JPH11260367A - Active material for secondary battery negative electrode and manufacture thereof - Google Patents

Active material for secondary battery negative electrode and manufacture thereof

Info

Publication number
JPH11260367A
JPH11260367A JP10062732A JP6273298A JPH11260367A JP H11260367 A JPH11260367 A JP H11260367A JP 10062732 A JP10062732 A JP 10062732A JP 6273298 A JP6273298 A JP 6273298A JP H11260367 A JPH11260367 A JP H11260367A
Authority
JP
Japan
Prior art keywords
secondary battery
active material
negative electrode
carbon
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10062732A
Other languages
Japanese (ja)
Inventor
Hajime Yasuda
源 安田
Masaji Ishihara
正司 石原
Toru Fuse
亨 布施
Tetsuo Nishiwaki
哲津夫 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10062732A priority Critical patent/JPH11260367A/en
Publication of JPH11260367A publication Critical patent/JPH11260367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To exhibit high capacity in a Li charging/discharging time by including carbon, sulfur, and at least one kind of element from among Ag, Zn, Cd, Al, Ga, In, Tl, Si, Ce, Sn, Pb, As, Sb, and Bi. SOLUTION: Carbon serves as a conductive pass to prevent metal or its sulfide from being isolated electrically, as a cushioning material to absorb expansion/shrinkage of the metal or its sulfide, and as a barrier to prevent the metal or its sulfide from being brought into direct contact with an electrolyte. For effective functioning of carbon as an expansion/shrinkage cushioning material, a metallic phase or a metal sulfide phase of a predetermined size is required. For the size, 1μm or more of the phase concentration is preferably one or less on the average in the observation (12×9 square μm) using electron microscope. A metallic element which forms a complex with carbon and sulfur, and forms alloy with Li and discharging Li at a lower potential is desirable as the element, and fourteen kinds of elements such as Ag are available.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池負極用活
物質及びその製造方法に関する。更に詳しくは、小型、
軽量の電気機器や電気自動車の電源として使用されるリ
チウム二次電池をはじめとする非水系二次電池に好適な
二次電池負極用活物質及びその製造方法に関する。
The present invention relates to an active material for a negative electrode of a secondary battery and a method for producing the same. More specifically, small,
The present invention relates to an active material for a negative electrode of a secondary battery suitable for a non-aqueous secondary battery such as a lithium secondary battery used as a power source of a lightweight electric device or an electric vehicle, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池の高容量化が望まれている。そのためニッケル
・カドミウム、ニッケル・水素電池に比べ、よりエネル
ギー密度の高いリチウムイオン二次電池が注目されてい
る。その負極材料としては、最初にリチウム金属あるは
その合金を用いることが試みられたが、充放電を繰り返
すうちにデンドライト状のリチウムが析出してセパレー
タを貫通して、正極にまで達し、短絡して発火事故を起
こす可能性があることが判明した。更に、高容量を発現
できる負極材料として、Al、Si、Snなどリチウム
のドープ、脱ドープが可能な金属を用いることが知られ
ているが、この材料は電極表面での電解液の分解や、充
放電サイクルに対する容量の低下が問題となってくる。
これらに変わる材料として、例えば特許2504940
号等に開示されているコークス系炭素が、現在実用に供
されている。しかし、二次電池の容量向上への要求は強
く、更に高容量の負極材とそれを用いた二次電池が求め
られている。
2. Description of the Related Art In recent years, high-capacity secondary batteries have been desired to have higher capacities as electronic devices have become smaller. Therefore, lithium-ion secondary batteries having higher energy density than nickel-cadmium and nickel-metal hydride batteries have been attracting attention. As the negative electrode material, it was first attempted to use lithium metal or an alloy thereof, but during repeated charging and discharging, lithium in the form of dendrite precipitated and penetrated the separator, reached the positive electrode, and was short-circuited. It was found that a fire accident could occur. Furthermore, as a negative electrode material capable of expressing a high capacity, it is known to use a metal that can be doped with lithium and undoped, such as Al, Si, and Sn. There is a problem of a decrease in capacity with respect to charge / discharge cycles.
As a material alternative to these, for example, Japanese Patent No.
The coke-based carbon disclosed in Japanese Patent Application Laid-Open Publication No. H10-19764 is currently in practical use. However, there is a strong demand for an increase in the capacity of a secondary battery, and a negative electrode material having a higher capacity and a secondary battery using the same are required.

【0003】[0003]

【発明が解決しようとしている課題】本発明の目的は、
リチウムの充放電を行った場合に従来のコークス系電極
材料よりも高容量を発現できる新規の負極材料、その簡
便な製造方法及び、該負極材料を用いた二次電池を提供
することにある。
SUMMARY OF THE INVENTION The object of the present invention is to
It is an object of the present invention to provide a novel negative electrode material capable of exhibiting a higher capacity than conventional coke-based electrode materials when lithium is charged and discharged, a simple production method thereof, and a secondary battery using the negative electrode material.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
解決のため鋭意検討した結果、炭素と硫黄と特定の元素
を含有する二次電池負極活物質を使用することで、二次
電池の高容量化を実現できることを発見し、本発明を完
成するに至った。即ち、本発明は、炭素及び硫黄と、A
g、Zn、Cd、Al、Ga、In、Tl、Si、C
e、Sn、Pb、As、Sb、Biから選ばれた少なく
とも一つの元素を含有することを特徴とする二次電池負
極用活物質に関する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, using a secondary battery negative electrode active material containing carbon, sulfur and a specific element, It has been found that the capacity can be increased, and the present invention has been completed. That is, the present invention relates to carbon and sulfur,
g, Zn, Cd, Al, Ga, In, Tl, Si, C
The present invention relates to a negative electrode active material for a secondary battery, comprising at least one element selected from the group consisting of e, Sn, Pb, As, Sb, and Bi.

【0005】[0005]

【発明の実施の形態】次に本発明の詳細を述べる。Li
等のアルカリ金属イオン正負極間を往復するいわゆるシ
ャトル型二次電池を例に考えると、本発明の活物質にお
ける高容量の発現は主に特定の金属あるいはその硫化
物、または硫黄に因る。即ち特定の金属とLi等が合金
金を作り、あるいは金属硫化物中にもLi等が吸蔵さ
れ、あるいは硫黄が直接Li等と相互作用を行いLi等
の吸蔵に寄与し、その結果、炭素よりも高い密度でLi
等を吸蔵する事ができる。ただし、特定の金属あるいは
硫化物のみでは、本発明の比較例2にも示される様に、
安定に作動する二次電池は得られない。これは主にLi
等の吸蔵放出に伴って生じる大きな体積変化と、金属あ
るいは硫化物表面で電解液が分解される事が原因であ
る。硫黄に至っては電化液に溶解し二次電池活物質とし
働かない。体積変化と電化液の分解、あるいは活物質自
身の分解から生じる諸問題を炭素との複合化、およびそ
の特定な構造により克服したのが本発明の骨子である。
Next, the details of the present invention will be described. Li
Considering the example of a so-called shuttle type secondary battery that reciprocates between the positive and negative electrodes of an alkali metal ion, the expression of high capacity in the active material of the present invention is mainly caused by a specific metal or its sulfide or sulfur. That is, a specific metal and Li or the like form alloy gold, or Li or the like is occluded in the metal sulfide, or sulfur directly interacts with Li or the like and contributes to the occlusion of Li or the like. With high density
Etc. can be stored. However, when only a specific metal or sulfide is used, as shown in Comparative Example 2 of the present invention,
A stable secondary battery cannot be obtained. This is mainly Li
This is due to the large volume change caused by the occlusion and release of the electrolyte and the decomposition of the electrolyte on the surface of the metal or sulfide. Sulfur dissolves in the electrolyte and does not work as a secondary battery active material. The gist of the present invention is that various problems arising from the change in volume and the decomposition of the electrolytic solution or the decomposition of the active material itself have been overcome by complexing with carbon and its specific structure.

