには、残
留V族圧を十分低下させてから、V族原料を切り替える
ことが必要である。When the group V element is supplied into a growth chamber such as an MBE growth apparatus, the group V pressure in the growth chamber is significantly increased, and remains in the growth chamber even after the supply is stopped to form a background pressure. If the background pressure is high, group V atoms supplied from the background to the substrate surface cannot be ignored. Therefore, in order to control the group V composition and grow a semiconductor layer having a steep hetero interface, it is necessary to sufficiently lower the residual group V pressure before switching the group V source.
【0028】本実施例は、主にLDの層構造に関するも
のであるが、さらに、LDの電極のストライプ幅を小さ
くしたり、埋め込み構造やリッジ構造にしたり、回折格
子を形成したり、光出射端面を誘電体膜でコ−トして反
射率を制御したりして、レ−ザ光を単一波長化して安定
に得ることができる。The present embodiment mainly relates to the layer structure of the LD. However, the present embodiment further reduces the stripe width of the electrode of the LD, forms a buried structure or a ridge structure, forms a diffraction grating, and emits light. By controlling the reflectivity by coating the end face with a dielectric film, the laser light can be made to have a single wavelength and stably obtained.
【0029】本発明の半導体レ−ザは、基本的に、1.
3μm帯で発光する特徴と、優れた温度特性を有し高温
でも安定動作する特徴を有する。本発明のLDの活性層
にはGaAs1-X-YSbXNYをウエル層とする量子井戸
構造を用いるが、そのウエル層厚とSb組成XとN組成
Yは、請求項に定められた領域の範囲で、バリア層バン
ドギャップに応じて、LDの発振波長が1.3μmにな
るように、調節されたものとする。The semiconductor laser according to the present invention basically comprises:
It has the characteristic of emitting light in the 3 μm band and the characteristic of having excellent temperature characteristics and stable operation even at high temperatures. The active layer of the LD according to the present invention has a quantum well structure using GaAs 1-XY Sb X N Y as a well layer, and the thickness of the well layer and the Sb composition X and the N composition Y are defined by the regions defined in the claims. It is assumed that the oscillation wavelength of the LD is adjusted to 1.3 μm in accordance with the band gap of the barrier layer within the range described above.
【0030】実施例1 図1は本発明の第1の実施例である半導体レ−ザの断面
層構造図である。第1の実施例は、n型電極101、n
−GaAs(001)基板102、層厚0.3μmのn
−GaAs層103、層厚0.2μmのn−Al0.3G
a0.7As層104、層厚1.5μmのn−Al0.7Ga
0.3As層クラッド層105、層厚0.15μmのn−
GaAs光閉じ込め層106、多重量子井戸活性層10
7、層厚0.15μmのp−GaAs光閉じ込め層10
8、層厚1.5μmのp−Al0.7Ga0.3As層クラッ
ド層109、層厚0.2μmのp−Al0.3Ga0.7As
層110、層厚0.2μmのp−GaAsコンタクト層
111、p型電極112からなる光通信用の半導体レ−
ザ素子である。Embodiment 1 FIG. 1 is a sectional view showing a layer structure of a semiconductor laser according to a first embodiment of the present invention. In the first embodiment, an n-type electrode 101, n
A GaAs (001) substrate 102, 0.3 μm thick n
-GaAs layer 103, n-Al 0.3 G having a thickness of 0.2 μm
a 0.7 As layer 104, n-Al 0.7 Ga having a layer thickness of 1.5 μm
0.3 As layer clad layer 105, n-layer having a layer thickness of 0.15 μm
GaAs light confinement layer 106, multiple quantum well active layer 10
7. p-GaAs optical confinement layer 10 having a thickness of 0.15 μm
8, a 1.5-μm-thick p-Al 0.7 Ga 0.3 As-layer cladding layer 109, and a 0.2-μm-thick p-Al 0.3 Ga 0.7 As
A semiconductor laser for optical communication comprising a layer 110, a p-GaAs contact layer 111 having a thickness of 0.2 μm, and a p-type electrode 112.
The element.
【0031】図2は多重量子井戸活性層107の断面層
構造図である。多重量子井戸活性層107は、層厚15
nmのGaAsバリア層201、層厚10nmのGaA
s0. 795Sb0.20N0.005Asウエル層202、層厚15
nmのGaAsバリア層203、層厚10nmのGaA
s0.795Sb0.20N0.005Asウエル層204、層厚15
nmのGaAsバリア層205からなる。FIG. 2 is a cross-sectional layer structure diagram of the multiple quantum well active layer 107. The multiple quantum well active layer 107 has a layer thickness of 15
nm GaAs barrier layer 201, 10 nm thick GaAs
s 0. 795 Sb 0.20 N 0.005 As well layer 202, thickness 15
nm GaAs barrier layer 203, 10 nm thick GaAs
s 0.795 Sb 0.20 N 0.005 As well layer 204, layer thickness 15
GaAs barrier layer 205 nm.
【0032】第1の実施例である半導体レ−ザはV族元
素にPを用いていないため、通常のMBE装置で比較的
容易に作製できるという特徴を有する。GaAs0.795
Sb0 .20N0.005Asウエル層とGaAsバリア層の量
子井戸構造において、ウエル層とバリア層でIII族元素
(Ga)が1種類で共通しているため、比較的急峻な界
面が実現できる。ウエル層とバリア層にAlを含む材料
を用いていないため発光効率と動作寿命の大きいLDが
得られる。第1の実施例は、以下の実施例と同様に、
1.3μm帯で発光する特徴と、優れた温度特性を有し
高温でも安定動作する特徴を有する。Since the semiconductor laser of the first embodiment does not use P as a group V element, it has a feature that it can be manufactured relatively easily with a normal MBE apparatus. GaAs 0.795
In the quantum well structure of Sb 0 .20 N 0.005 As well layers and GaAs barrier layer, since the group III element in the well layer and the barrier layer (Ga) is common in one, relatively sharp interface can be realized. Since a material containing Al is not used for the well layer and the barrier layer, an LD having high luminous efficiency and operating life can be obtained. The first embodiment is similar to the following embodiments,
It has a feature of emitting light in the 1.3 μm band and a feature of having excellent temperature characteristics and stable operation even at high temperatures.
