JPH11260405A - Solid electrolyte-type lithium secondary battery - Google Patents
Solid electrolyte-type lithium secondary batteryInfo
- Publication number
- JPH11260405A JPH11260405A JP10058097A JP5809798A JPH11260405A JP H11260405 A JPH11260405 A JP H11260405A JP 10058097 A JP10058097 A JP 10058097A JP 5809798 A JP5809798 A JP 5809798A JP H11260405 A JPH11260405 A JP H11260405A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- positive electrode
- negative electrode
- less
- internal short
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は固体電解質型リチウ
ム二次電池に関するもので、さらに詳しく言えば、内部
短絡が防止でき、充放電サイクル特性が改善でき、それ
によって信頼性を向上させた固体電解質型リチウム二次
電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte type lithium secondary battery, and more particularly, to a solid electrolyte capable of preventing internal short circuit, improving charge / discharge cycle characteristics, and thereby improving reliability. The present invention relates to a lithium secondary battery.
【0002】[0002]
【従来の技術】固体電解質型リチウム二次電池は、平板
状の負極集電体に負極活物質を配してなる負極と、平板
状の正極集電体に正極活物質を配してなる正極とが隔離
膜を介して積層されてなるものであり、前記隔離膜に
は、軽量で展延性にすぐれ、加工性が良好な高分子固体
電解質が用いられる。2. Description of the Related Art A solid electrolyte type lithium secondary battery has a negative electrode in which a negative electrode active material is disposed on a flat negative electrode current collector, and a positive electrode in which a positive electrode active material is disposed on a flat positive electrode current collector. Are laminated via an isolating film, and a polymer solid electrolyte which is lightweight, has excellent spreadability, and has good workability is used for the isolating film.
【0003】上記した固体電解質膜としては、ポリエチ
レンオキシド、ポリプロピレンオキシド、ポリフッ化ビ
ニリデン、ポリアクリロニトリルなどのポリマーマトリ
ックス中に、過塩素酸リチウム、ヘキサフルオロ燐酸リ
チウム、テトラフルオロ硼酸リチウム、トリフルオロメ
タンスルホン酸リチウム、イミド塩のようなリチウム塩
を溶解した固体電解質、または前記ポリマーマトリック
ス中にγ−ブチルラクトン、エチレンカーボネート、プ
ロピレンカーボネート、アセトニトリルなどの可塑剤を
混合し、これに前記リチウム塩を溶解したゲル電解質が
使用される。[0003] The above-mentioned solid electrolyte membranes include a polymer matrix such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylonitrile, etc., in which lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate are used. A solid electrolyte in which a lithium salt such as an imide salt is dissolved, or a gel electrolyte in which a plasticizer such as γ-butyl lactone, ethylene carbonate, propylene carbonate, or acetonitrile is mixed in the polymer matrix, and the lithium salt is dissolved therein. Is used.
【0004】このような固体電解質膜は、正極や負極上
に上述した固体電解質やゲル電解質を塗布した後固化し
て厚さが10〜100μmになるようにしたものや、単
独で前述した厚さのものを作製して正極と負極との間に
介在させるようにしたものが一般的である。なお、この
場合の固体電解質膜は隔離膜としての役割も担うことに
なる。[0004] Such a solid electrolyte membrane is formed by coating the above-mentioned solid electrolyte or gel electrolyte on a positive electrode or a negative electrode and then solidifying the solid electrolyte to a thickness of 10 to 100 µm. In general, one is manufactured and interposed between the positive electrode and the negative electrode. In this case, the solid electrolyte membrane also serves as a separator.
【0005】また、特開昭63−40270号には、隔
離膜として、繊維状の非導電性樹脂の空隙や微多孔性フ
ィルムの空孔に固体電解質が充填されたものを用いるこ
とが提案されている。Further, Japanese Patent Application Laid-Open No. 63-40270 proposes to use a separator in which voids of a fibrous nonconductive resin or voids of a microporous film are filled with a solid electrolyte. ing.