【0006】即ち、炭素には以下の役割がある。金属
あるいは金属硫化物が電気的に孤立化する事を防ぐ導電
パスとしての役割、金属および金属硫化物の膨張収縮
を吸収するクッション材としての役割、金属あるいは
硫化物が電化液と直接接触する事を防ぐバリヤーの役割
である。当然ながら炭素自身も、Li等のアルカリ金
属を吸放出する能力を有すし複合活物質の容量に寄与す
る。
That is, carbon has the following roles. Role as a conductive path to prevent metal or metal sulfide from being electrically isolated, role as cushioning material to absorb expansion and contraction of metal and metal sulfide, and direct contact of metal or sulfide with electrified liquid It is the role of a barrier to prevent. Of course, carbon itself has the ability to absorb and release alkali metals such as Li and contributes to the capacity of the composite active material.

【0007】炭素を膨張収縮のクッション材として有効
に機能させるために特定の大きさの金属相あるいは金属
硫化物相が必要であり、その大きさは、電子顕微鏡を用
いた観察において、1μm以上のスケールで明らかな相
分離が確認できない程度、好ましく0.1μm以上のス
ケールで明らかな相分離が確認できない程度が良い。本
発明では、相分離を1μmの異相濃度で表現することと
する。即ち本発明における、1μm以上の異相濃度の決
定に当たっては、1万倍のSEM写真(12×9μm四
方)を10枚撮影し、1μm以上の炭素以外の異相の数
を数えた。但し、炭素以外の異相が画面端部にかかった
時は一つを数えた。
In order for carbon to function effectively as a cushion material for expansion and contraction, a metal phase or metal sulfide phase of a specific size is required, and the size of the phase is 1 μm or more when observed with an electron microscope. The degree to which no apparent phase separation can be confirmed on a scale, preferably the degree to which no apparent phase separation can be confirmed on a scale of 0.1 μm or more is preferred. In the present invention, the phase separation is represented by a heterogeneous phase concentration of 1 μm. That is, in determining the concentration of the hetero phase of 1 μm or more in the present invention, ten 10,000-fold SEM photographs (12 × 9 μm square) were taken, and the number of hetero phases other than carbon of 1 μm or more was counted. However, when a different phase other than carbon was applied to the edge of the screen, one was counted.

【0008】材料中の欠陥が小さいほど材料強度は高
く、本発明では金属粒子が小さいほど、炭素がより大き
な体積変化に耐えられると考えられる。即ち金属粒子径
の下限は重要ではない。また、炭素には、結晶が良く発
達した黒鉛からアモルファス状の炭素まで種々の形態が
知られているが、本発明の趣旨を逸脱しない限り炭素の
形態は特に限定されない。
The smaller the defects in the material, the higher the material strength. In the present invention, it is considered that the smaller the metal particles, the more the carbon can withstand a larger volume change. That is, the lower limit of the metal particle diameter is not important. Various forms of carbon are known, from graphite with well-developed crystals to amorphous carbon, but the form of carbon is not particularly limited without departing from the spirit of the present invention.

【0009】炭素及び硫黄と複合化する金属元素につい
て、容量向上の観点からはLiと合金を作る元素が望ま
しく、また、エネルギー密度の観点から、Liの酸化還
元電位に対して低い電位でLiを放出する元素が望まし
い。また、材料を合成する立場からは、硫化物を作りか
つ炭化物を作らない元素がよい。実用的観点では毒性が
少ない元素が望まれる。
Regarding the metal element to be complexed with carbon and sulfur, an element which forms an alloy with Li is desirable from the viewpoint of capacity improvement, and Li is produced at a potential lower than the oxidation-reduction potential of Li from the viewpoint of energy density. Emitting elements are desirable. From the standpoint of synthesizing the material, an element that forms sulfide and does not form carbide is preferable. From a practical viewpoint, an element having low toxicity is desired.

【0010】以上の事から、金属元素はAg、Zn、C
d、Al、Ga、In、Tl、Si、Ce、Sn、P
b、As、Sb、Biであるが、その中でもAg、Z
n、Cd、Al、Ga、In、Tl、Si、Sn、P
b、As、Sb、Biが好ましく、Ag、Zn、Al、
Ga、In、Tl、Si、Sn、Pb、Sb、Biが更
に好ましく、最も好ましいのはAg、Zn、Al、G
a、Si、Sn、Pb、Sb、Biである。
From the above, the metal elements are Ag, Zn, C
d, Al, Ga, In, Tl, Si, Ce, Sn, P
b, As, Sb, and Bi, among which Ag, Z
n, Cd, Al, Ga, In, Tl, Si, Sn, P
b, As, Sb, Bi are preferable, and Ag, Zn, Al,
Ga, In, Tl, Si, Sn, Pb, Sb, and Bi are more preferable, and Ag, Zn, Al, and G are most preferable.
a, Si, Sn, Pb, Sb, and Bi.

【0011】複合材中におけるこれら金属の割合は、好
ましくは1〜80重量%、更に好ましくは3〜70重量
%、最も好ましくは10〜60重量%である。有機金属
化合物あるいは有機金属ポリマーは、一般に炭素、水素
および金属元素等からなるが、酸素、窒素あるいはハロ
ゲンが含まれても、金属粒子の前駆体として働く限り特
にその組成および構造は限定される物ではない。3、
4、5、6、7員環を有する、あるいはこれらの中に金
属元素が取り込まれた構造の化合物も特に除外される物
ではない。有機金属化合物として有機物と錯体を形成し
た金属イオンを含む化合物でも良い。
The proportion of these metals in the composite is preferably from 1 to 80% by weight, more preferably from 3 to 70% by weight, most preferably from 10 to 60% by weight. Organometallic compounds or organometallic polymers are generally composed of carbon, hydrogen, metal elements, etc., but even if they contain oxygen, nitrogen or halogen, their composition and structure are particularly limited as long as they act as precursors for metal particles. is not. 3,
Compounds having a 4, 5, 6, or 7-membered ring, or having a structure in which a metal element is incorporated therein, are not particularly excluded. As the organometallic compound, a compound containing a metal ion which forms a complex with an organic substance may be used.

【0012】有機金属化合物あるいは有機金属ポリマー
について説明する。有機金属化合物を原料として用いる
事で、工業的に有利な炭素前駆体であるピッチと、直
接、あるいは溶媒等を介して分子レベルで混合する事が
できる。本発明で述べる小さな異相を炭素中に分散させ
るために、原料段階での分子レベルの混合は非常に重要
であり、本発明の製造法における最重要の項目である。
また、炭素と金属および硫黄との混合割合を制御するた
めにも、前駆体である有機金属化合物と、炭素の前駆体
であるピッチ等の混合物を用いる方法が有効である。た
だし、有機金属化合物や有機金属ポリマーはそれ自身の
分子において、原子レベルで炭素と特定の金属および硫
黄が混合されており、有機金属化合物や有機金属ポリマ
ーをただ単に焼成する方法によっても、本発明の活物質
を得る事ができる。当然ながら、炭素前駆体との混合物
を用いる用いない関わらず、複数の有機金属化合物ある
いは有機金属ポリマーを同時に使う事もできる。
The organic metal compound or the organic metal polymer will be described. By using an organometallic compound as a raw material, it can be mixed with pitch, which is an industrially advantageous carbon precursor, directly or at the molecular level via a solvent or the like. In order to disperse the small hetero phase described in the present invention in carbon, mixing at the molecular level at the raw material stage is very important and is the most important item in the production method of the present invention.
In order to control the mixing ratio of carbon, metal and sulfur, it is effective to use a mixture of an organometallic compound as a precursor and a pitch or the like as a carbon precursor. However, the organometallic compound or the organometallic polymer has a mixture of carbon, a specific metal and sulfur at the atomic level in its own molecule. Active material can be obtained. Naturally, a plurality of organometallic compounds or organometallic polymers can be used at the same time regardless of whether a mixture with a carbon precursor is used.