【0033】実施例2 図3は本発明の第2の実施例である半導体レ−ザの断面
層構造図である。第2の実施例は、n型電極301、n
−GaAs(001)基板302、層厚0.3μmのn
−GaAs層303、層厚1.5μmのn−Ga0.5I
n0.5Pクラッド層304、層厚0.15μmのn−G
aAs光閉じ込め層305、多重量子井戸活性層30
6、層厚0.15μmのp−GaAs光閉じ込め層30
7、層厚1.5μmのp−Ga0.5In0.5Pクラッド層
308、層厚0.2μmのp−GaAsコンタクト層3
09、p型電極310からなる光通信用の半導体レ−ザ
素子である。Embodiment 2 FIG. 3 is a sectional view showing a layer structure of a semiconductor laser according to a second embodiment of the present invention. In the second embodiment, an n-type electrode 301, n
A GaAs (001) substrate 302, 0.3 μm thick n
GaAs layer 303, 1.5 μm thick n-Ga 0.5 I
n 0.5 P clad layer 304, n-G having a layer thickness of 0.15 μm
aAs light confinement layer 305, multiple quantum well active layer 30
6. p-GaAs optical confinement layer 30 having a thickness of 0.15 μm
7, p-Ga 0.5 In 0.5 P cladding layer 308 having a thickness of 1.5 μm, p-GaAs contact layer 3 having a thickness of 0.2 μm
09, a semiconductor laser device for optical communication comprising a p-type electrode 310.
【0034】図4は多重量子井戸活性層306の断面層
構造図である。多重量子井戸活性層306は、層厚15
nmのGaAsバリア層401、層厚10nmのGaA
s0. 9P0.1バリア層402、層厚10nmのGaAs
0.793Sb0.20N0.007Asウエル層403、層厚10n
mのGaAs0.9P0.1バリア層404、層厚10nmの
GaAs0.793Sb0.20N0.007Asウエル層405、層
厚10nmのGaAs0. 9P0.1バリア層406、層厚1
0nmのGaAs0.793Sb0.20N0.007Asウエル層4
07、層厚10nmのGaAs0.9P0.1バリア層40
8、層厚15nmのGaAsバリア層409からなる。FIG. 4 is a cross-sectional layer structure diagram of the multiple quantum well active layer 306. The multiple quantum well active layer 306 has a thickness of 15
GaAs barrier layer 401 of 10 nm, GaAs of 10 nm in thickness
It s 0. 9 P 0.1 barrier layer 402, of thickness 10 nm GaAs
0.793 Sb 0.20 N 0.007 As well layer 403, layer thickness 10n
m of GaAs 0.9 P 0.1 barrier layer 404, GaAs 0.793 Sb 0.20 N 0.007 As well layer 405 having a thickness of 10 nm, the layer thickness 10nm GaAs 0. 9 P 0.1 barrier layer 406, thickness 1
0 nm GaAs 0.793 Sb 0.20 N 0.007 As well layer 4
07, GaAs 0.9 P 0.1 barrier layer 40 having a thickness of 10 nm
8, a GaAs barrier layer 409 having a thickness of 15 nm.
【0035】第2の実施例である半導体レ−ザは、Al
を含む材料を全く用いていないため、リッジ構造を形成
したあと再成長で埋め込み構造が容易にできる。従っ
て、高い発光効率と100W以上の高光出力動作でも寿
命の大きいLDが得られる。多重量子井戸活性層に引張
歪のGaAs0.9P0.1バリア層を用いることにより、多
重量子井戸活性層の全体の格子歪量を、無歪のバリア層
を用いた場合より小さくできる。ウエル層とバリア層で
III族元素(Ga)が1種類で共通しているため、比較
的急峻な界面が実現できる。従って本実施例のLDは、
高い結晶品質を保ったままで量子井戸数を増やすことが
できるため、発光効率が増大するという特徴を有する。
尚、バリア層としては、GaAs1-pPpとして、0<p
≦0.2の範囲にあることが好ましい。この時、GaA
sに対する格子不整合度が1.8%以内となるので、通
常用いられるバリア層の厚さでは、良質の結晶が得られ
るからである。The semiconductor laser according to the second embodiment is made of Al.
Since no material containing GaN is used, the buried structure can be easily formed by regrowth after forming the ridge structure. Therefore, an LD having a long life can be obtained even with a high luminous efficiency and a high light output operation of 100 W or more. By using a tensile-strained GaAs 0.9 P 0.1 barrier layer for the multiple quantum well active layer, the overall lattice strain of the multiple quantum well active layer can be made smaller than when using a non-strained barrier layer. Well layer and barrier layer
Since one group III element (Ga) is common, a relatively steep interface can be realized. Therefore, the LD of this embodiment is
Since the number of quantum wells can be increased while maintaining high crystal quality, the luminous efficiency is increased.
In addition, as the barrier layer, GaAs 1-p P p , 0 <p
It is preferably in the range of ≦ 0.2. At this time, GaA
This is because the degree of lattice mismatch with respect to s is within 1.8%, so that a good quality crystal can be obtained with a commonly used barrier layer thickness.