【0006】[0006]
【発明が解決しようとする課題】上記した、固体電解質
膜のみを隔離膜として使用したものでは、充放電を反復
させると電流が集中しやすい正極や負極の周縁部におい
てリチウムがデンドライト状に析出して内部短絡を生じ
たり、高温下で継続して使用すると固体電解質やゲル電
解質が軟化して機械的強度が低下するという問題があ
り、固体電解質型リチウム二次電池の信頼性の低下の原
因になっていた。In the case where only the solid electrolyte membrane is used as the separator as described above, when charge and discharge are repeated, lithium is deposited in a dendrite shape at the periphery of the positive electrode or the negative electrode where current tends to concentrate. Internal short-circuit, or if used continuously at high temperatures, the solid electrolyte or gel electrolyte is softened and the mechanical strength is reduced, which may cause a decrease in the reliability of the solid electrolyte type lithium secondary battery. Had become.
【0007】また、繊維状の非導電性樹脂の空隙や微多
孔性フィルムの空孔に固体電解質が充填された隔離膜で
は、繊維状の非導電性樹脂であればその空隙の径が数十
〜数百ミクロンであるため、長期間の使用に対してデン
ドライト状に析出したリチウムによる内部短絡を確実に
防止することができないという問題があり、微多孔性フ
ィルムであればその平均空孔率が20%〜40%である
ため、膜抵抗が高くなって電池性能が低下するという問
題があった。Further, in the case of a separator in which voids of a fibrous non-conductive resin or pores of a microporous film are filled with a solid electrolyte, the diameter of the void is several tens for a fibrous non-conductive resin. To several hundred microns, there is a problem that it is not possible to reliably prevent internal short circuit due to lithium deposited in a dendritic state for long-term use, and if the film is a microporous film, the average porosity is low. Since it is 20% to 40%, there is a problem that the membrane resistance is increased and the battery performance is reduced.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、正極と負極とが隔離膜を介
して配されてなる固体電解質型リチウム二次電池におい
て、前記隔離膜は平均空孔率が40%以上、80%以下
であり、平均孔径が1μm以下である微多孔性フィルム
からなり、かつ空孔に固体電解質が充填されていること
を特徴とするものであり、これにより、微多孔性フィル
ムは平均空孔率が40%以上、80%以下であるから充
放電に伴うリチウムの拡散を良好にすることができ、平
均孔径が1μm以下であるから長期間の使用に対してデ
ンドライト状に析出したリチウムによる内部短絡を防止
することができる。According to a first aspect of the present invention, there is provided a solid electrolyte type lithium secondary battery in which a positive electrode and a negative electrode are disposed via an isolation film. Is composed of a microporous film having an average porosity of 40% or more and 80% or less, an average pore size of 1 μm or less, and wherein the pores are filled with a solid electrolyte; Thereby, the microporous film has an average porosity of 40% or more and 80% or less, so that diffusion of lithium during charge and discharge can be improved, and since the average pore size is 1 μm or less, it can be used for a long time. In contrast, an internal short circuit due to lithium precipitated in a dendrite shape can be prevented.
【0009】また、請求項2記載の発明は、請求項1記
載の固体電解質型リチウム二次電池において、隔離膜の
外周縁部を正極および負極の外周縁部より外側に位置す
るようにし、かつこの外側に位置する部分の部分空孔率
が30%以下であることを特徴とするものであり、これ
により、電流が集中しやすい正極や負極の周縁部におい
てデンドライト状に析出したリチウムによる内部短絡を
確実に防止することができる。According to a second aspect of the present invention, in the solid electrolyte type lithium secondary battery of the first aspect, the outer peripheral edge of the separator is located outside the outer peripheral edges of the positive electrode and the negative electrode, and The partial porosity of the portion located on the outer side is characterized by being 30% or less, whereby an internal short circuit caused by lithium deposited in a dendrite shape at the periphery of the positive electrode or the negative electrode where current tends to concentrate. Can be reliably prevented.
【0010】[0010]
【発明の実施の形態】以下、本発明をその実施の形態に
基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.
【0011】本発明の実施の形態に係る固体電解質型リ
チウム二次電池の特徴は、正極と負極との間に介在させ
た隔離膜は平均空孔率が40%以上、80%以下であ
り、平均孔径が1μm以下である微多孔性フィルムから
なり、かつ空孔に固体電解質が充填されていることであ
る。A feature of the solid electrolyte type lithium secondary battery according to the embodiment of the present invention is that the separator interposed between the positive electrode and the negative electrode has an average porosity of 40% or more and 80% or less, It consists of a microporous film having an average pore diameter of 1 μm or less, and the pores are filled with a solid electrolyte.