【0013】有機金属化合物として有機物と錯体を形成
した金属イオンを含む化合物でも良い。本発明の有機金
属化合物あるいは有機金属ポリマーは、一般に炭素、水
素、硫黄および金属からなるが、酸素、窒素あるいはハ
ロゲンが含まれても、金属の前駆体として働く限り特に
その組成および構造は限定される物ではない。3、4、
5、6、7員環を有する、あるいはこれらの中に金属元
素が取り込まれた構造の化合物も特に除外される物では
ない。有機金属化合物として有機物と錯体を形成した金
属イオンを含む化合物でも良い。好適な有機金属化合物
としては、下記一般式(1)で示される有機金属化合物
等が挙げられ、
The organic metal compound may be a compound containing a metal ion which forms a complex with an organic substance. The organometallic compound or the organometallic polymer of the present invention is generally composed of carbon, hydrogen, sulfur and a metal, but even if it contains oxygen, nitrogen or halogen, its composition and structure are particularly limited as long as it functions as a metal precursor. It is not a thing. 3, 4,
Compounds having a five-, six-, or seven-membered ring or having a structure in which a metal element is incorporated therein are not particularly excluded. As the organometallic compound, a compound containing a metal ion which forms a complex with an organic substance may be used. Suitable organometallic compounds include organometallic compounds represented by the following general formula (1),

【0014】[0014]

【化3】 Embedded image

【0015】(式中、MはAg、Zn、Cd、Al、G
a、In、Tl、Si、Ce、Sn、Pb、As、S
b、Biから選ばれる少なくとも一つの金属元素、
1、X2、X 3、X4は各々独立に、水素原子、(好まし
くは炭素数1から6の)分岐を有しても良いアルキル
基、(好ましくは環数が1〜3の)アリール基又はハロ
ゲン原子を示す) 更に好ましくは、下記一般式(2)で示される有機金属
化合物等が挙げられる。
(Where M is Ag, Zn, Cd, Al, G
a, In, Tl, Si, Ce, Sn, Pb, As, S
b, at least one metal element selected from Bi,
X1, XTwo, X Three, XFourAre each independently a hydrogen atom, (preferred
Or an optionally branched alkyl having 1 to 6 carbon atoms
Group, aryl group (preferably having 1 to 3 rings) or halo
More preferably, an organic metal represented by the following general formula (2)
And the like.

【0016】[0016]

【化4】 Embedded image

【0017】(式中、X1、X2、X3、X4は各々独立
に、水素原子、(好ましくは炭素数1から6の)分岐を
有しても良いアルキル基、(好ましくは環数が1〜3の
アリール基)又はハロゲン原子を示す) 工業的な観点からはX1、X2、X3、X4はC2からC4
のアルキル基あるいはフェニル基が良い。分子の大きさ
にも依るが比較的沸点が低い化合物では、大きな側鎖を
用いと焼成中の蒸発揮散が少なくなり収率が向上して良
い。また、有機金属化合物からの炭素の生成を多くした
い場合にはフェニル基等の芳香族残基が良い。
(Wherein X 1 , X 2 , X 3 and X 4 are each independently a hydrogen atom, an alkyl group (preferably having 1 to 6 carbon atoms) which may have a branch, preferably a ring X 1 , X 2 , X 3 , and X 4 are C2 to C4 from the industrial viewpoint.
And an alkyl group or a phenyl group. For a compound having a relatively low boiling point, depending on the size of the molecule, the use of a large side chain reduces transpiration during calcination and may improve the yield. Further, when it is desired to increase the generation of carbon from the organometallic compound, an aromatic residue such as a phenyl group is preferred.

【0018】有機金属ポリマーにおいて、金属元素は主
鎖にいても側鎖にいても良くその位置は特に限定される
ものではない。また、金属元素と硫黄を含む有機金属単
位と、金属を含まない有機単位との共重合体や、ブロッ
ク共重合体等、特定の金属元素を含むポリマーであれば
特にその構造は限定されるものではない。更には、複数
種の金属を同一分子中に含むポリマーあるいは化合物も
特に除外されるものではない。特に好ましいものとし
て、硫黄含有有機錫ポリマーが挙げられ、より具体的に
は、ポリ(ジブチル錫スルフィド)等のポリ(ジアルキ
ル錫スルフィド)が挙げられる。
In the organometallic polymer, the metal element may be in the main chain or in the side chain, and the position is not particularly limited. Further, the structure is particularly limited as long as it is a polymer containing a specific metal element, such as a copolymer of an organic metal unit containing a metal element and sulfur and an organic unit containing no metal, or a block copolymer. is not. Further, polymers or compounds containing a plurality of types of metals in the same molecule are not particularly excluded. Particularly preferred are sulfur-containing organotin polymers, and more specifically, poly (dialkyltin sulfide) such as poly (dibutyltin sulfide).

【0019】炭素前駆体とは熱処理により実質的に炭素
へ変化する有機物を意味し、特にピッチ類とは、液相で
炭素化が進行する軟ピッチから硬ピッチまでのコールタ
ールピッチや乾留液化油などの石炭系重質油や、常圧残
油、減圧残油等の直流系重質油、原油、ナフサなどの熱
分解時に副生するエチレンタール等分解系重質油等の石
油系重質油、或いは以上のものを炭素化が進む以下の温
度で蒸留、溶媒抽出等の手段を経て固化したものが挙げ
られる。更にアセナフチレン、デカシクレン、アントラ
センなどの芳香族炭化水素、フェナジンやアクリジンな
どの窒素含有環状化合物、チオフェンなどの硫黄含有環
状化合物、30MPa以上の加圧が必要となるがアダマ
ンタンなどの脂環があげられる。あるいは、炭素化に至
る過程で液相を経るビフェニルやテルフェニルなどのポ
リフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリ
ビニルブチラールなどのポリビニルエステル類、ポリビ
ニルアルコールが挙げられる。特に、還元雰囲気中での
熱処理により、電気化学的にリチウムイオンを吸蔵及び
放出する事ができる物質と、炭素質材料のより良い混
合、あるいはより良い接着を得る為に、熱可塑性樹脂と
してポリ塩化ビニルが望ましい。また、以上に列挙した
有機物、高分子に適量の燐酸、ホウ酸、塩酸などの酸
類、水酸化ナトリウム等のアルカリ類を添加したもので
もよい。また、熱硬化性樹脂とは、レゾール型あるいは
ノボラック型のフェノール樹脂やフラン樹脂等の加熱に
より固化する樹脂である。
The carbon precursor means an organic substance which is substantially changed into carbon by heat treatment. In particular, the pitches include coal tar pitches from soft pitches to hard pitches in which carbonization proceeds in a liquid phase, and dry distilled liquefied oils. Heavy oils such as coal-based heavy oils, direct-current heavy oils such as residual oil under normal pressure and reduced pressure, and heavy oils such as cracked heavy oils such as ethylene tar by-produced during thermal cracking of crude oil and naphtha Oils or those obtained by solidifying oil or the above through distillation, solvent extraction, or the like at a temperature below which carbonization proceeds. Further, aromatic hydrocarbons such as acenaphthylene, decacyclene, and anthracene; nitrogen-containing cyclic compounds such as phenazine and acridine; sulfur-containing cyclic compounds such as thiophene; and alicyclic rings such as adamantane, which require a pressure of 30 MPa or more, are required. Alternatively, polyphenylene such as biphenyl and terphenyl, which pass through a liquid phase in the process of carbonization, polyvinyl esters such as polyvinyl chloride, polyvinyl acetate and polyvinyl butyral, and polyvinyl alcohol may be mentioned. In particular, in order to obtain a better mixture of carbonaceous materials or a better adhesion between carbonaceous materials and a substance that can electrochemically occlude and release lithium ions by heat treatment in a reducing atmosphere, polychlorinated thermoplastic resins are used. Vinyl is preferred. Further, the organic substances and polymers listed above may be obtained by adding an appropriate amount of acids such as phosphoric acid, boric acid and hydrochloric acid and alkalis such as sodium hydroxide. The thermosetting resin is a resin that solidifies when heated, such as a resol-type or novolak-type phenol resin or a furan resin.