【0036】実施例3 図5は本発明の第3の実施例である半導体レ−ザの断面
層構造図である。第3の実施例は、n型電極501、n
−GaAs(001)基板502、層厚0.3μmのn
−GaAs層503、層厚0.2μmのn−Ga0.5I
n0.5P層504、層厚1.5μmのn−Al0.5In
0.5P層クラッド層505、層厚0.15μmのn−G
a0.5In0.5P光閉じこめ層506、多重量子井戸活性
層507、層厚0.15μmのp−Ga0.5In0.5P光
閉じこめ層508、層厚1.5μmのp−Al0.5In
0.5P層クラッド層509、層厚0.2μmのp−Ga
0.5In0 .5P層510、層厚0.2μmのp−GaAs
コンタクト層511、p型電極512からなる光通信用
の半導体レ−ザ素子である。但しAl0.5In0.5P層、
Ga0.5In0.5P層はGaAs基板に格子整合してい
る。Embodiment 3 FIG. 5 is a sectional view of the structure of a semiconductor laser according to a third embodiment of the present invention. In the third embodiment, the n-type electrodes 501, n
-GaAs (001) substrate 502, 0.3 μm thick n
-GaAs layer 503, n-Ga 0.5 I having a thickness of 0.2 μm
n 0.5 P layer 504, 1.5 μm thick n-Al 0.5 In
0.5 P layer clad layer 505, n-G with 0.15 μm thickness
a 0.5 In 0.5 P light confinement layer 506, multiple quantum well active layer 507, p-Ga 0.5 In 0.5 P light confinement layer 508 with a thickness of 0.15 μm, p-Al 0.5 In with a thickness of 1.5 μm
0.5 P layer cladding layer 509, p-Ga having a layer thickness of 0.2 μm
0.5 In 0 .5 P layer 510, the layer thickness 0.2 [mu] m p-GaAs
This is a semiconductor laser device for optical communication comprising a contact layer 511 and a p-type electrode 512. However, Al 0.5 In 0.5 P layer,
The Ga 0.5 In 0.5 P layer is lattice-matched to the GaAs substrate.
【0037】図6は多重量子井戸活性層507の断面層
構造図である。多重量子井戸活性層507は、層厚10
nmのGa0.5In0.5P層601、層厚10nmのGa
0.6In0.4Pバリア層602、層厚10nmのGaAs
0.793Sb0.20N0.007Asウエル層603、層厚10n
mのGa0.6In0.4Pバリア層604、層厚10nmの
GaAs0.793Sb0.20N0.007Asウエル層605、層
厚10nmのGa0. 6In0.4Pバリア層606、層厚1
0nmのGaAs0.793Sb0.20N0.007Asウエル層6
07、層厚10nmのGa0.6In0.4Pバリア層60
8、層厚10nmのGa0.5In0.5P層609からな
る。FIG. 6 is a sectional layer structure diagram of the multiple quantum well active layer 507. The multiple quantum well active layer 507 has a thickness of 10
Ga 0.5 In 0.5 P layer 601 and a 10 nm thick Ga
0.6 In 0.4 P barrier layer 602, 10 nm thick GaAs
0.793 Sb 0.20 N 0.007 As well layer 603, layer thickness 10n
Ga 0.6 In 0.4 P barrier layers 604 m, GaAs 0.793 Sb 0.20 N 0.007 As well layer 605 having a thickness of 10 nm, the layer thickness 10nm Ga 0. 6 In 0.4 P barrier layers 606, thickness 1
0 nm GaAs 0.793 Sb 0.20 N 0.007 As well layer 6
07, Ga 0.6 In 0.4 P barrier layer 60 having a layer thickness of 10 nm
8, a Ga 0.5 In 0.5 P layer 609 having a layer thickness of 10 nm.
【0038】多重量子井戸活性層に引張歪のGa0.6I
n0.4Pバリア層を用いることにより、多重量子井戸活
性層の全体の格子歪量を、無歪のバリア層を用いた場合
より小さくできる。Ga0.6In0.4Pバリア層のIn組
成は、上記実施例2におけるGaAs0.9P0.1バリア層
のP組成より、精密な制御が容易であるため、歪量をよ
り正確に制御できる。従って本実施例のLDは、高い結
晶品質を保ったままで量子井戸数を増やすことができる
ため、発光効率が増大するという特徴を有する。尚、本
実施例におけるバリア層としては、GaqIn1-qPとし
て0.50<q≦0.7の範囲であることが望ましい。
この時、GaAsに対する格子不整合度が1.8%以内
となるので、通常用いられるバリア層の厚さでは、良質
の結晶が得られるからである。In the multiple quantum well active layer, tensile strained Ga 0.6 I
By using the n 0.4 P barrier layer, the entire lattice strain of the multiple quantum well active layer can be made smaller than that in the case of using the unstrained barrier layer. The In composition of the Ga 0.6 In 0.4 P barrier layer can be controlled more precisely than the P composition of the GaAs 0.9 P 0.1 barrier layer in Example 2, and thus the strain amount can be controlled more accurately. Therefore, the LD of the present embodiment has a feature that the luminous efficiency increases because the number of quantum wells can be increased while maintaining high crystal quality. The barrier layer in the present embodiment is desirably in the range of 0.50 <q ≦ 0.7 as Ga q In 1-q P.
At this time, since the degree of lattice mismatch with respect to GaAs is within 1.8%, a high-quality crystal can be obtained with a commonly used barrier layer thickness.