【0012】前記隔離膜としての微多孔性フィルムは、
ポリエチレン、ポリプロピレン、ポリビニルアルコー
ル、ポリエステル、ポリアミドなどの樹脂材料を延伸
法、湿式法等によって作製され、その平均空孔率は40
%以上、80%以下、より好ましくは、45%以上、7
0%以下であるのがよく、平均孔径は1μm以下、より
好ましくは0.5μm以下であるのがよい。[0012] The microporous film as the separator is
A resin material such as polyethylene, polypropylene, polyvinyl alcohol, polyester, or polyamide is produced by a stretching method, a wet method, or the like, and has an average porosity of 40.
% Or more and 80% or less, more preferably 45% or more and 7% or less.
It is preferably 0% or less, and the average pore diameter is 1 μm or less, more preferably 0.5 μm or less.
【0013】さらに、前記微多孔性フィルムは、その外
周縁部が正極および負極の外周縁部より外側に位置する
ようにするため、正極および負極の外形寸法より大きく
裁断し、これを正極と負極との間に介在させる前または
後に、外側に位置する部分の部分空孔率が30%以下、
より好ましくは20%以下になるように、熱溶着等の処
理を行い、空孔を減少させている。Further, the microporous film is cut to be larger than the outer dimensions of the positive electrode and the negative electrode so that the outer peripheral edge is located outside the outer peripheral edges of the positive electrode and the negative electrode. Before or after interposition between the partial porosity of the portion located outside is 30% or less,
More preferably, a treatment such as heat welding is performed to reduce the number of vacancies to 20% or less.
【0014】[0014]
【実施例】図1は本発明の実施例および比較例に係る固
体電解質型リチウム二次電池の断面図である。FIG. 1 is a sectional view of a solid electrolyte type lithium secondary battery according to an example of the present invention and a comparative example.
【0015】図1に示した固体電解質型リチウム二次電
池は、負極活物質3としての金属リチウムが銅箔からな
る負極集電体1上に担持された負極5と、導電剤として
のアセチレンブラックと結着剤としてのポリフッ化ビニ
リデンを含む正極活物質4としてのコバルト酸リチウム
がアルミニウム箔からなる正極集電体2上に担持され、
この正極集電体2に接しない正極活物質4の表面に、ジ
アクリレートポリエチレンオキシドとヘキサフルオロ燐
酸リチウムとのエチレンカーボネートの1モル溶液を含
浸して重合硬化させて形成した固体電解質層7を有する
正極6と、ポリエチレン製の微多孔性フィルム8に、前
述したジアクリレートポリエチレンオキシドとヘキサフ
ルオロ燐酸リチウムとのエチレンカーボネートの1モル
溶液を含浸して重合硬化させた隔離膜9とからなり、前
記隔離膜9を前記負極5と正極6との間に介在させ、隔
離膜9の外周縁部をヒートシーラーによってその部分空
孔率が20%以下になるようにした積層体をアルミニウ
ム10とポリエチレンテレフタレート11からなるラミ
ネート内に挿入した後熱溶着シールしたものである。The solid electrolyte type lithium secondary battery shown in FIG. 1 has a negative electrode 5 in which metallic lithium as a negative electrode active material 3 is supported on a negative electrode current collector 1 made of copper foil, and acetylene black as a conductive agent. And lithium cobalt oxide as a positive electrode active material 4 containing polyvinylidene fluoride as a binder is supported on a positive electrode current collector 2 made of aluminum foil,
On the surface of the positive electrode active material 4 not in contact with the positive electrode current collector 2, there is provided a solid electrolyte layer 7 formed by impregnating and polymerizing and curing a 1 mol solution of ethylene carbonate of diacrylate polyethylene oxide and lithium hexafluorophosphate. A positive electrode 6 and a microporous film 8 made of polyethylene are impregnated with a 1 mol solution of ethylene carbonate of diacrylate polyethylene oxide and lithium hexafluorophosphate described above, and an isolation membrane 9 polymerized and cured. A laminate in which the membrane 9 is interposed between the negative electrode 5 and the positive electrode 6 and the outer peripheral edge of the separator 9 is made to have a partial porosity of 20% or less by a heat sealer is formed of aluminum 10 and polyethylene terephthalate 11. This was inserted into a laminate made of and sealed by heat welding.