【0020】焼成は非酸化性雰囲気中で行うことが好ま
しい。焼成により有機金属化合物あるいは有機金属ポリ
マーから金属と炭素原子以外を追い出し、同時に炭素前
駆を炭素へ変化させる。ただし、炭素質材料の多孔性を
制御する為に適度な酸化性雰囲気とする事は可能であ
る。一般的にはアルゴンあるいは窒素雰囲気、あるいは
減圧が用いられる。焼成温度は500〜2000℃、よ
り好ましくは700〜1500℃が良い。温度が低すぎ
ると有機金属化合物あるいは有機金属ポリマーから金属
と炭素原子以外を追い出しと、炭素前駆の炭素への変換
が不十分となり好ましくない。逆に焼成温度が高すぎる
と、金属元素が蒸発により失われ適当でない。非酸化性
雰囲気中で焼成して得られた活物質は、必要に応じて解
砕、或いは粉砕する。
The firing is preferably performed in a non-oxidizing atmosphere. The calcination drives out other than the metal and carbon atoms from the organometallic compound or the organometallic polymer, and at the same time, converts the carbon precursor to carbon. However, it is possible to set an appropriate oxidizing atmosphere in order to control the porosity of the carbonaceous material. Generally, an argon or nitrogen atmosphere or reduced pressure is used. The firing temperature is preferably from 500 to 2000C, more preferably from 700 to 1500C. If the temperature is too low, excluding metals and carbon atoms from the organometallic compound or organometallic polymer results in insufficient conversion of carbon precursor to carbon, which is not preferable. Conversely, if the firing temperature is too high, the metal element is lost due to evaporation, which is not appropriate. The active material obtained by firing in a non-oxidizing atmosphere is crushed or crushed as necessary.

【0021】次に本発明の二次電池負極用活物質を用い
て電池の電極を作る方法について説明するが、その方法
は以下の記載により特に限定されるものではない。本発
明の二次電池負極用活物質に結着剤、溶媒等を加えて、
スラリー状とし、銅箔等の金属製の集電体の基板にスラ
リーを塗布・乾燥することで電極とする。また、該電極
材料をそのままロール成形、圧縮成形等の方法で電極の
形状に成形することもできる。本発明の活物質を電極と
する場合、一般に0.1から50μmの粒子として用い
る事ができる。
Next, a method for producing a battery electrode using the secondary battery negative electrode active material of the present invention will be described, but the method is not particularly limited by the following description. A binder, a solvent, and the like are added to the secondary battery negative electrode active material of the present invention,
The slurry is applied to a metal current collector substrate such as a copper foil, and the slurry is applied and dried to form an electrode. Further, the electrode material can be directly formed into an electrode shape by a method such as roll molding or compression molding. When the active material of the present invention is used as an electrode, it can be generally used as particles of 0.1 to 50 μm.

【0022】上記の目的で使用できる結着剤としては、
溶媒に対して安定な、ポリエチレン、ポリプロピレン、
ポリエチレンテレフタレート、芳香族ポリアミド、セル
ロース等の樹脂系高分子、スチレン・ブタジエンゴム、
イソプレンゴム、ブタジエンゴム、エチレン・プロピレ
ンゴム等のゴム状高分子、スチレン・ブタジエン・スチ
レンブロック共重合体、その水素添加物、スチレン・エ
チレン・ブタジエン・スチレン共重合体、スチレン・イ
ソプレン・スチレンブロック共重合体、その水素添加物
等の熱可塑性エラストマー状高分子、シンジオタクチッ
ク1,2−ポリブタジエン、エチレン・酢酸ビニル共重
合体、プロピレン・α−オレフィン(炭素数2〜12)
共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、ポリテトラフルオロ
エチレン・エチレン共重合体等のフッ素系高分子、アル
カリ金属イオン、特にリチウムイオンのイオン伝導性を
有する高分子組成物が挙げられる。
Examples of the binder that can be used for the above purpose include:
Solvent-stable, polyethylene, polypropylene,
Polyethylene terephthalate, aromatic polyamide, resin-based polymers such as cellulose, styrene-butadiene rubber,
Rubber-like polymers such as isoprene rubber, butadiene rubber, and ethylene / propylene rubber, styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers Polymers, thermoplastic elastomeric polymers such as hydrogenated products thereof, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (2 to 12 carbon atoms)
Soft resinous polymers such as copolymers, fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene / ethylene copolymers, and alkali metal ions, particularly lithium ions Molecular compositions.

【0023】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物、ポリエーテル化合物の
架橋体高分子、ポリエピクロルヒドリン、ポリフォスフ
ァゼン、ポリシロキサン、ポリビニルピロリドン、ポリ
ビニリデンカーボネート、ポリアクリロニトリル等の高
分子化合物に、リチウム塩、またはリチウムを主体とす
るアルカリ金属塩を複合させた系、あるいはこれにプロ
ピレンカーボネート、エチレンカーボネート、γ−ブチ
ロラクトン等の高い誘電率を有する有機化合物を配合し
た系を用いることができる。
Examples of the polymers having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and the like. Polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is compounded, or propylene carbonate, ethylene carbonate, having a high dielectric constant such as γ-butyrolactone A system containing an organic compound can be used.

【0024】活物質と上記の結着剤との混合形式として
は、各種の形態をとることができる。即ち、両者の粒子
が混合した形態、繊維状の結着剤が電極粒子に絡み合う
形で混合した形態、または結着剤の層が粒子表面に付着
した形態などが挙げられる。電極粉体と上記結着剤との
混合割合は、活物質に対し、好ましくは0.1〜30重
量%、より好ましくは、0.5〜10重量%である。こ
れ以上の量の結着剤を添加すると、電極の内部抵抗が大
きくなり、好ましくなく、これ以下の量では集電体と活
物質の結着性に劣る。
The mixing form of the active material and the binder can take various forms. That is, a form in which both particles are mixed, a form in which a fibrous binder is mixed in such a manner as to be entangled with the electrode particles, and a form in which a layer of the binder is attached to the particle surface are exemplified. The mixing ratio of the electrode powder and the binder is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight, based on the active material. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable. If the amount is smaller than this, the binding property between the current collector and the active material is poor.

【0025】以下に、本発明の活物質を負極活物質とし
て用いた場合の、非水系二次電池の構成を詳細に述べる
が、本発明はその要旨を越えない限り以下によって限定
されるものではない。本発明の二次電池としては、上記
負極材に、任意の正極材、電解液、セパレータを組み合
わせて製造することができる。
Hereinafter, the structure of a non-aqueous secondary battery when the active material of the present invention is used as a negative electrode active material will be described in detail. However, the present invention is not limited to the following without departing from the gist thereof. Absent. The secondary battery of the present invention can be manufactured by combining the above-mentioned negative electrode material with any positive electrode material, electrolytic solution and separator.

【0026】正極材としては、従来から知られているい
ずれも使用でき、特に限定されるものではない。具体的
には、LiFeO2、LiCoO2、LiNiO2、Li
Mn24およびこれらの非定比化合物、MnO2、Ti
2、FeS2、Nb34、Mo 34、CoS2、V
25、P25、CrO3、V33、TeO2、 GeO2
等を用いることができる。
As a positive electrode material, conventionally known
A shift can also be used and is not particularly limited. concrete
Has LiFeOTwo, LiCoOTwo, LiNiOTwo, Li
MnTwoOFourAnd their non-stoichiometric compounds, MnOTwo, Ti
STwo, FeSTwo, NbThreeSFour, Mo ThreeSFour, CoSTwo, V
TwoOFive, PTwoOFive, CrOThree, VThreeOThree, TeOTwo, GeOTwo
Etc. can be used.