【0039】第3の実施例である半導体レ−ザは、多重
量子井戸活性層にAlを含む材料を用いていないため発
光効率と動作寿命の大きいLDが得られる。Al0.5I
n0.5P層はGa0.5In0.5P層よりも伝導帯のヘテロ
障壁が180meV大きいため、Al0.5In0.5P層ク
ラッド層を用いた本実施例のLDは、この材料系では高
温で最も安定な動作が可能であるという特徴を有する。In the semiconductor laser according to the third embodiment, an LD having high luminous efficiency and operating life can be obtained because a material containing Al is not used for the multiple quantum well active layer. Al 0.5 I
Since the n 0.5 P layer has a conduction band hetero barrier of 180 meV larger than the Ga 0.5 In 0.5 P layer, the LD of this embodiment using the Al 0.5 In 0.5 P layer clad layer is the most stable at a high temperature in this material system. It has the feature that it can operate.
【0040】実施例4 第4の実施例である半導体レ−ザは、第3の実施例の半
導体レ−ザの多重量子井戸活性層507を以下に示す多
重量子井戸活性層710で置き換えた構造で、それ以外
は第3の実施例の半導体レ−ザと同様の構造を有する。Embodiment 4 The semiconductor laser of the fourth embodiment has a structure in which the multiple quantum well active layer 507 of the semiconductor laser of the third embodiment is replaced by a multiple quantum well active layer 710 shown below. Otherwise, it has the same structure as the semiconductor laser of the third embodiment.
【0041】図7は本発明の第4の実施例である半導体
レ−ザの多重量子井戸活性層710の断面層構造図であ
る。多重量子井戸活性層710は、層厚10nmのGa
0.5In0.5P層701、量子井戸層706、量子井戸層
707、量子井戸層708、層厚10nmのGa0.5I
n0.5P層709からなる。量子井戸層706、量子井
戸層707、量子井戸層708は同じ順番でかつ同じ層
構造を有する。量子井戸層706は、層厚10nmのG
a0.6In0.4Pバリア層702、3分子層厚のGaAs
層703、層厚10nmのGaAs0.795Sb0.20N
0.005Asウエル層704、3分子層厚のGaAs層7
05からなる。多重量子井戸活性層710は、ウエル層
とバリア層の間に3分子層厚のGaAs層がある点で多
重量子井戸活性層507と異なる特徴を有する。3分子
層厚のGaAs層がウエル層とバリア層の間の歪量の差
を緩和する働きがある。これによって、結晶品質の優れ
た多重量子井戸が実現できる。尚、本実施例ではバリア
層とウエル層との間に3分子層厚のGaAs層を設けた
が、これに限定されず、ウエル層とバリア層との間の歪
量の差を緩和できれば良く、1〜5分子層厚のGaAs
層或いはGaAsに格子整合するAlGaAs,GaI
nP,AlInPもしくはAlGaInPなどの半導体
層を設けることができる。なおここでは、量子井戸ウエ
ル層厚の上限15nmの1割程度の厚さを層厚の上限と
した。また、前述の実施例2で示したGaAs0.9P0.1
バリア層とGaAs0.793Sb0.20N0.007Asウエル層
との間にも、1〜5分子層厚のGaAs層或いはGaA
sに格子整合する半導体層を設けることで、同様に歪量
緩和の効果が得られる。FIG. 7 is a sectional view showing the structure of a multiple quantum well active layer 710 of a semiconductor laser according to a fourth embodiment of the present invention. The multiple quantum well active layer 710 has a thickness of 10 nm.
0.5 In 0.5 P layer 701, quantum well layer 706, quantum well layer 707, quantum well layer 708, Ga 0.5 I having a thickness of 10 nm
An n 0.5 P layer 709 is formed. The quantum well layer 706, the quantum well layer 707, and the quantum well layer 708 have the same order and the same layer structure. The quantum well layer 706 has a thickness of 10 nm.
a 0.6 In 0.4 P barrier layer 702, GaAs having a thickness of 3 molecular layers
Layer 703, GaAs 0.795 Sb 0.20 N with a thickness of 10 nm
0.005 As well layer 704, GaAs layer 7 with 3 molecular layer thickness
It consists of 05. The multiple quantum well active layer 710 has a feature different from that of the multiple quantum well active layer 507 in that a GaAs layer having a thickness of three molecular layers is provided between the well layer and the barrier layer. The GaAs layer having a thickness of three molecular layers has a function of alleviating a difference in strain between the well layer and the barrier layer. Thereby, a multiple quantum well having excellent crystal quality can be realized. In the present embodiment, the GaAs layer having a thickness of three molecular layers is provided between the barrier layer and the well layer. However, the present invention is not limited to this, and it is sufficient if the difference in the amount of strain between the well layer and the barrier layer can be reduced. GaAs with 1-5 molecular layer thickness
AlGaAs, GaI lattice-matched to layer or GaAs
A semiconductor layer such as nP, AlInP, or AlGaInP can be provided. Here, the upper limit of the thickness of the quantum well layer is about 10% of the upper limit of 15 nm. Further, the GaAs 0.9 P 0.1 shown in the above-described second embodiment.
Between the barrier layer and the GaAs 0.793 Sb 0.20 N 0.007 As well layer, a GaAs layer or GaAs having a thickness of 1 to 5 molecular layers is also provided.
By providing a semiconductor layer lattice-matched to s, the effect of alleviating the amount of strain can be similarly obtained.