【0016】(評価試験1)上記ポリエチレン製の微多
孔性フィルム8は平均孔径が1μm以下であり、平均空
孔率が30%のものを使用した電池A1 、平均空孔率が
45%のものを使用した電池B1 、平均空孔率が52%
のものを使用した電池C1 、平均空孔率が64%のもの
を使用した電池D1 、平均空孔率が70%のものを使用
した電池E1、平均空孔率が80%のものを使用した電
池F1 、平均空孔率が85%のものを使用した電池G1
をそれぞれ10個作製するとともに、ポリエチレン製の
微多孔性フィルム8を用いないでジアクリレートポリエ
チレンオキシドとヘキサフルオロ燐酸リチウムとのエチ
レンカーボネートの1モル溶液を重合硬化させただけの
ものを使用した比較例に係る電池Hを10個作製し、そ
れぞれについて充放電サイクル試験を行い、1サイクル
経過時の放電容量と100サイクル経過後の内部短絡の
有無を調査し、結果を表1に示す。なお、充放電サイク
ル試験の条件は、周囲温度が20℃の雰囲気下で、充電
は4mAの定電流、4.1Vの定電圧で6時間とし、放
電は4mAの定電流で、2.7Vの終止電圧までとし
た。(Evaluation Test 1) A battery A 1 using the polyethylene microporous film 8 having an average pore diameter of 1 μm or less and an average porosity of 30%, and an average porosity of 45% was used. Battery B 1 , with an average porosity of 52%
Cell C 1 using ones, the average porosity of cell D 1 that was used for 64%, the average porosity of the battery E 1 which was used in 70%, an average porosity of 80% A battery G 1 using a battery F 1 using an average porosity of 85%
Comparative Example in which 10 pieces of each were prepared and only a 1 mol solution of ethylene carbonate of diacrylate polyethylene oxide and lithium hexafluorophosphate was polymerized and cured without using the microporous film 8 made of polyethylene. Were manufactured and subjected to a charge / discharge cycle test, and the discharge capacity after one cycle and the presence or absence of an internal short circuit after 100 cycles were examined. The results are shown in Table 1. The conditions of the charge / discharge cycle test were as follows: in an atmosphere at an ambient temperature of 20 ° C., charging was performed at a constant current of 4 mA, at a constant voltage of 4.1 V for 6 hours, and discharging was performed at a constant current of 4 mA at a constant current of 2.7 V. Up to the end voltage.
【0017】[0017]
【表1】 [Table 1]
【0018】表1から、1サイクル経過時の放電容量
は、電池B1 ,C1 ,D1 ,E1 ,F1 ,G1 ,Hのい
ずれもが26〜30mAhであったのに対し、電池A1
が12mAhであった。また、100サイクル経過後の
内部短絡の有無は、電池A1 ,B1 ,C1 ,D1 ,
E1 ,F1 のいずれもが認められなかったのに対し、電
池G1 が10個のうち5個に、電池Hがすべてに認めら
れたことがわかった。From Table 1, the discharge capacity after one cycle was 26 to 30 mAh for all of the batteries B 1 , C 1 , D 1 , E 1 , F 1 , G 1 , and H, Battery A 1
Was 12 mAh. The presence or absence of an internal short circuit after 100 cycles has elapsed is determined by batteries A 1 , B 1 , C 1 , D 1 ,
Neither E 1 nor F 1 was found, but it was found that battery G 1 was found in 5 out of 10 batteries and battery H was found in all.
【0019】このことから、隔離膜9としての微多孔性
フィルム8は平均孔径が1μm以下で、平均空孔率が4
0%以上、80%以下であれば、1サイクル経過時の放
電容量を低下させることなく、充放電サイクル特性が向
上できることがわかる。From this, the microporous film 8 as the separator 9 has an average pore diameter of 1 μm or less and an average porosity of 4 μm.
From 0% to 80%, it can be seen that the charge / discharge cycle characteristics can be improved without reducing the discharge capacity after one cycle.
【0020】(評価試験2)上記ポリエチレン製の微多
孔性フィルム8は平均空孔率が70%であり、平均孔径
が1μmのものを使用した上記電池E1 、平均孔径が
0.1μmのものを使用した電池E2 、平均孔径が0.