【0027】電解液は、有機溶剤に電解質を溶解したも
のであれば、特に限定されるものではなく、従来から知
られているいずれも使用できる。有機溶剤としては、プ
ロピレンカーボネート、エチレンカーボネート、γーブ
チルラクトン等のエステル類や、ジエチルエーテル、テ
トラヒドロフラン、置換テトラヒドロフラン、ジオキソ
ラン、ピランおよびその誘導体、ジメトキシエタン、ジ
エトキシエタン等のエーテル類や、3−メチル−2−オ
キサゾリジノン等の3置換−2−オキサゾリジノン類
や、スルホラン、メチルスホラン、アセトニトリル、プ
ロピオニトル等が挙げられ、これらを単独もしくは2種
類以上混合して使用される。また、電解質としては、過
塩素酸リチウム、ホウフッ化リチウム、燐フッ化リチウ
ム、塩化アルミン酸リチウム、ハロゲン化リチウム、ト
リフルオロメタンスルホン酸リチウム等が使用できる。
The electrolyte is not particularly limited as long as the electrolyte is dissolved in an organic solvent, and any conventionally known electrolyte can be used. As the organic solvent, propylene carbonate, ethylene carbonate, esters such as γ-butyl lactone, diethyl ether, tetrahydrofuran, substituted tetrahydrofuran, dioxolan, pyran and derivatives thereof, dimethoxyethane, ethers such as diethoxyethane, and 3-methyl- Examples include 3-substituted-2-oxazolidinones such as 2-oxazolidinone, sulfolane, methylsphorane, acetonitrile, propionitr and the like, and these are used alone or as a mixture of two or more. Further, as the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium aluminate, lithium halide, lithium trifluoromethanesulfonate, or the like can be used.

【0028】電解液を保持するセパレーターは、一般的
に保液性に優れた材料であり、例えば、ポリオレフィン
系樹脂の不織布や多孔性フィルムなどを使用して、上記
電解液を含浸させる。電池の構成としては、帯状の正極
と負極をセパレータを介して渦巻き状にした構造や、正
極と負極をセパレータを介して積層した構造等が採用さ
れる。
The separator holding the electrolyte is generally a material having excellent liquid retention properties. For example, the separator is impregnated with a non-woven fabric or a porous film of a polyolefin resin. As the configuration of the battery, a structure in which a belt-like positive electrode and a negative electrode are spirally formed with a separator interposed therebetween, a structure in which the positive electrode and the negative electrode are stacked with a separator interposed therebetween, and the like are employed.

【0029】[0029]

【実施例】本発明を実施例を用いて更に詳細に説明する
が、本発明はこれらの例によって何ら限定されるもので
はない。炭素前駆体としては軟化点98℃、トルエン不
溶分40%、キノリン不溶分0%のコールタールピッチ
を用いた。焼成はAr気流中で行い、昇温速度は1.6
5℃/分として、1000℃で2時間保した。得られた
焼成物を平均粒径20μm以下に粉砕して試料とした。
得られた金属・炭素複合材料に含まれる金属の量はPe
rkin Elmer 2400 CHN計で測定され
たC、H、Nからの残差として求めた。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. As the carbon precursor, a coal tar pitch having a softening point of 98 ° C., a toluene insoluble content of 40%, and a quinoline insoluble content of 0% was used. The calcination is performed in an Ar gas stream, and the heating rate is 1.6.
The temperature was kept at 1000 ° C. for 2 hours at 5 ° C./min. The obtained fired product was pulverized to an average particle size of 20 μm or less to obtain a sample.
The amount of metal contained in the obtained metal-carbon composite material is Pe
It was determined as a residual from C, H, and N measured with an rkin Elmer 2400 CHN meter.

【0030】複合材料中の金属微粒子の粒径の測定と構
造の観察は、走査型電子顕微鏡(SEM)で以下のごと
くおこなつた。各試料とも銅極板上に塗布され圧延され
ているが、各々銅極板ごと約1mm幅の短冊状に切り取
りエポキシ樹脂を加え真空脱泡させつつ含浸させたの
ち、室温で5時間硬化し、さらに80℃で8時間硬化さ
せ構造を固定した。ここで用いたエポキシ樹脂の配合は
(a)住友化学(株)社製p−アミノフェノール型三官
能エポキシ(商品名ELM100)、(b)四国化成
(株)社製1−ベンジル−2−メチルイミダゾール(略
号1B2MZ)、(c)試薬イソホロンジアミン(略号
IPD)を各々重量組成(a):(b):(c)=10
0:1:40にて混合したものである。
The measurement of the particle diameter of the metal fine particles in the composite material and the observation of the structure were performed by a scanning electron microscope (SEM) as follows. Each sample was coated and rolled on a copper electrode plate. Each copper electrode plate was cut into strips of about 1 mm width, epoxy resin was added and impregnated while vacuum degassing was performed, followed by curing at room temperature for 5 hours. Further, the structure was cured at 80 ° C. for 8 hours to fix the structure. The epoxy resin used here was compounded by (a) p-aminophenol type trifunctional epoxy (trade name: ELM100) manufactured by Sumitomo Chemical Co., Ltd., and (b) 1-benzyl-2-methyl manufactured by Shikoku Chemicals Co., Ltd. Imidazole (abbreviation 1B2MZ) and (c) reagent isophoronediamine (abbreviation IPD) were each composed by weight composition (a) :( b) :( c) = 10
The mixture was mixed at 0: 1: 40.

【0031】上記のごとくして得られた硬化物中の試料
断面を各種刃物で切り出し、さらにウルトラミクロトー
ム装置を用い市販のダイヤモンドナイフで透過型電子顕
微鏡観察に供する超薄切片を試料断面より採取した。同
時に超薄切片を採取し終わった残りの試料の切削面を走
査型電子顕微鏡観察に供した。走査型電子顕微鏡観察に
おいてはチャージアップ防止のためにカーボン真空蒸着
装置にて約100Åの蒸着膜を試料に付与し、フィール
ドエミッションタイプの装置(日本電子(株)社製JS
M−6300F)に導入し加速電圧を5kVに設定して
観察した。粒径計測は反射電子像観察をおこないSn含
有粒子を確認したのち、同一視野で二次電子像写真を
得、反射電子像で確認した粒子について二次電子像写真
から計測することによりおこなつた。
A cross section of the sample in the cured product obtained as described above was cut out with various blades, and an ultra-thin section to be subjected to transmission electron microscope observation with a commercially available diamond knife using an ultramicrotome apparatus was sampled from the cross section of the sample. . At the same time, the cut surfaces of the remaining samples from which the ultrathin sections had been collected were subjected to scanning electron microscope observation. In scanning electron microscope observation, a vapor deposition film of about 100 ° was applied to the sample by a carbon vacuum vapor deposition device to prevent charge-up, and a field emission type device (JS manufactured by JEOL Ltd.) was used.
M-6300F) and the observation was performed with the acceleration voltage set to 5 kV. The particle size was measured by observing the reflected electron image and confirming the Sn-containing particles, obtaining a secondary electron image photograph in the same field of view, and measuring the particles confirmed by the reflected electron image from the secondary electron image photograph. .