【0042】[0042]
【発明の効果】本発明の光通信用の半導体レ−ザは、高
品質のGaAs1-X-YSbXNY(0<X≦0.3かつ0
<Y≦0.015)を用いている。このため、GaAs
基板上にはじめて1.3μm帯のLDが実現できる。例
えば量子井戸のウエル層にGaAs0.795Sb0.2N
0.005を用いた場合、バリア層にGaAs、Ga0.52I
n0.4 8P、Al0.52In0.48Pを用いれば、ウエル層と
バリア層の伝導帯のヘテロ障壁はそれぞれ、360me
V、570meV、750meVという大きな値が得ら
れる。同様に、価電子帯のヘテロ障壁はそれぞれ、25
0meV、515meV、770meVとなり、伝導帯
のヘテロ障壁と同程度の値が得られる。The semiconductor laser for optical communication according to the present invention is a high-quality GaAs 1- XYSb X N Y (0 <X ≦ 0.3 and 0
<Y ≦ 0.015). Therefore, GaAs
For the first time, a 1.3 μm band LD can be realized on a substrate. For example, GaAs 0.795 Sb 0.2 N is formed in a well layer of a quantum well.
When 0.005 is used, GaAs, Ga 0.52 I
n 0.4 8 P, by using the Al 0.52 In 0.48 P, respectively hetero barrier in the conduction band of the well layer and the barrier layer, 360Me
V, 570 meV, and 750 meV. Similarly, the valence band heterobarriers are 25
The values are 0 meV, 515 meV, and 770 meV, and the same value as that of the hetero barrier in the conduction band can be obtained.
【0043】従来のInP基板上のLDでは、ウエル層
とバリア層の伝導帯のヘテロ障壁は200meV程度で
ある。従って本発明のLDでは、従来のInP基板上の
LDの2倍から4倍弱の伝導帯のヘテロ障壁が得られ
る。その結果、量子井戸層に電子とホ−ルを効率よく閉
じこめることができるので、LDの環境温度が変化して
も閾値が変わらず安定した光出力が得られる。In a conventional LD on an InP substrate, the hetero-barrier in the conduction band between the well layer and the barrier layer is about 200 meV. Therefore, in the LD of the present invention, a hetero-barrier having a conduction band of 2 to less than 4 times that of the LD on the conventional InP substrate can be obtained. As a result, electrons and holes can be efficiently confined in the quantum well layer, so that a stable optical output can be obtained without changing the threshold value even if the ambient temperature of the LD changes.
【0044】つまり本発明の光通信用の半導体レ−ザ
は、温度変化に対するLDの発振閾電流値の変化の小さ
い優れた温度特性を有する。また環境温度が100℃程
度に高くなっても安定して動作する。したがって、LD
の温度を一定に保つための装置や、光出力を一定に保つ
装置が不要となるため、レ−ザ装置のコストが大幅に削
減できる。That is, the semiconductor laser for optical communication according to the present invention has an excellent temperature characteristic in which the change of the oscillation threshold current value of the LD with respect to the temperature change is small. Also, even if the environmental temperature rises to about 100 ° C., the operation is stable. Therefore, LD
Since a device for keeping the temperature of the laser light constant and a device for keeping the light output constant are unnecessary, the cost of the laser device can be greatly reduced.
【0045】本発明のLDは、Sb原料とN源を投入す
れば、従来の結晶成長装置を用いて作製できるので、新
たに大きな設備投資が不要である利点を有する。The LD of the present invention can be manufactured by using a conventional crystal growth apparatus when the Sb raw material and the N source are charged, and thus has an advantage that a large new capital investment is not required.
【図1】第1の実施例である光通信用半導体レ−ザの断
面層構造図である。FIG. 1 is a sectional layer structure view of a semiconductor laser for optical communication according to a first embodiment.
【図2】多重量子井戸活性層107の断面層構造図であ
る。FIG. 2 is a sectional layer structure diagram of a multiple quantum well active layer 107.
【図3】第2の実施例である光通信用半導体レ−ザの断
面層構造図である。FIG. 3 is a sectional layer structure diagram of a semiconductor laser for optical communication according to a second embodiment.
【図4】多重量子井戸活性層306の断面層構造図であ
る。FIG. 4 is a sectional layer structure diagram of a multiple quantum well active layer 306.
【図5】第3の実施例である光通信用半導体レ−ザの断
面層構造図である。FIG. 5 is a sectional layer structure view of a semiconductor laser for optical communication according to a third embodiment.
【図6】多重量子井戸活性層507の断面層構造図であ
る。FIG. 6 is a cross-sectional layer structure diagram of a multiple quantum well active layer 507.
【図7】第4の実施例である多重量子井戸活性層710
の断面層構造図である。FIG. 7 shows a multiple quantum well active layer 710 according to a fourth embodiment.
FIG. 4 is a sectional layer structure diagram of FIG.
【図8】従来例であるGaInNAs半導体レ−ザの断
面層構造図である。FIG. 8 is a sectional layer structure diagram of a conventional GaInNAs semiconductor laser.
【図9】GaAs1-YNYのバンドギャップのN組成Yに
対する依存性を示すグラフである。FIG. 9 is a graph showing the dependence of the band gap of GaAs 1 -Y NY on the N composition Y.
【図10】GaAs1-XSbX(0≦X≦0.5)のGa
Asに対する格子不整合度のSb組成X依存性を示すグ
ラフである。FIG. 10 shows Ga of GaAs 1-X Sb X (0 ≦ X ≦ 0.5).
5 is a graph showing the dependence of the degree of lattice mismatch on the Sb composition X with respect to As.
【図11】GaAs1-XSbX、GaAs1-YNY、InZ
Ga1-ZAs(0≦X,Y,Z≦0.5)のバンド端エ
ネルギ−のSb組成X、N組成Y、In組成Zに対する
依存性を示すグラフである。FIG. 11 shows GaAs 1-X Sb X , GaAs 1-Y NY , In Z
4 is a graph showing the dependence of band edge energy of Ga 1 -Z As (0 ≦ X, Y, Z ≦ 0.5) on Sb composition X, N composition Y, and In composition Z.