3μmのものを使用した電池E3 、平均孔径が0.5μ
mのものを使用した電池E4 、平均孔径が1.8μmの
ものを使用した電池E5 、平均孔径が3.2μmのもの
を使用した電池E6 をそれぞれ10個作製し、評価試験
1と同じ条件で充放電サイクル試験を行い、1サイクル
経過時の放電容量と100サイクル経過後の内部短絡の
有無を調査し、結果を表2に示す。(Evaluation Test 2) The above battery E 1 using the polyethylene microporous film 8 having an average porosity of 70% and an average pore diameter of 1 μm, and having an average pore diameter of 0.1 μm A battery E 2 , which has an average pore size of 0.
Battery E 3 using 3 μm, average pore size 0.5 μm
Battery E 4 which was used for m, the average pore size of the battery E 5 which was used in the 1.8 .mu.m, the average pore size to produce 10 pieces each battery E 6 that was used in the 3.2 .mu.m, the evaluation test 1 and A charge / discharge cycle test was conducted under the same conditions, and the discharge capacity after one cycle and the presence or absence of an internal short circuit after 100 cycles were examined. The results are shown in Table 2.
【0021】[0021]
【表2】 [Table 2]
【0022】表2から、1サイクル経過時の放電容量
は、電池E1 〜E6 のいずれもが27〜30mAhであ
った。また、100サイクル経過後の内部短絡の有無
は、電池E1 ,E2 ,E3 ,E4 のいずれもが認められ
なかったのに対し、電池E5 が10個のうち1個に、電
池E6 が10個のうち6個に認められたことがわかっ
た。From Table 2, the discharge capacity after one cycle was 27 to 30 mAh for all of the batteries E 1 to E 6 . In addition, the presence or absence of an internal short circuit after 100 cycles has elapsed was not confirmed for any of the batteries E 1 , E 2 , E 3 , and E 4 , but for one of the ten batteries E 5 , E 6 it was found that was observed in six of the ten.
【0023】このことから、隔離膜9としての微多孔性
フィルム8は平均孔径を1μm以下にすることにより、
1サイクル経過時の放電容量を低下させることなく、充
放電サイクル特性が向上できることがわかる。Accordingly, the microporous film 8 as the isolation membrane 9 has an average pore diameter of 1 μm or less,
It can be seen that the charge / discharge cycle characteristics can be improved without lowering the discharge capacity after one cycle.
【0024】(評価試験3)評価試験2で使用した平均
空孔率が70%、平均孔径が1μmの微多孔性フィルム
8を隔離膜9として用いた電池E1 に対し、前記隔離膜
9がその外周縁部を正極6および負極5の外周縁部より
外側に位置させた電池E10、前記隔離膜9の外側に位置
する部分の部分空孔率が30%になるようにした電池E
11、前記隔離膜9の外側に位置する部分の部分空孔率が
20%になるようにした電池E12を各10個、評価試験
2で使用した平均空孔率が70%、平均孔径が0.5μ
mの微多孔性フィルム8を隔離膜9として用いた電池E
4 に対し、前記隔離膜9がその外周縁部を正極6および
負極5の外周縁部より外側に位置させた電池E40、前記
隔離膜9の外側に位置する部分の部分空孔率が30%に
なるようにした電池E41、前記隔離膜9の外側に位置す
る部分の部分空孔率が20%になるようにした電池E42
を各10個、評価試験1で使用した平均空孔率が45
%、平均孔径が1μmの微多孔性フィルム8を隔離膜9
として用いた電池B1 に対し、前記隔離膜9がその外周
縁部を正極6および負極5の外周縁部より外側に位置さ
せた電池B10、前記隔離膜9の外側に位置する部分の部
分空孔率が30%になるようにした電池B11、前記隔離
膜9の外側に位置する部分の部分空孔率が20%になる
ようにした電池B12を各10個作製し、それぞれについ
て充放電サイクル試験を行い、100サイクル経過後の
内部短絡の有無を調査し、結果を表3に示す。なお、充
放電サイクル試験の条件は、周囲温度が20℃の雰囲気
下で、充電は10mAの定電流、4.1Vの定電圧で
3.5時間とし、放電は4mAの定電流で、2.7Vの
終止電圧までとした。(Evaluation Test 3) In contrast to the battery E 1 using the microporous film 8 having an average porosity of 70% and an average pore diameter of 1 μm used in the evaluation test 2 as the separator 9, A battery E 10 whose outer peripheral edge is located outside the outer peripheral edges of the positive electrode 6 and the negative electrode 5, and a battery E 10 in which a portion located outside the isolation film 9 has a partial porosity of 30%.