【0032】1μm以上の異相濃度の決定に当たって
は、1万倍のSEM写真(12×9μm四方)を10枚
撮影し、1μm以上の炭素以外の異相の数を数えた。炭
素以外の異相が画面端部にかかった時は一つを数えた。
走査型電子顕微鏡観察においてはチャージアップ防止の
ためにカーボン真空蒸着装置にて約100Åの蒸着膜を
試料に付与し、フィールドエミッションタイプの装置
(日本電子(株)社製JSM−6300F)に導入し加
速電圧を5kVに設定して観察した。粒径計測は反射電
子像観察をおこないSn含有粒子を確認したのち、同一
視野で二次電子像写真を得、反射電子像で確認した粒子
について二次電子像写真から計測することによりおこな
つた。
In determining the concentration of the heterophase of 1 μm or more, ten 10,000-fold SEM photographs (12 × 9 μm square) were taken, and the number of heterophases other than carbon of 1 μm or more was counted. When a different phase other than carbon hit the edge of the screen, one was counted.
In scanning electron microscope observation, a vapor deposition film of about 100 ° was applied to the sample using a carbon vacuum vapor deposition device to prevent charge-up, and the sample was introduced into a field emission type device (JSM-6300F manufactured by JEOL Ltd.). The observation was performed with the acceleration voltage set to 5 kV. The particle size was measured by observing the reflected electron image and confirming the Sn-containing particles, obtaining a secondary electron image photograph in the same field of view, and measuring the particles confirmed by the reflected electron image from the secondary electron image photograph. .

【0033】透過型電子顕微鏡観察は走査型電子顕微鏡
にて分解能が不足し、確認できない程度の粒径の小さい
粒子について粒径を決定するためにおこなつた。装置は
日本電子(株)社製JEM−2010を用いた。加速電
圧を200kVに設定し、前記超薄切片を装置に導入
し、倍率1万から50万倍にて観察した。粒径計測は微
粒子の高倍率像を観察し格子縞が観察されることで結晶
物体であることを確認し、その粒子を倍率およそ20万
倍で写真撮影し、引き伸ばした写真から計測した。かか
る方法によって計測した微粒子は結晶であることのみが
Sn含有粒子である証拠となるが、炭素質成分がエック
ス線回折測定の結果より非晶質であることが既知である
ため、および/または、仕込み組成から他の結晶質成分
の存在可能性が無いこと、および/または、化学的手法
による分析からSnを含まない結晶性の不純物の存在が
認められないことを考慮すれば、かかる結晶粒子をSn
含有粒子とみなし粒径計測をおこなう手法は本特許の目
的とする粒子径の測定法として的確性を損なうものでは
ない。
Observation with a transmission electron microscope was carried out to determine the particle size of particles having a small particle size that could not be confirmed because the resolution was insufficient with a scanning electron microscope. The device used was JEM-2010 manufactured by JEOL Ltd. The acceleration voltage was set to 200 kV, the ultrathin section was introduced into the apparatus, and observed at a magnification of 10,000 to 500,000. The particle size was measured by observing a high-magnification image of the fine particles and observing lattice fringes to confirm that it was a crystalline object. The particles were photographed at a magnification of about 200,000, and measured from an enlarged photograph. The fine particles measured by such a method are evidence that they are only Sn-containing particles as crystals, but since the carbonaceous component is known to be amorphous based on the result of X-ray diffraction measurement, and / or Considering that there is no possibility of the presence of other crystalline components from the composition and / or that the presence of crystalline impurities containing no Sn is not recognized by analysis by a chemical method, such crystal grains are converted into Sn particles.
The method of measuring the particle size assuming that the particles are contained does not impair the accuracy of the method for measuring the particle size as the object of the present invention.

【0034】生成物の同定はX−ray回折法により以
下の様に行った。日本電子製X線回折装置(JDX−3
500)を用いて、ターゲット:Cu(Kα線)グラフ
ァイトモノクロメーター使用、出力:40kV 200
mA、ステップスキャン:ステップ角 0.02°、計
数時間:1sec、発散スリット(DS):1/2°、
受光スリット(RD):0.2mm、散乱スリット(S
S):1/2°、測定範囲:3°≦2θ≦90°、試料
板:0.2mm厚ガラス試料板、の条件で行った。
The product was identified by the X-ray diffraction method as follows. JEOL X-ray diffractometer (JDX-3
500), using a target: Cu (Kα ray) graphite monochromator, output: 40 kV 200
mA, step scan: step angle 0.02 °, counting time: 1 sec, divergence slit (DS): 1/2 °,
Receiving slit (RD): 0.2 mm, scattering slit (S
S): 1/2 °, measurement range: 3 ° ≦ 2θ ≦ 90 °, sample plate: 0.2 mm thick glass sample plate.

【0035】非水系二次電池の負極材としての評価は、
対極をLiとしたハーフセルを用いて2極式で行った。
非水系電解液として、エチレンカーボネイト(EC)と
ディエチルカーボネイト(DEC)の1:1溶液に過塩
素酸リチウムを1mol/L溶解した液を用いた。評価
電極は45μm以下に粉砕された試料を10wt%のP
VDFで銅箔に塗布して作成した。Liをドープする充
電電流密度は0.16mA/cm2 ,Liを脱ドープす
る放電電流密度は0.32mA/cm2 とした。脱ドー
プはLiの酸化還元電位に対して+1.5Vまで行っ
た。
The evaluation of a non-aqueous secondary battery as a negative electrode material is as follows.
The measurement was performed by a bipolar method using a half cell in which the counter electrode was Li.
As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / L of lithium perchlorate in a 1: 1 solution of ethylene carbonate (EC) and diethyl carbonate (DEC) was used. For the evaluation electrode, a sample pulverized to 45 μm or less was
It was prepared by applying it to a copper foil with VDF. The charge current density for doping Li was 0.16 mA / cm 2 , and the discharge current density for dedoping Li was 0.32 mA / cm 2 . Dedoping was performed up to +1.5 V with respect to the oxidation-reduction potential of Li.

【0036】(実施例1)GPCによるスチレン換算分
子量が570であるジ(ジ−n−ブチル錫スルフィド)
(アズマックス社製)を用いた。前述のピッチ5gを6
0℃でテトラハイドロフラン(THF)60mlに溶か
した溶液に、該有機錫化合物1.96gを加えて室温で
12時間撹拌後、THFを減圧蒸留で除去し有機錫化合
物と炭素前駆体の混合物を得た。該混合物を管状電気炉
を用いてAr気流中で焼成した。表1に初回Liの脱ド
ープ過程で決定した放電容量と、金属元素濃度と1μm
以上の異相濃度、X−ray回折で決定した化合物名を
示した。
Example 1 Di (di-n-butyltin sulfide) having a molecular weight in terms of styrene of 570 determined by GPC
(Manufactured by Asmax Corporation) was used. The above pitch 5g is converted to 6
1.96 g of the organotin compound was added to a solution of the organotin compound in 60 ml of tetrahydrofuran (THF) at 0 ° C., and the mixture was stirred at room temperature for 12 hours. THF was removed by distillation under reduced pressure to remove the mixture of the organotin compound and the carbon precursor. Obtained. The mixture was fired in a stream of Ar using a tubular electric furnace. Table 1 shows the discharge capacity determined during the first Li de-doping process, the metal element concentration, and 1 μm.
The names of the compounds determined by the above heterophasic concentration and X-ray diffraction are shown.

【0037】(実施例2) 実施例2と同じ有機錫ポリ
マーを用い、前述のピッチ3gを60℃でTHF40m
lに溶かした溶液に、該有機錫化合物4.00gを加え
て室温で12時間撹拌後、THFを減圧蒸留で除去し有
機錫化合物と炭素前駆体の混合物を得た。該混合物を管
状電気炉を用いてAr気流中で焼成した。表1に初回L
iの脱ドープ過程で決定した放電容量と、金属元素濃度
と1μm以上の異相濃度、X−ray回折で決定した化
合物名を示した。
Example 2 Using the same organotin polymer as in Example 2, the above-mentioned pitch of 3 g was added at 60 ° C. in THF of 40 m.
Then, 4.00 g of the organotin compound was added to the solution dissolved in 1 and the mixture was stirred at room temperature for 12 hours, and then THF was removed by distillation under reduced pressure to obtain a mixture of the organotin compound and a carbon precursor. The mixture was fired in a stream of Ar using a tubular electric furnace. Table 1 shows the first L
The discharge capacity determined in the dedoping process of i, the concentration of the metal element, the concentration of the hetero phase of 1 μm or more, and the compound name determined by X-ray diffraction are shown.

【0038】(比較例1) 炭素前駆体として用いたピ
ッチを、単独で前述の方法で1000℃で焼成して得
た。表1に初回Liの脱ドープ過程で決定した放電容量
を示した。
Comparative Example 1 A pitch used as a carbon precursor was obtained by sintering at 1000 ° C. by the above method alone. Table 1 shows the discharge capacity determined in the first Li de-doping process.

【0039】(比較例2) Aldrich社より購入
の粒径20μmの錫粒子をそのまま活物質として用い
た。非水系二次電池の負極材としての評価では、初回の
Liのドープ過程で電位が変動し安定した結果が得られ
なかった。900mAh/g以上に相当する充電電流は
流れるものの放電はされなかった。
Comparative Example 2 Tin particles having a particle size of 20 μm purchased from Aldrich were used directly as an active material. In the evaluation as a negative electrode material of a non-aqueous secondary battery, the potential fluctuated during the first Li doping process, and a stable result was not obtained. A charging current corresponding to 900 mAh / g or more flowed, but was not discharged.

【0040】(比較例3)Aldrich社から購入の
75μmの錫粒子と、平均粒径を約20μmとした比較
例1記載の炭素を重量比で5:5に混合して活物質とし
た。混合はV型ブレンダーを使用し、8時間混合した。
450mAh/g以上に相当する充電電流は流れるもの
の放電はされなかった。実施例1と2において、錫とL
iが合金を作ったとして錫の容量を900mAh/gと
仮定して、放電容量から計算される錫の濃度は、それぞ
れ19.8,26.0wt%であり、測定された錫濃度
より高い。このことは、Liの吸蔵と放出に錫金属およ
び炭素以外に、錫硫化物あるいは硫黄が関与した事を示
す。ただし、炭素の容量は比較例1の値を用いた。
Comparative Example 3 An active material was prepared by mixing tin particles of 75 μm purchased from Aldrich and carbon described in Comparative Example 1 having an average particle diameter of about 20 μm in a weight ratio of 5: 5. Mixing was performed for 8 hours using a V-type blender.
The charging current corresponding to 450 mAh / g or more flowed, but was not discharged. In Examples 1 and 2, tin and L
Assuming that i made the alloy and the capacity of tin was 900 mAh / g, the tin concentration calculated from the discharge capacity was 19.8 and 26.0 wt%, respectively, which was higher than the measured tin concentration. This indicates that in addition to tin metal and carbon, tin sulfide or sulfur was involved in the occlusion and release of Li. However, the value of Comparative Example 1 was used for the capacity of carbon.

【0041】[0041]

【表1】 表1 放電容量 Sn濃度 異相濃度 化合物 mAh/g wt% 個 X線回折 実施例1 346 11 0.7 C、Sn、SnS 実施例2 389 23 0.2 C、Sn、SnS 比較例1 209 0 C 比較例2 0 100 Sn 比較例3 0 50 C、SnTable 1 Discharge capacity Sn concentration Heterophase concentration Compound mAh / g wt% X-ray diffraction Example 1 346 11 0.7 C, Sn, SnS Example 2 389 23 0.2 C, Sn, SnS Comparative example 1 209 0 C Comparative Example 2 0 100 Sn Comparative Example 3 0 50 C, Sn

【0042】[0042]

【発明の効果】本発明により、従来のコークス系電極材
料よりも高容量を発現できる負極材料を得ることが可能
となった。
According to the present invention, it has become possible to obtain a negative electrode material capable of exhibiting a higher capacity than conventional coke-based electrode materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西脇 哲津夫 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsutsu Nishiwaki 3-1, Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 炭素及び硫黄と、Ag、Zn、Cd、A
l、Ga、In、Tl、Si、Ce、Sn、Pb、A
s、Sb、Biから選ばれた少なくとも一つの元素を含
有することを特徴とする二次電池負極用活物質。
1. Carbon and sulfur, Ag, Zn, Cd, A
1, Ga, In, Tl, Si, Ce, Sn, Pb, A
An active material for a negative electrode of a secondary battery, comprising at least one element selected from s, Sb, and Bi.
【請求項2】 電子顕微鏡を用いた観察(12×9μm
四方)において、Ag、Zn、Cd、Al、Ga、I
n、Tl、Si、Ce、Sn、Pb、As、Sb、Bi
から選ばれた少なくとも一つの元素の1μm以上の異相
濃度が平均1個以下であることを特徴とする請求項1記
載の二次電池負極用活物質
2. Observation using an electron microscope (12 × 9 μm
Ag), Zn, Cd, Al, Ga, I
n, Tl, Si, Ce, Sn, Pb, As, Sb, Bi
2. The active material for a negative electrode of a secondary battery according to claim 1, wherein the concentration of at least one element selected from the group consisting of at least 1 μm in different phases is 1 or less on average.
【請求項3】 請求項1あるいは2記載の二次電池負極
用活物質を用いたことを特徴とする非水系二次電池。
3. A non-aqueous secondary battery comprising the active material for a negative electrode of a secondary battery according to claim 1.
【請求項4】 少なくとも炭素及び硫黄とAg、Zn、
Cd、Al、Ga、In、Tl、Si、Ce、Sn、P
b、As、Sb、Biから選ばれた少なくとも一つの元
素を含有する有機金属化合物を、焼成することを特徴と
する請求項1あるいは2記載の二次電池負極用活物質の
製造方法。
4. At least carbon and sulfur and Ag, Zn,
Cd, Al, Ga, In, Tl, Si, Ce, Sn, P
3. The method for producing a negative electrode active material for a secondary battery according to claim 1, wherein an organometallic compound containing at least one element selected from b, As, Sb, and Bi is calcined.
【請求項5】 焼成時に、炭素前駆体を添加することを
特徴とする請求項4記載の二次電池負極用活物質の製造
方法。
5. The method for producing a negative electrode active material for a secondary battery according to claim 4, wherein a carbon precursor is added during firing.
【請求項6】 炭素前駆体が、ピッチ類あるいは熱硬化
性樹脂であることを特徴とする請求項5記載の二次電池
負極用活物質の製造方法。
6. The method for producing a negative electrode active material for a secondary battery according to claim 5, wherein the carbon precursor is a pitch or a thermosetting resin.
【請求項7】 有機金属化合物が、下記一般式(1)で
示される有機金属化合物であることを特徴とする請求項
4記載の二次電池負極用活物質の製造方法。 【化1】 (式中、MはAg、Zn、Cd、Al、Ga、In、T
l、Si、Ce、Sn、Pb、As、Sb、Biから選
ばれる少なくとも一つの金属元素、X1、X2、X 3、X4
は各々独立に、水素原子、分岐を有しても良いアルキル
基、アリール基又はハロゲン原子を示す)
7. An organic metal compound represented by the following general formula (1):
It is an organometallic compound shown, Claims characterized by the above-mentioned.
5. The method for producing a negative electrode active material for a secondary battery according to 4. Embedded image(Where M is Ag, Zn, Cd, Al, Ga, In, T
1, Si, Ce, Sn, Pb, As, Sb, Bi
At least one metal element, X1, XTwo, X Three, XFour
Are each independently a hydrogen atom or an optionally branched alkyl
Group, aryl group or halogen atom)
【請求項8】 有機金属化合物が、少なくとも主鎖に、
Ag、Zn、Cd、Al、Ga、In、Tl、Si、C
e、Sn、Pb、As、Sb、Biから選ばれた少なく
とも一つの元素と、硫黄元素を含有する有機金属ポリマ
ーを用いることを特徴とする請求項4記載の製造方法。
8. An organometallic compound having at least a main chain,
Ag, Zn, Cd, Al, Ga, In, Tl, Si, C
The method according to claim 4, wherein an organometallic polymer containing at least one element selected from the group consisting of e, Sn, Pb, As, Sb, and Bi and a sulfur element is used.
【請求項9】 有機金属化合物が、下記一般式(2)で
示される有機金属化合物であることを特徴とする請求項
4記載の二次電池負極用活物質の製造方法。 【化2】 (式中、X1、X2、X3、X4は各々独立に、水素原子、
分岐を有しても良いアルキル基、アリール基又はハロゲ
ン原子を示す)
9. The method for producing a negative electrode active material for a secondary battery according to claim 4, wherein the organometallic compound is an organometallic compound represented by the following general formula (2). Embedded image (Wherein X 1 , X 2 , X 3 and X 4 are each independently a hydrogen atom,
Represents an alkyl group, an aryl group or a halogen atom which may have a branch)
【請求項10】 一般式(2)におけるMがSnである
ことを特徴とする請求項9記載の二次電池負極用活物質
の製造方法。
10. The method for producing a negative electrode active material for a secondary battery according to claim 9, wherein M in the general formula (2) is Sn.
【請求項11】 硫黄元素を含有する有機金属ポリマー
が、有機錫ポリマーであることを特徴とする請求項8記
載の製造方法。
11. The method according to claim 8, wherein the organometallic polymer containing a sulfur element is an organotin polymer.
【請求項12】 有機錫ポリマーが、ポリ(ジアルキル
錫スルフィド)であることを特徴とする請求項11記載
の製造方法。
12. The method according to claim 11, wherein the organotin polymer is poly (dialkyltin sulfide).
JP10062732A 1998-03-13 1998-03-13 Active material for secondary battery negative electrode and manufacture thereof Pending JPH11260367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10062732A JPH11260367A (en) 1998-03-13 1998-03-13 Active material for secondary battery negative electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10062732A JPH11260367A (en) 1998-03-13 1998-03-13 Active material for secondary battery negative electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11260367A true JPH11260367A (en) 1999-09-24

Family

ID=13208851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10062732A Pending JPH11260367A (en) 1998-03-13 1998-03-13 Active material for secondary battery negative electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11260367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184263A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Carbonaceous electrode material for secondary battery, its manufacturing method and secondary battery
JP2009231113A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2011228289A (en) * 2010-03-27 2011-11-10 Osaka Municipa Technical Research Institute Electrode material for secondary battery and secondary battery using the same
WO2014167906A1 (en) * 2013-04-10 2014-10-16 独立行政法人産業技術総合研究所 Lithium secondary battery negative electrode active material and method for manufacturing same
CN114031108A (en) * 2021-11-02 2022-02-11 远景动力技术(江苏)有限公司 Composite sulfide and preparation method and application thereof
CN114203965A (en) * 2021-12-07 2022-03-18 远景动力技术(江苏)有限公司 Electrochemical device and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279112A (en) * 1993-03-23 1994-10-04 Mitsubishi Petrochem Co Ltd Electrode material
JPH08231273A (en) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd Production of carbide and negative electrode containing particles of the same
WO1996027911A1 (en) * 1995-03-06 1996-09-12 Sony Corporation Negative electrode material for secondary cell for nonaqueous electrolytic solution, process for the production thereof, and secondary cell for nonaqueous electrolytic solution using it
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JPH103920A (en) * 1996-06-17 1998-01-06 Toshiba Corp Lithium secondary battery, and manufacture of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279112A (en) * 1993-03-23 1994-10-04 Mitsubishi Petrochem Co Ltd Electrode material
JPH08231273A (en) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd Production of carbide and negative electrode containing particles of the same
WO1996027911A1 (en) * 1995-03-06 1996-09-12 Sony Corporation Negative electrode material for secondary cell for nonaqueous electrolytic solution, process for the production thereof, and secondary cell for nonaqueous electrolytic solution using it
JPH09249407A (en) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc Graphite composite material and its production
JPH103920A (en) * 1996-06-17 1998-01-06 Toshiba Corp Lithium secondary battery, and manufacture of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184263A (en) * 2006-01-04 2007-07-19 Ls Cable Ltd Carbonaceous electrode material for secondary battery, its manufacturing method and secondary battery
JP2009231113A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2011228289A (en) * 2010-03-27 2011-11-10 Osaka Municipa Technical Research Institute Electrode material for secondary battery and secondary battery using the same
WO2014167906A1 (en) * 2013-04-10 2014-10-16 独立行政法人産業技術総合研究所 Lithium secondary battery negative electrode active material and method for manufacturing same
JP2014207064A (en) * 2013-04-10 2014-10-30 独立行政法人産業技術総合研究所 Negative electrode active material for lithium secondary battery and method for producing the same
US10141573B2 (en) 2013-04-10 2018-11-27 National Institute Of Advanced Industrial Science And Technology Lithium secondary battery negative electrode active material and method for manufacturing same
CN114031108A (en) * 2021-11-02 2022-02-11 远景动力技术(江苏)有限公司 Composite sulfide and preparation method and application thereof
CN114031108B (en) * 2021-11-02 2024-04-26 远景动力技术(江苏)有限公司 Composite sulfide and preparation method and application thereof
CN114203965A (en) * 2021-12-07 2022-03-18 远景动力技术(江苏)有限公司 Electrochemical device and electronic apparatus
CN114203965B (en) * 2021-12-07 2024-01-30 远景动力技术(江苏)有限公司 Electrochemical device and electronic apparatus

Similar Documents

Publication Publication Date Title
US5538814A (en) Lithium secondary battery
EP0549802B1 (en) Electrode for secondary battery
CN102388488B (en) Electroactive material, and use thereof in anodes for lithium-ion cells
EP2741350B1 (en) Negative electrode active material, method of preparing the same, negative electrode and lithium secondary battery employing the electrode including the negative electrode active material
EP0571858B1 (en) Lithium secondary battery
EP0629012A2 (en) Electron acceptor substituted carbons for use as anodes in rechargeable lithium batteries
KR20160029599A (en) Organic-inorganic silicon structure containing block copolymer, electrolyte including the same, and lithium battery including the electrolyte
JPWO2017183653A1 (en) Positive electrode material
JPH11260369A (en) Active material for secondary battery negative electrode and manufacture thereof
JP2003308838A (en) Negative electrode material for lithium secondary battery and negative electrode manufactured from it
JPH11260367A (en) Active material for secondary battery negative electrode and manufacture thereof
JP6941782B2 (en) Negative electrode active material and battery
KR20220024988A (en) A positive electrode active material, a positive electrode, a nonaqueous electrolyte storage device, a method for manufacturing a positive electrode active material, a method for manufacturing a positive electrode, and a method for manufacturing a nonaqueous electrolyte storage device
JP3231813B2 (en) Organic electrolyte battery
EP0555594B1 (en) A non-aqueous secondary battery
JPH10284081A (en) Lithium ion secondary battery
JP7170271B2 (en) Positive electrode active material for magnesium secondary battery and magnesium secondary battery using the same
JP7029665B2 (en) Negative electrode active material for non-water secondary batteries and non-water secondary batteries
JPH1125979A (en) Lithium ion secondary battery
JP7135673B2 (en) Composite particle manufacturing method
JP2020181806A (en) Electrolyte solution and lithium ion secondary battery
JP4378437B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JP2021044165A (en) Electrolyte and lithium ion secondary battery
JP2019003907A (en) Positive electrode material
JP2020043000A (en) Electrolyte and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803