【図12】本発明のGaAs0.8-YSb0.2NY(10n
m)/GaAs量子井戸のバンド端エネルギのN組成Y
に対する依存性を示すグラフである。FIG. 12 shows a GaAs 0.8-Y Sb 0.2 N Y (10n) of the present invention.
m) / N composition Y of band edge energy of GaAs quantum well
6 is a graph showing the dependency on.
【図13】本発明のGaAs1-X-YSbXNY(層厚10
nm)/GaAs(Sb組成X=0.145、0.1
6、0.20、0.23)の量子井戸構造の遷移波長の
N組成Yに対する依存性を示すグラフである。FIG. 13 shows a GaAs 1-XY Sb X N Y (layer thickness of 10) of the present invention.
nm) / GaAs (Sb composition X = 0.145, 0.1
6 is a graph showing the dependence of the transition wavelength of the quantum well structure of (6, 0.20, 0.23) on the N composition Y.
【図14】本発明のLDの活性層のウエル層のGaAs
1-X-YSbXNY(0.16≦X≦0.23かつ0.00
3≦Y≦0.012)の(X、Y)組成領域を規定する
グラフである。FIG. 14 shows GaAs of the well layer of the active layer of the LD of the present invention.
1-XY Sb X N Y (0.16 ≦ X ≦ 0.23 and 0.00
3 is a graph defining a (X, Y) composition region of 3 ≦ Y ≦ 0.012).
【図15】本発明のLDのGaAs0.8-YSb0.2N
Y(10nm)/GaAs量子井戸の遷移波長のN組成
Yに対する依存性を示すグラフである。FIG. 15 shows GaAs 0.8-Y Sb 0.2 N of the LD of the present invention.
5 is a graph showing the dependence of the transition wavelength of Y (10 nm) / GaAs quantum well on the N composition Y.
101 n型電極 102 n−GaAs(001)基板 103 n−GaAs層 104 n−Al0.3Ga0.7As層 105 n−Al0.7Ga0.3As層クラッド層 106 n−GaAs光閉じ込め層 107 多重量子井戸活性層 108 p−GaAs光閉じ込め層 109 p−Al0.7Ga0.3As層クラッド層 110 p−Al0.3Ga0.7As層 111 p−GaAsコンタクト層 112 p型電極 201 GaAsバリア層 202 GaAs0.795Sb0.20N0.005Asウエル層 203 GaAsバリア層 204 GaAs0.795Sb0.20N0.005Asウエル層 205 GaAsバリア層 301 n型電極 302 n−GaAs(001)基板 303 n−GaAs層 304 n−Ga0.5In0.5Pクラッド層 305 n−GaAs光閉じ込め層 306 多重量子井戸活性層 307 p−GaAs光閉じ込め層 308 p−Ga0.5In0.5Pクラッド層 309 p−GaAsコンタクト層 310 p型電極 401 GaAsバリア層 402 GaAs0.9P0.1バリア層 403 GaAs0.793Sb0.20N0.007Asウエル層 404 GaAs0.9P0.1バリア層 405 GaAs0.793b0.20N0.007Asウエル層 406 GaAs0.9P0.1バリア層 407 GaAs0.793Sb0.20N0.007Asウエル層 408 GaAs0.9P0.1バリア層 409 GaAsバリア層 501 n型電極 502 n−GaAs(001)基板 503 n−GaAs層 504 n−Ga0.5In0.5P層 505 n−Al0.5In0.5P層クラッド層 506 n−Ga0.5In0.5P光閉じこめ層 507 多重量子井戸活性層 508 p−Ga0.5In0.5P光閉じこめ層 509 p−Al0.5In0.5P層クラッド層 510 p−Ga0.5In0.5P層 511 p−GaAsコンタクト層 512 p型電極 601 Ga0.5In0.5P層 602 Ga0.6In0.4Pバリア層 603 GaAs0.793Sb0.20N0.007Asウエル層 604 Ga0.6In0.4Pバリア層 605 GaAs0.793Sb0.20N0.007Asウエル層 606 Ga0.6In0.4Pバリア層 607 GaAs0.793Sb0.20N0.007Asウエル層 608 Ga0.6In0.4Pバリア層 609 Ga0.5In0.5P層 701 Ga0.5In0.5P層 702 Ga0.6In0.4Pバリア層 703 GaAs層 704 GaAs0.793Sb0.20N0.007Asウエル層 705 GaAs層 706 量子井戸層 707 量子井戸層 708 量子井戸層 709 Ga0.5In0.5P層 710 多重量子井戸活性層101 n-type electrode 102 n-GaAs (001) substrate 103 n-GaAs layer 104 n-Al 0.3 Ga 0.7 As layer 105 n-Al 0.7 Ga 0.3 As layer clad layer 106 n-GaAs light confining layer 107 multiple quantum well active layer 108 p-GaAs optical confinement layer 109 p-Al 0.7 Ga 0.3 As layer clad layer 110 p-Al 0.3 Ga 0.7 As layer 111 p-GaAs contact layer 112 p-type electrode 201 GaAs barrier layer 202 GaAs 0.795 Sb 0.20 N 0.005 As well layer 203 GaAs barrier layer 204 GaAs 0.795 Sb 0.20 n 0.005 As well layer 205 GaAs barrier layer 301 n-type electrode 302 n-GaAs (001) substrate 303 n-GaAs layer 304 n-Ga 0.5 In 0.5 P cladding layer 305 n-GaAs Light confinement layer 306 Child-well active layer 307 p-GaAs light confining layer 308 p-Ga 0.5 In 0.5 P cladding layer 309 p-GaAs contact layer 310 p-type electrode 401 GaAs barrier layer 402 GaAs 0.9 P 0.1 barrier layer 403 GaAs 0.793 Sb 0.20 N 0.007 As Well layer 404 GaAs 0.9 P 0.1 barrier layer 405 GaAs 0.793 b 0.20 N 0.007 As well layer 406 