11, each ten batteries E 12 which portion porosity part was set to 20% located outside of the separator 9, the average porosity of 70% was used in the evaluation test 2, the average pore diameter 0.5μ
E using a microporous film 8 of m as a separator 9
On the other hand, the battery E 40 in which the outer peripheral edge of the separator 9 is located outside the outer peripheral edge of the positive electrode 6 and the negative electrode 5, the partial porosity of the portion located outside the separator 9 is 30. battery E 41 was set to%, the battery E 42 which partially porosity of a portion located outside was made to be 20% of the isolating layer 9
And the average porosity used in the evaluation test 1 was 45
%, A microporous film 8 having an average pore diameter of 1 μm
In the battery B 1 used as the battery B 1 , a portion of the battery B 10 in which the outer peripheral edge of the separator 9 is located outside the outer peripheral edges of the positive electrode 6 and the negative electrode 5, and a portion located outside the separator 9 porosity battery B 11 was made to be 30%, the partial porosity of a portion located outside of the separator 9 is a battery B 12 produced 10 pieces each which was set to 20%, for each A charge / discharge cycle test was performed, and the presence or absence of an internal short circuit after a lapse of 100 cycles was examined. The results are shown in Table 3. The conditions for the charge / discharge cycle test were as follows: in an atmosphere at an ambient temperature of 20 ° C., charging was performed at a constant current of 10 mA, at a constant voltage of 4.1 V for 3.5 hours, and discharging was performed at a constant current of 4 mA at a constant current of 2. Up to a final voltage of 7V.
【0025】[0025]
【表3】 [Table 3]
【0026】表3から、100サイクル経過後の内部短
絡の有無は、電池E10が10個のうち4個に、電池E40
が10個のうち2個に、電池B10が10個のうち1個
に、電池E11が10個のうち2個に、電池E41が10個
のうち1個に、電池B11が10個のうち1個に、電池E
12が10個のうち1個に認められたのに対し、電池E42
と電池B12には認められなかった。[0026] From Table 3, the presence or absence of internal short circuit after 100 cycles elapsed, the four of the battery E 10 is 10, the battery E 40
In but two of the 10, to one of the battery B 10 is 10 pieces, the two of the battery E 11 is 10, to one of the battery E 41 is 10, the battery B 11 10 Battery E
12 was found in one of the ten batteries, while battery E 42
And it was not observed in the battery B 12.
【0027】このことから、隔離膜9として平均空孔率
が70%の微多孔性フィルム8を使用すれば、平均孔径
が1μmのものの方が内部短絡を生じやすく、隔離膜9
の外側に位置する部分の部分空孔率が30%のものの方
が内部短絡を生じやすいことがわかる。また、隔離膜9
として平均空孔率が45%の微多孔性フィルム8を使用
すれば、平均孔径が1μmのものであっても内部短絡は
生じにくくなることがわかる。From this, if the microporous film 8 having an average porosity of 70% is used as the isolation film 9, the one having an average pore diameter of 1 μm is more likely to cause an internal short circuit.
It can be seen that an internal short circuit is more likely to occur when the partial porosity of the portion located outside of the sample is 30%. Also, the isolation film 9
When the microporous film 8 having an average porosity of 45% is used, it is understood that an internal short circuit hardly occurs even if the average porosity is 1 μm.
【0028】すなわち、隔離膜9は平均空孔率が40%
以上、80%以下であり、平均孔径が1μm以下である
微多孔性フィルム8からなるものであればよいが、より
好ましくは、平均空孔率が45%以上、70%以下であ
り、平均孔径が0.5μm以下である微多孔性フィルム
8からなるものであればハイレート充電に対しても良好
な特性が得られる。そして、上記した隔離膜9はその外
周縁部を正極6および負極5の外周縁部より外側に位置
するようにし、かつこの外側に位置する部分の部分空孔
率が30%以下、より好ましくは20%以下であれば、
電流が集中しやすい正極6や負極5の周縁部における内
部短絡が防止できるので、さらによいと言える。That is, the separator 9 has an average porosity of 40%.
As long as it is at least 80% and the microporous film 8 has an average pore size of 1 μm or less, it is more preferable that the average porosity is 45% or more and 70% or less. Made of a microporous film 8 having a particle size of 0.5 μm or less, good characteristics can be obtained even for high-rate charging. The above-mentioned isolation film 9 has its outer peripheral edge located outside the outer peripheral edges of the positive electrode 6 and the negative electrode 5, and has a partial porosity of 30% or less, more preferably a portion located outside the outer peripheral edge. If it is 20% or less,
This can be said to be even better because it is possible to prevent an internal short circuit at the peripheral portion of the positive electrode 6 or the negative electrode 5 where current tends to concentrate.
【0029】上記した本発明の実施例では、負極活物質
3として金属リチウムを使用し、正極活物質4としてコ
バルト酸リチウムを使用し、固体電解質層7と隔離膜9
にはジアクリレートポリエチレンオキシドとヘキサフル
オロ燐酸リチウムとのエチレンカーボネートの1モル溶
液を含浸したものを例として説明したが、これらに限定
されるものではなく、他の材料であってもよい。In the above embodiment of the present invention, lithium metal is used as the negative electrode active material 3, lithium cobalt oxide is used as the positive electrode active material 4, and the solid electrolyte layer 7 and the separator 9 are used.
Has been described as an example impregnated with a 1 molar solution of ethylene carbonate of diacrylate polyethylene oxide and lithium hexafluorophosphate. However, the present invention is not limited thereto, and other materials may be used.
【0030】[0030]
【発明の効果】上記した如く、請求項1記載の発明は隔
離膜は平均空孔率が40%以上、80%以下であり、平
均孔径が1μm以下である微多孔性フィルムからなり、
かつ空孔に固体電解質が充填されているから、充放電に
伴うリチウムの拡散を良好にすることができ、長期間の
使用に対してデンドライト状に析出したリチウムによる
内部短絡を防止することができ、請求項2記載の発明は
隔離膜の外周縁部を正極および負極の外周縁部より外側
に位置するようにし、かつこの外側に位置する部分の部
分空孔率が30%以下であるから、電流が集中しやすい
正極や負極の周縁部における内部短絡を確実に防止する
ことができるので、充放電サイクル特性の改善に寄与す
ることができ、その信頼性の向上に寄与することができ
る。As described above, according to the first aspect of the present invention, the separator comprises a microporous film having an average porosity of 40% or more and 80% or less and an average pore size of 1 μm or less,
In addition, since the solid electrolyte is filled in the vacancies, lithium diffusion accompanying charge / discharge can be improved, and an internal short circuit due to lithium deposited in a dendrite shape for a long-term use can be prevented. According to the second aspect of the present invention, the outer peripheral edge of the separator is located outside the outer peripheral edges of the positive electrode and the negative electrode, and the partial porosity of the portion located outside the outer edge is 30% or less. Since an internal short circuit at the periphery of the positive electrode or the negative electrode where current tends to concentrate can be reliably prevented, it is possible to contribute to the improvement of the charge / discharge cycle characteristics and the reliability thereof.
【図1】図1は本発明の実施例および比較例に係る固体
電解質型リチウム二次電池の断面図である。FIG. 1 is a sectional view of a solid electrolyte type lithium secondary battery according to an example of the present invention and a comparative example.
1 負極集電体 2 正極集電体 3 負極活物質 4 正極活物質 5 負極 6 正極 7 固体電解質層 8 微多孔性フィルム 9 隔離膜 REFERENCE SIGNS LIST 1 negative electrode current collector 2 positive electrode current collector 3 negative electrode active material 4 positive electrode active material 5 negative electrode 6 positive electrode 7 solid electrolyte layer 8 microporous film 9 separator
Claims (2)
なる固体電解質型リチウム二次電池において、前記隔離
膜は平均空孔率が40%以上、80%以下であり、平均
孔径が1μm以下である微多孔性フィルムからなり、か
つ空孔に固体電解質が充填されていることを特徴とする
固体電解質型リチウム二次電池。1. A solid electrolyte type lithium secondary battery in which a positive electrode and a negative electrode are disposed via a separator, wherein the separator has an average porosity of 40% or more and 80% or less, and an average pore size of 40% or less. A solid electrolyte type lithium secondary battery comprising a microporous film having a thickness of 1 μm or less and having pores filled with a solid electrolyte.
次電池において、隔離膜の外周縁部を正極および負極の
外周縁部より外側に位置するようにし、かつこの外側に
位置する部分の部分空孔率が30%以下であることを特
徴とする固体電解質型リチウム二次電池。2. The solid electrolyte type lithium secondary battery according to claim 1, wherein the outer peripheral portion of the separator is located outside the outer peripheral edges of the positive electrode and the negative electrode, and a portion of the outer peripheral portion is located outside the outer peripheral portions. A solid electrolyte type lithium secondary battery having a porosity of 30% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10058097A JPH11260405A (en) | 1998-03-10 | 1998-03-10 | Solid electrolyte-type lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10058097A JPH11260405A (en) | 1998-03-10 | 1998-03-10 | Solid electrolyte-type lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11260405A true JPH11260405A (en) | 1999-09-24 |
Family
ID=13074462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10058097A Pending JPH11260405A (en) | 1998-03-10 | 1998-03-10 | Solid electrolyte-type lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11260405A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003017393A1 (en) * | 2001-08-20 | 2003-02-27 | Sony Corporation | Cell |
JP2011243568A (en) * | 2010-04-22 | 2011-12-01 | Nof Corp | Nonaqueous electrolyte for electric device and secondary battery using the same |
JP2017525106A (en) * | 2014-07-15 | 2017-08-31 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | Separator with particles frictionally clamped |
CN113036170A (en) * | 2019-12-09 | 2021-06-25 | 中国科学院大连化学物理研究所 | Zinc-bromine battery |
CN114556650A (en) * | 2019-10-09 | 2022-05-27 | 本田技研工业株式会社 | Fluoride ion secondary battery |
-
1998
- 1998-03-10 JP JP10058097A patent/JPH11260405A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003017393A1 (en) * | 2001-08-20 | 2003-02-27 | Sony Corporation | Cell |
JP2011243568A (en) * | 2010-04-22 | 2011-12-01 | Nof Corp | Nonaqueous electrolyte for electric device and secondary battery using the same |
JP2017525106A (en) * | 2014-07-15 | 2017-08-31 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | Separator with particles frictionally clamped |
CN114556650A (en) * | 2019-10-09 | 2022-05-27 | 本田技研工业株式会社 | Fluoride ion secondary battery |
CN113036170A (en) * | 2019-12-09 | 2021-06-25 | 中国科学院大连化学物理研究所 | Zinc-bromine battery |
CN113036170B (en) * | 2019-12-09 | 2022-02-11 | 中国科学院大连化学物理研究所 | Zinc-bromine battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4038699B2 (en) | Lithium ion battery | |
EP2696391B1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
EP2696393B1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
US6558840B1 (en) | Electrode for use in a non-aqueous battery | |
TWI466365B (en) | An insulating layer with heat-resistant insulation | |
KR20180077190A (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
US9882189B2 (en) | Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
MXPA03000864A (en) | Particulate electrode including electrolyte for a rechargeable lithium battery. | |
EP2696394A1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
EP0842547A1 (en) | Low resistance rechargeable lithium-ion battery | |
KR20180077189A (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
EP2696392A1 (en) | Nonaqueous secondary battery separator and nonaqueous secondary battery | |
JP2005149891A (en) | Bipolar battery and packed battery using the same | |
US9847518B2 (en) | Separator with heat-resistant insulation layer | |
CN109167099B (en) | High-safety battery and preparation method thereof | |
JP4595302B2 (en) | Bipolar battery | |
CN113675401A (en) | Laminated lithium ion battery and negative pole piece thereof | |
JP2007280806A (en) | Electrode for battery | |
JP4590723B2 (en) | Winding electrode battery and method for manufacturing the same | |
JP2005129456A (en) | Gel electrolyte bipolar battery and its manufacturing method | |
JP2009199730A (en) | Non-aqueous electrolyte secondary battery | |
TWI791854B (en) | Separator for electrochemical device, manufacturing method thereof and electrochemical device comprising the same | |
CN114514654A (en) | Separator for electrochemical device, electrochemical device comprising same, and method for manufacturing same | |
JPH11260405A (en) | Solid electrolyte-type lithium secondary battery | |
JP2006032062A (en) | Electrode for secondary battery, and secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041110 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080416 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080806 |