GaAs 0.9 P 0.1 barrier layer 407 GaAs 0.793 Sb 0.20 N 0.007 As well layer 408 GaAs 0.9 P 0.1 barrier layer 409 GaAs barrier layer 501 n electrode 502 n-GaAs (001) substrate 503 n-GaAs layer 504 n-Ga 0.5 In 0.5 P layer 505 n-Al 0.5 In 0.5 P layer clad layer 506 n-Ga 0.5 In 0.5 P optical confinement layer 507 MQW active layer 508 p-Ga 0.5 I 0.5 P optical confinement layer 509 p-Al 0.5 In 0.5 P layer cladding layer 510 p-Ga 0.5 In 0.5 P layer 511 p-GaAs contact layer 512 p-type electrode 601 Ga 0.5 an In 0.5 P layer 602 Ga 0.6 In 0.4 P barrier layer 603 GaAs 0.793 Sb 0.20 N 0.007 As well layer 604 Ga 0.6 In 0.4 P barrier layers 605 GaAs 0.793 Sb 0.20 N 0.007 As well layer 606 Ga 0.6 In 0.4 P barrier layers 607 GaAs 0.793 Sb 0.20 N 0.007 As well layer 608 Ga 0.6 an In 0.4 P barrier layer 609 Ga 0.5 In 0.5 P layer 701 Ga 0.5 In 0.5 P layer 702 Ga 0.6 In 0.4 P barrier layer 703 GaAs layer 704 GaAs 0.793 Sb 0.20 N 0.007 As well layer 705 GaAs layer 706 Quantum well layer 707 Quantum well layer 708 Quantum well layer 709 Ga 0.5 In 0. 5 P layer 710 Multiple quantum well active layer
Claims (7)
体層がGaAs1-X- YSbXNY(0<X≦0.3かつ0
<Y≦0.015)であることを特徴とするGaAs基
板上に形成された半導体レ−ザ素子。At least one semiconductor layer constituting an active layer is made of GaAs 1-X- Y Sb X N Y (0 <X ≦ 0.3 and 0
<Y ≦ 0.015), wherein the semiconductor laser element is formed on a GaAs substrate.
て、キャリアを注入するクラッド層がAlGaAs、G
aInP、AlInPもしくはAlGaInPからなる
群から選ばれるGaAsに格子整合する半導体であるこ
とを特徴とする半導体レ−ザ素子。2. The semiconductor laser device according to claim 1, wherein the cladding layer for injecting carriers is made of AlGaAs, G
A semiconductor laser device, which is a semiconductor lattice-matched to GaAs selected from the group consisting of aInP, AlInP or AlGaInP.
において、その活性層を構成する半導体層の内でバンド
ギャップが最小の半導体層がGaAs1-X-YSbXN
Y(0.16≦X≦0.23かつ0.003≦Y≦0.
012)であることを特徴とする半導体レ−ザ素子。3. A process according to claim 1 or 2, wherein the semiconductor laser - in laser device, the band gap is the smallest semiconductor layer GaAs 1-XY Sb among the semiconductor layers constituting the active layer X N
Y (0.16 ≦ X ≦ 0.23 and 0.003 ≦ Y ≦ 0.
012).
半導体レ−ザ素子において、その活性層がGaAs
1-X-YSbXNY(0.16≦X≦0.23かつ0.00
3≦Y≦0.012)ウエル層とGaAsバリア層を交
互に隣接させて形成した量子井戸構造であることを特徴
とする半導体レ−ザ素子。4. The semiconductor laser device according to claim 1, wherein said active layer is made of GaAs.
1-XY Sb X N Y (0.16 ≦ X ≦ 0.23 and 0.00
3 ≦ Y ≦ 0.012) A semiconductor laser device having a quantum well structure formed by alternately adjoining well layers and GaAs barrier layers.
半導体レ−ザ素子において、その活性層がGaAs
1-X-YSbXNY(0.16≦X≦0.23かつ0.00
3≦Y≦0.012)ウエル層とGaAs1-pPp(0<
p≦0.2)バリア層を交互に隣接させて形成した量子
井戸構造であることを特徴とする半導体レ−ザ素子。5. The semiconductor laser device according to claim 1, wherein said active layer is made of GaAs.
1-XY Sb X N Y (0.16 ≦ X ≦ 0.23 and 0.00
3 ≦ Y ≦ 0.012) Well layer and GaAs 1-p P p (0 <
(p ≦ 0.2) A semiconductor laser device having a quantum well structure formed by alternately adjoining barrier layers.
半導体レ−ザ素子において、その活性層がGaAs
1-X-YSbXNY(0.16≦X≦0.23かつ0.00
3≦Y≦0.012)ウエル層とGaqIn1-qP(0.
50<q≦0.7)バリア層を交互に隣接させて形成し
た量子井戸構造であることを特徴とする半導体レ−ザ素
子。6. The semiconductor laser device according to claim 1, wherein said active layer is made of GaAs.
1-XY Sb X N Y (0.16 ≦ X ≦ 0.23 and 0.00
3 ≦ Y ≦ 0.012) well layer and Ga q In 1-q P (0.
50 <q ≦ 0.7) A semiconductor laser device having a quantum well structure formed by alternately adjoining barrier layers.
子において、その量子井戸活性層のウエル層とバリア層
の間に1〜5分子層厚のGaAsもしくはGaAsに格
子整合する半導体層が設けられたことを特徴とする半導
体レ−ザ素子。7. The semiconductor laser device according to claim 5, wherein between the well layer and the barrier layer of the quantum well active layer, the semiconductor layer lattice-matched to GaAs or GaAs having a thickness of 1 to 5 molecular layers. A semiconductor laser device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06141898A JP3209266B2 (en) | 1998-03-12 | 1998-03-12 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06141898A JP3209266B2 (en) | 1998-03-12 | 1998-03-12 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11261155A true JPH11261155A (en) | 1999-09-24 |
JP3209266B2 JP3209266B2 (en) | 2001-09-17 |
Family
ID=13170545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06141898A Expired - Fee Related JP3209266B2 (en) | 1998-03-12 | 1998-03-12 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3209266B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001185497A (en) * | 1999-12-27 | 2001-07-06 | Sharp Corp | Method of growing crystal of compound semiconductor, structure of quantum wall, and compound semiconductor device |
JP2004289112A (en) * | 2003-03-06 | 2004-10-14 | Ricoh Co Ltd | Semiconductor light emitting element, its manufacturing method, optical transmitting module, optical transmitting/receiving module, and optical communication system |
US6898224B2 (en) | 2001-08-22 | 2005-05-24 | The Furukawa Electric Co., Ltd. | Semiconductor laser device |
US7714338B2 (en) | 2002-11-21 | 2010-05-11 | Ricoh Company, Ltd. | Semiconductor light emitter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090515A (en) | 1994-05-13 | 2000-07-18 | Canon Kabushiki Kaisha | Toner for developing electrostatic image, image forming method and process cartridge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05267773A (en) * | 1992-03-18 | 1993-10-15 | Hitachi Ltd | Semiconductor laser element |
JPH07263744A (en) * | 1994-03-23 | 1995-10-13 | Shiro Sakai | Laminated superlattice structure of iii-v compound semiconductor and light emitting diode thereof |
JPH08195522A (en) * | 1994-11-16 | 1996-07-30 | Hitachi Ltd | Semiconductor laser |
JPH09283857A (en) * | 1996-04-11 | 1997-10-31 | Ricoh Co Ltd | Semiconductor manufacturing method and semiconductor element |
-
1998
- 1998-03-12 JP JP06141898A patent/JP3209266B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05267773A (en) * | 1992-03-18 | 1993-10-15 | Hitachi Ltd | Semiconductor laser element |
JPH07263744A (en) * | 1994-03-23 | 1995-10-13 | Shiro Sakai | Laminated superlattice structure of iii-v compound semiconductor and light emitting diode thereof |
JPH08195522A (en) * | 1994-11-16 | 1996-07-30 | Hitachi Ltd | Semiconductor laser |
JPH09283857A (en) * | 1996-04-11 | 1997-10-31 | Ricoh Co Ltd | Semiconductor manufacturing method and semiconductor element |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001185497A (en) * | 1999-12-27 | 2001-07-06 | Sharp Corp | Method of growing crystal of compound semiconductor, structure of quantum wall, and compound semiconductor device |
US6898224B2 (en) | 2001-08-22 | 2005-05-24 | The Furukawa Electric Co., Ltd. | Semiconductor laser device |
US7714338B2 (en) | 2002-11-21 | 2010-05-11 | Ricoh Company, Ltd. | Semiconductor light emitter |
US7872270B2 (en) | 2002-11-21 | 2011-01-18 | Ricoh Company, Ltd. | Semiconductor light emitter |
JP2004289112A (en) * | 2003-03-06 | 2004-10-14 | Ricoh Co Ltd | Semiconductor light emitting element, its manufacturing method, optical transmitting module, optical transmitting/receiving module, and optical communication system |
Also Published As
Publication number | Publication date |
---|---|
JP3209266B2 (en) | 2001-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3854693B2 (en) | Manufacturing method of semiconductor laser | |
JP3242967B2 (en) | Semiconductor light emitting device | |
JPH06104533A (en) | Blue color light emitting element and fabrication thereof | |
US5556804A (en) | Method of manufacturing semiconductor laser | |
JP5636773B2 (en) | Semiconductor laser | |
JP3982985B2 (en) | Manufacturing method of semiconductor laser device | |
JP3447920B2 (en) | Gallium nitride based compound semiconductor laser and method of manufacturing the same | |
JPH09298341A (en) | Semiconductor laser element | |
JP3209266B2 (en) | Semiconductor laser device | |
Lane et al. | InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition | |
JP2956623B2 (en) | Self-excited oscillation type semiconductor laser device | |
JP2000277867A (en) | Semiconductor laser device | |
JP2002368342A (en) | Multiplex quantum well semiconductor element | |
JPH11274645A (en) | Semiconductor element and fabrication thereof | |
JPH05267797A (en) | Light-emitting semiconductor diode | |
JP4229681B2 (en) | Semiconductor laser device, optical transmission module and optical transmission system | |
JP2002094187A (en) | Semiconductor laser and optical communication system using it | |
JP4199835B2 (en) | Semiconductor light emitting device and method for manufacturing semiconductor light emitting device | |
JP2001185810A (en) | Semiconductor optical device and manufacturing method therefor | |
JP3135250B2 (en) | Semiconductor laser device | |
JP2004221428A (en) | Optical semiconductor device and its manufacturing method | |
JPH06104534A (en) | Semiconductor laser element | |
JP2544924B2 (en) | Method for manufacturing semiconductor laser device | |
JPH08307005A (en) | Semiconductor laser element | |
JPH057049A (en) | Semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070713 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |