JPH11259543A - Structure analysis system and record medium recorded with structure analysis program - Google Patents

Structure analysis system and record medium recorded with structure analysis program

Info

Publication number
JPH11259543A
JPH11259543A JP10056854A JP5685498A JPH11259543A JP H11259543 A JPH11259543 A JP H11259543A JP 10056854 A JP10056854 A JP 10056854A JP 5685498 A JP5685498 A JP 5685498A JP H11259543 A JPH11259543 A JP H11259543A
Authority
JP
Japan
Prior art keywords
strain
structural
change
structural members
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10056854A
Other languages
Japanese (ja)
Other versions
JP3771035B2 (en
Inventor
Hidehiko Maki
秀彦 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu FIP Corp
Original Assignee
Fujitsu FIP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu FIP Corp filed Critical Fujitsu FIP Corp
Priority to JP05685498A priority Critical patent/JP3771035B2/en
Publication of JPH11259543A publication Critical patent/JPH11259543A/en
Application granted granted Critical
Publication of JP3771035B2 publication Critical patent/JP3771035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structure analysis system capable of shortening calculation time and improving the reliability of a solution without causing the dispersion of the solution or indicating instable actions and without the need of setting a parameter for specifying calculation conditions, and to provide a recording medium in which a structure analysis program is recorded. SOLUTION: This system is provided with a distortion computing means S12 for computing the distortion of respective structure members from the equation of motion of the respective structure members, a detection means S14 for detecting in which structure member distortion/stress characteristics change at the earliest point of time and a change means S18 for changing the distortion/stress characteristic value of the equation of the motion for the structure member for which the change is detected. Thus, the dispersion of the solution is not generated, the instable action is not indication, the need of setting the parameter for specifying the calculation conditions is eliminated, the calculation time is shortened and further, the reliability of the solution is prevented from lowering due to the accumulation of calculation errors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は構造解析システム並
びに構造解析プログラムを記録した記録媒体に係り、特
に、構造解析の弾塑性問題を解析する構造解析システム
並びに構造解析プログラムを記録した記録媒体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural analysis system and a recording medium on which a structural analysis program is recorded, and more particularly, to a structural analysis system for analyzing an elasto-plastic problem of structural analysis and a recording medium on which a structural analysis program is recorded.

【0002】[0002]

【従来の技術】従来より、橋梁等の建築物の構造解析を
行うシステムが開発されている。橋梁等の構造解析で
は、材料にかかる荷重が材料の降伏点を超え弾性変形領
域から塑性変形領域に入ることも考慮した弾塑性問題を
解析する必要がある。従来の構造解析システムは、収束
法(ニュートン法)や荷重増分法を用いて構造解析を行
っている。弾塑性問題を解析する場合には、構造部材の
曲率−曲げモーメント特性が弾性変形領域における傾き
に比して塑性変形領域における傾きが小さくなり、これ
に対応して解析を行わなければならない。
2. Description of the Related Art Hitherto, systems for analyzing the structure of buildings such as bridges have been developed. In structural analysis of a bridge or the like, it is necessary to analyze an elasto-plastic problem in which a load applied to a material exceeds a yield point of the material and enters a plastic deformation region from an elastic deformation region. Conventional structural analysis systems perform structural analysis using a convergence method (Newton's method) or a load increment method. When analyzing the elasto-plastic problem, the curvature-bending moment characteristic of the structural member has a smaller inclination in the plastic deformation region than in the elastic deformation region, and the analysis must be performed accordingly.

【0003】収束法は、構造部材に1度で荷重をかけ構
造部材の曲率が塑性変形領域となった場合に、弾性変形
領域における傾きで求めた曲げモーメントに対して補正
を行って塑性変形領域における傾きを得る手法である。
荷重増分法は、荷重を1度にかけるのではなく、微小量
の荷重を順次増加させることにより構造部材の曲率−曲
げモーメント特性を弾性変形領域から塑性変形領域まで
近似的に表そうとする手法である。
In the convergence method, when a load is applied to the structural member at once and the curvature of the structural member becomes a plastic deformation region, the bending moment obtained by the inclination in the elastic deformation region is corrected and the plastic deformation region is corrected. Is a method of obtaining the inclination at.
The load increment method is a method of approximating the curvature-bending moment characteristic of a structural member from an elastic deformation region to a plastic deformation region by sequentially increasing a small amount of load instead of applying the load at one time. It is.

【0004】[0004]

【発明が解決しようとする課題】従来の収束法を用いた
構造解析システムは、計算時間が比較的短く知名度も高
いために一般的に使用されているが、収束回数や時間分
割数や収束誤差等の計算条件によっては、解のばらつき
を生じたり不安定な挙動を示し、解が求まらない場合も
ある。これを防止し安定した挙動で解を得るためには、
上記の計算条件を指定するパラメータの設定のために専
門的なノウハウが必要となるという問題があった。
The conventional structural analysis system using the convergence method is generally used because the calculation time is relatively short and the name recognition is high. Depending on the calculation conditions such as the above, the solution may vary or exhibit unstable behavior, and the solution may not be obtained. In order to prevent this and obtain a solution with stable behavior,
There has been a problem that specialized know-how is required for setting parameters for specifying the above calculation conditions.

【0005】また、従来の荷重増分法を用いた構造解析
システムは、必ず解を得ることができるものの、荷重を
細かく分割してそれぞれについて計算を行うため計算時
間が長くなり、荷重の分割数が小さいほど計算誤差が大
きくなり誤差が蓄積して解の信頼性が低下する。また、
計算条件を指定するパラメータの設定のために専門的な
ノウハウが必要となるという問題があった。
Although the conventional structural analysis system using the load increment method can always obtain a solution, the calculation time is long because the load is finely divided and the calculation is performed for each of them. The smaller the value is, the larger the calculation error becomes, and the accumulated errors increase the reliability of the solution. Also,
There has been a problem that specialized know-how is required for setting parameters for specifying calculation conditions.

【0006】本発明は、上記の点に鑑みなされたもの
で、解のばらつきを生じたり不安定な挙動を示すことが
なく、計算条件を指定するパラメータを設定する必要が
なく、計算時間が短く解の信頼性向上する構造解析シス
テム並びに構造解析プログラムを記録した記録媒体を提
供することを目的とする。
The present invention has been made in view of the above points, does not cause dispersion of solutions or exhibit unstable behavior, does not require setting parameters for designating calculation conditions, and has a short calculation time. An object of the present invention is to provide a structural analysis system for improving the reliability of a solution and a recording medium on which a structural analysis program is recorded.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、弾塑性を有する複数の構造部材で構成された構造物
に外力が加えられた場合の構造解析を行う構造解析シス
テムにおいて、前記構造物に外力が加えられた状態の前
記構造物を構成する各構造部材の運動方程式から前記各
構造部材の歪みを演算する歪み演算手段と、前記各構造
部材毎の歪み−応力特性から前記歪みに対応してどの構
造部材が最も早い時点で歪み−応力特性が変化するかを
検出する検出手段と、前記検出手段で変化が検出された
構造部材について前記検出された時点の外力から先の外
力に対する前記運動方程式の歪み−応力特性値を変更す
る変更手段を有し、前記歪み演算手段での歪み演算、検
出手段での歪み−応力特性の変化検出及び変更手段での
運動方程式の歪み−応力特性値の変更を繰り返し、前記
各構造部材毎の履歴特性を得る。
According to a first aspect of the present invention, there is provided a structural analysis system for performing a structural analysis when an external force is applied to a structure composed of a plurality of elasto-plastic structural members. A strain calculating means for calculating a strain of each of the structural members from an equation of motion of each of the structural members constituting the structure in a state where an external force is applied to the structure, and a strain-strain based on a strain-stress characteristic of each of the structural members. Detecting means for detecting which structural member changes strain-stress characteristics at the earliest point in time, and an external force prior to the external force at the time when the structural member whose change is detected by the detecting means is detected. And a change means for changing a strain-stress characteristic value of the equation of motion with respect to the above. A strain calculation by the strain calculation means, a detection of a change in the strain-stress characteristic by the detection means, and a distortion of the motion equation by the change means. It repeats the change of force characteristic value to obtain a hysteresis characteristic of the respective structural member.

【0008】このように、歪み演算手段での歪み演算、
検出手段での歪み−応力特性の変化検出及び変更手段で
の運動方程式の歪み−応力特性値の変更を繰り返し、各
構造部材毎の履歴特性を得るため、解のばらつきを生じ
たり不安定な挙動を示すことがなく、収束回数や時間分
割数や収束誤差等の計算条件を指定するパラメータを設
定する必要がなく、また、1度の演算でいずれかの構造
部材の歪み−応力特性(剛性)が変化するまでの期間の
構造物の挙動を確定できるため、計算時間が短くなり、
計算誤差が蓄積して解の信頼性が低下することを防止で
きる。
As described above, the distortion calculation by the distortion calculation means,
The detection means changes the strain-stress characteristics and the change means repeatedly changes the strain-stress characteristics of the equation of motion to obtain hysteresis characteristics for each structural member. It is not necessary to set parameters for specifying calculation conditions such as the number of convergences, the number of time divisions, and the convergence error, and the strain-stress characteristics (rigidity) of any structural member in one operation. Since the behavior of the structure during the period until changes can be determined, the calculation time is shortened,
It is possible to prevent the accumulation of calculation errors from lowering the reliability of the solution.

【0009】請求項2に記載の発明は、コンピュータ
を、弾塑性を有する複数の構造部材で構成された構造物
に外力が加えられた場合の構造解析を行うために、前記
構造物に外力が加えられた状態の前記構造物を構成する
各構造部材の運動方程式から前記各構造部材の歪みを演
算させる歪み演算手段と、前記各構造部材毎の歪み−応
力特性から前記歪みに対応してどの構造部材が最も早い
時点で歪み−応力特性が変化するかを検出させる検出手
段と、前記検出手段で変化が検出された構造部材につい
て前記検出された時点の外力から先の外力に対する前記
運動方程式の歪み−応力特性値を変更させる変更手段
と、前記歪み演算手段での歪み演算、検出手段での歪み
−応力特性の変化検出及び変更手段での運動方程式の歪
み−応力特性値の変更を繰り返し、前記各構造部材毎の
履歴特性を得るよう機能させるためのプログラムを記録
したコンピュータ読み取り可能な記録媒体。
According to a second aspect of the present invention, in order to perform a structural analysis when an external force is applied to a structure composed of a plurality of elasto-plastic structural members, the external force is applied to the structure. A strain calculating means for calculating the strain of each of the structural members from the equation of motion of each of the structural members constituting the structure in an added state; and a strain-stress characteristic for each of the structural members, Detecting means for detecting whether the structural member changes strain-stress characteristics at the earliest time point, and the equation of motion for the external force from the external force at the time point is detected for the structural member whose change is detected by the detecting means. Changing means for changing the strain-stress characteristic value; strain calculation by the strain calculating means; detecting the change in the strain-stress characteristic by the detecting means; and changing the strain-stress characteristic value of the equation of motion by the changing means. Repeating said computer-readable recording medium storing a program for operating to obtain a hysteresis of each structural member.

【0010】この記録媒体を使用することにより、構造
解析を行うことができ、これにより請求項1記載の発明
を実現できる。
[0010] By using this recording medium, a structural analysis can be performed, thereby realizing the first aspect of the present invention.

【0011】[0011]

【発明の実施の形態】図1は本発明の構造解析システム
の一実施例のブロック図を示す。同図中、中央処理装置
(CPU)10には、バス15を介して入力装置20、
記憶装置30、表示装置40、印刷装置50それぞれが
接続されている。入力装置20としてはキーボード2
1,マウス22,スキャナ23等が設けられており、記
憶装置30としてはRAM31、ROM32、ハードデ
ィスク装置33、フレキシブルディスク装置34、CD
−ROM装置35等が設けられている。なお、本発明の
構造解析の構造解析プログラムは例えばCD−ROMに
記録されている。CPU10は記憶装置30から各種処
理プログラムを読み出して実行し、その結果を記憶装置
30に記憶すると共に、表示装置40に表示し、印刷装
置50で印刷して出力する。また、記憶装置30には各
種処理プログラムの他に各種ライブラリも記憶されてい
る。
FIG. 1 is a block diagram showing an embodiment of a structural analysis system according to the present invention. In the figure, a central processing unit (CPU) 10 has an input device 20 via a bus 15,
Each of the storage device 30, the display device 40, and the printing device 50 is connected. The keyboard 2 is used as the input device 20
1, a mouse 22, a scanner 23, and the like. The storage device 30 includes a RAM 31, a ROM 32, a hard disk device 33, a flexible disk device 34, and a CD.
A ROM device 35 and the like are provided. The structure analysis program for the structure analysis of the present invention is recorded on, for example, a CD-ROM. The CPU 10 reads and executes various processing programs from the storage device 30, stores the results in the storage device 30, displays the result on the display device 40, prints out the data using the printing device 50, and outputs the result. The storage device 30 also stores various libraries in addition to various processing programs.

【0012】図2は本発明の構造解析システムが実行す
る構造解析処理の第1実施例のフローチャートを示す。
ここでは、N個の構造部材からなる構造物の静的解析を
行うものとして説明する。なお、N個の構造部材それぞ
れの歪み−応力特性としての曲率−曲げモーメント特性
は予め分かっている。同図中、ステップS10で外力と
しての荷重ベクトルFと荷重ベクトルF0 を設定する。
荷重ベクトルF0 は初期値0であり、荷重ベクトルFは
最終的にかける荷重である。この荷重ベクトルF0 (=
0)から荷重ベクトルFまでの変化に時間dtを要する
ものとする。
FIG. 2 is a flowchart of a first embodiment of a structural analysis process executed by the structural analysis system of the present invention.
Here, a description will be given assuming that static analysis of a structure including N structural members is performed. In addition, the curvature-bending moment characteristics as the strain-stress characteristics of each of the N structural members are known in advance. In the figure, it sets the load vector F and the load vector F 0 of an external force in step S10.
The load vector F 0 has an initial value of 0, and the load vector F is a finally applied load. This load vector F 0 (=
Time dt is required to change from 0) to the load vector F.

【0013】次に、ステップS12で(1)式に示す運
動方程式に荷重ベクトルFを代入して相対応答変位ベク
トルUを求め、この相対応答変位ベクトルUから(2)
式を用いて断面力ベクトルSを求める。この断面ベクト
ルS内に応力としての曲げモーメントmが含まれてい
る。また(3)式から歪みとしての曲率φを求める。 F=K・U …(1) S=Ks・U …(2) φ=m/(E・I) …(3) 但し、Kは剛性マトリックスであり、Ksは応力マトリ
ックスであり、Eはヤング係数で構造部材の材料で決ま
っており、Iは断面二次モーメントで構造により決まっ
ている。上記の曲率φの演算は、N個の構造部材それぞ
れについて行われる。
Next, at step S12, the relative response displacement vector U is obtained by substituting the load vector F into the equation of motion shown in the equation (1).
The section force vector S is obtained using the equation. The cross section vector S includes a bending moment m as a stress. Further, the curvature φ as distortion is obtained from the equation (3). F = K · U (1) S = Ks · U (2) φ = m / (E · I) (3) where K is a rigid matrix, Ks is a stress matrix, and E is Young. The coefficient is determined by the material of the structural member, and I is the second moment of area determined by the structure. The above calculation of the curvature φ is performed for each of the N structural members.

【0014】次に、ステップS14でN個の構造部材の
うちどの構造部材が最も早い時点で曲率−曲げモーメン
ト特性(剛性)が変化するかを見つけ、その時点tiの
荷重ベクトルFiはいくらであるかを算出する。この
後、ステップS16ではN個の構造部材のいずれかで曲
率−曲げモーメント特性(剛性)が変化する剛性変化点
が見つかったか否かを判別し、剛性変化点が見つかった
場合には、ステップS18で荷重ベクトルF0 に荷重ベ
クトルFiを設定し、最も早い時点で曲率−曲げモーメ
ント特性が変化した構造部材の剛性マトリックスKを対
応する曲率−曲げモーメント特性に従って変更し、ステ
ップS12に進む。
Next, in step S14, it is determined which of the N structural members has the curvature-bending moment characteristic (rigidity) that changes at the earliest time, and what is the load vector Fi at that time ti. Is calculated. Thereafter, in step S16, it is determined whether a stiffness change point at which the curvature-bending moment characteristic (stiffness) changes is found in any of the N structural members, and if a stiffness change point is found, step S18 is performed. in setting the load vector Fi to load vector F 0, the curvature at the earliest time - bending curvature corresponding stiffness matrix K of structural members moment characteristics change - change in accordance with the bending moment characteristic, the process proceeds to step S12.

【0015】これにより、次回は荷重ベクトルF0 (=
Fi)から荷重ベクトルFまでの変化におけるN個の構
造部材の曲率φの演算が行われ、N個の構造部材のうち
どの構造部材が最も早い時点で曲率−曲げモーメント特
性(剛性)が変化するかを見つけ、その構造部材の剛性
マトリックスKを変更する。このステップS12〜S1
8の処理を繰り返すことにより、荷重ベクトルFがかか
るまでのN個の構造部材からなる構造物の履歴特性を得
ることができる。
Thus, the load vector F 0 (=
The curvature φ of the N structural members in the change from Fi) to the load vector F is calculated, and the curvature-bending moment characteristic (rigidity) changes at the earliest point in any of the N structural members. Then, the rigidity matrix K of the structural member is changed. This step S12 to S1
By repeating the processing in step 8, it is possible to obtain the hysteresis characteristics of the structure including the N structural members until the load vector F is applied.

【0016】このように、荷重ベクトルFをかけてN個
の構造部材の曲率φの演算を行い、N個の構造部材のう
ちどの構造部材が最も早い時点で曲率−曲げモーメント
特性(剛性)が変化するかを見つけ、その構造部材の剛
性マトリックスKを変更して繰り返し演算を行うため、
従来の収束法のように解のばらつきを生じたり不安定な
挙動を示すことがなく、収束回数や時間分割数や収束誤
差等の計算条件を指定するパラメータを設定する必要が
ない。
As described above, the curvature φ of the N structural members is calculated by multiplying the load vector F, and the curvature-bending moment characteristic (rigidity) of the N structural members at the earliest point is determined. In order to find out whether it changes or not, and change the stiffness matrix K of the structural member and repeat the calculation,
Unlike the conventional convergence method, the solution does not vary or exhibit unstable behavior, and there is no need to set parameters for specifying calculation conditions such as the number of times of convergence, the number of time divisions, and the convergence error.

【0017】また、1度の演算でいずれかの構造部材の
曲率−曲げモーメント特性(剛性)が変化するまでの期
間の構造物の挙動を確定できるため、従来の荷重増分法
に比べて計算時間が短くなり、計算誤差が蓄積して解の
信頼性が低下することがなく、解析の精度が向上し、ま
た、計算条件を指定するパラメータを設定する必要がな
い。
In addition, since the behavior of the structure during the period until the curvature-bending moment characteristic (rigidity) of any one of the structural members changes can be determined by one calculation, the calculation time is longer than that of the conventional load increment method. , The calculation error does not accumulate and the reliability of the solution does not decrease, the accuracy of analysis is improved, and there is no need to set parameters for specifying calculation conditions.

【0018】図3は本発明の構造解析システムが実行す
る構造解析処理の第2実施例のフローチャートを示す。
ここでは、N個の構造部材からなる構造物の動的解析を
行う。なお、N個の構造部材それぞれの歪み−応力特性
としての曲率−曲げモーメント特性は予め分かってい
る。同図中、ステップS110で外力としての加速度ベ
クトルddαと加速度ベクトルddα0 を設定する。加
速度ベクトルddα0 は初期値0であり、加速度ベクト
ルddαは最終的にかかる加速度である。
FIG. 3 shows a flowchart of a second embodiment of the structural analysis processing executed by the structural analysis system of the present invention.
Here, a dynamic analysis of a structure composed of N structural members is performed. In addition, the curvature-bending moment characteristics as the strain-stress characteristics of each of the N structural members are known in advance. In the figure, in step S110, an acceleration vector ddα and an acceleration vector ddα 0 as external forces are set. The acceleration vector ddα 0 has an initial value of 0, and the acceleration vector ddα is the finally applied acceleration.

【0019】次に、ステップS112で(4)式に示す
運動方程式に加速度ベクトルddαを代入して相対応答
変位ベクトルUを求め、この相対応答変位ベクトルUか
ら(2)式を用いて断面力ベクトルSを求める。この断
面ベクトルS内に応力としての曲げモーメントmが含ま
れている。また(3)式から歪みとしての曲率φを求め
る。
Next, in step S112, a relative response displacement vector U is obtained by substituting the acceleration vector ddα into the equation of motion shown in equation (4), and a sectional force vector U is obtained from the relative response displacement vector U using equation (2). Find S. The cross section vector S includes a bending moment m as a stress. Further, the curvature φ as distortion is obtained from the equation (3).

【0020】 M・ddU+C・dU+K・U=−M・ddα …(4) S=Ks・U …(2) φ=m/(E・I) …(3) 但し、Mは質量マトリックスであり、Cは減衰マトリッ
クスであり、ddUは相対応答加速度ベクトルであり、
dUは相対応答速度ベクトルであり、Kは剛性マトリッ
クスであり、Ksは応力マトリックスであり、Eはヤン
グ係数で構造部材の材料で決まっており、Iは断面二次
モーメントで構造により決まっている。上記の曲率φの
演算は、N個の構造部材それぞれについて行われる。
M · ddU + C · dU + K · U = −M · ddα (4) S = Ks · U (2) φ = m / (E · I) (3) where M is a mass matrix, C is the damping matrix, ddU is the relative response acceleration vector,
dU is a relative response speed vector, K is a stiffness matrix, Ks is a stress matrix, E is a Young's modulus determined by a material of a structural member, and I is a second moment of area determined by a structure. The above calculation of the curvature φ is performed for each of the N structural members.

【0021】次に、ステップS114でN個の構造部材
のうちどの構造部材が最も早い時点で曲率−曲げモーメ
ント特性(剛性)が変化するかを見つけ、その時点ti
の加速度ベクトルddαiはいくらであるかを算出す
る。この後、ステップS116ではN個の構造部材のい
ずれかで曲率−曲げモーメント特性(剛性)が変化する
剛性変化点が見つかったか否かを判別し、剛性変化点が
見つかった場合には、ステップS18で加速度ベクトル
ddα0 に加速度ベクトルddαiを設定し、最も早い
時点で曲率−曲げモーメント特性が変化した構造部材の
剛性マトリックスKを対応する曲率−曲げモーメント特
性に従って変更し、ステップS112に進む。
Next, in step S114, it is determined which one of the N structural members changes its curvature-bending moment characteristic (rigidity) at the earliest point in time.
Is calculated as the acceleration vector ddαi. Thereafter, in step S116, it is determined whether a stiffness change point at which the curvature-bending moment characteristic (stiffness) changes is found in any of the N structural members, and if a stiffness change point is found, step S18 is performed. in setting the acceleration vector ddαi the acceleration vector Ddarufa 0, curvature at the earliest time - bending curvature corresponding stiffness matrix K of structural members moment characteristics change - change in accordance with the bending moment characteristic, the process proceeds to step S112.

【0022】これにより、次回は加速度ベクトルddα
0 (=ddαi)から加速度ベクトルddαまでの変化
におけるN個の構造部材の曲率φの演算が行われ、N個
の構造部材のうちどの構造部材が最も早い時点で曲率−
曲げモーメント特性(剛性)が変化するかを見つけ、そ
の構造部材の剛性マトリックスKを変更する。このステ
ップS112〜ステップS118の処理を繰り返すこと
により、加速度ベクトルddαがかかるまでのN個の構
造部材からなる構造物の履歴特性を得ることができる。
Thus, the next time the acceleration vector ddα
The calculation of the curvature φ of the N structural members in the change from 0 (= ddαi) to the acceleration vector ddα is performed, and which of the N structural members has the curvature −
Find out whether the bending moment characteristic (rigidity) changes, and change the rigidity matrix K of the structural member. By repeating the processing of steps S112 to S118, it is possible to obtain the hysteresis characteristics of the structure including the N structural members until the acceleration vector ddα is applied.

【0023】この実施例で、図4(A)に示す塑性化し
た構造部材70及び塑性化してない構造部材72,74
からなるラーメン構造モデルに、例えば地震等の加速度
ベクトルddαが加わり、時点t0 から時間dt後に図
4(B)に示すように構造部材72が塑性化した場合に
ついて説明する。ここで、構造部材74は剛体として扱
うものとする。
In this embodiment, the plasticized structural members 70 and the non-plasticized structural members 72 and 74 shown in FIG.
A rigid frame structure model consisting of, for example, applied acceleration vector ddα such as an earthquake, the structural member 72 as shown in FIG. 4 (B) from the time t 0 after the time dt is described as being plasticized. Here, the structural member 74 is treated as a rigid body.

【0024】時点t0 では、図4(A)に示す状態にお
ける塑性化した構造部材70の曲率−曲げモーメント特
性を図5(A)に示し、図4(B)に示す状態における
塑性化してない構造部材72の曲率−曲げモーメント特
性を図6(A)に示す。ここで、加速度ベクトルddα
が加わると、初回の演算で、構造部材70は剛性マトリ
ックスK3 によって図5(B)に破線の矢印で表す曲率
−曲げモーメント特性を示す。なお、*印は出発位置を
示す。これと共に、構造部材72は剛性マトリックスK
1 によって図6(B)に破線の矢印で表す曲率−曲げモ
ーメント特性を示す。そして、時点t1 で構造部材72
の曲率−曲げモーメント特性(剛性)が変化する剛性変
化点に到達する。
At time t 0 , the curvature-bending moment characteristic of the plasticized structural member 70 in the state shown in FIG. 4A is shown in FIG. 5A, and the plasticized state in the state shown in FIG. FIG. 6 (A) shows the curvature-bending moment characteristics of the structural member 72 that does not exist. Here, the acceleration vector ddα
When applied, in the calculation of the first, the structural member 70 is the radius of curvature represented by broken line arrow in FIG. 5 (B) by a rigid matrix K 3 - shows the bending moment characteristics. In addition, * mark shows a starting position. At the same time, the structural member 72 is
Curvature represented by broken line arrow in FIG. 6 (B) by 1 - shows the bending moment characteristics. The structural member 72 at time t 1
Reaches the rigidity change point at which the curvature-bending moment characteristic (rigidity) changes.

【0025】このため、次の演算では構造部材72の剛
性マトリックスをK2 に変更する。これにより、構造部
材70は剛性マトリックスK3 によって図5(C)に破
線の矢印で表す曲率−曲げモーメント特性を示す。これ
と共に、構造部材72は剛性マトリックスK2 によって
図6(C)に破線の矢印で表す曲率−曲げモーメント特
性を示す。そして、時点t2 で構造部材70の曲率−曲
げモーメント特性(剛性)が変化する剛性変化点(降伏
点)に到達する。
Therefore, in the next operation, the rigidity matrix of the structural member 72 is changed to K 2 . Thus, the curvature structural member 70 is represented by broken line arrow in FIG. 5 (C) by a rigid matrix K 3 - shows the bending moment characteristics. At the same time, the structural member 72 the curvature represented by broken line arrow in FIG. 6 (C) by a rigid matrix K 2 - shows the bending moment characteristics. The curvature of the structural member 70 at the time point t 2 - to reach the bending moment characteristics (stiffness) of varying stiffness change point (yield point).

【0026】このため、次の演算では構造部材70の剛
性マトリックスをK2 に変更する。これにより、構造部
材70は剛性マトリックスK2 によって図5(D)に破
線の矢印で表す曲率−曲げモーメント特性を示す。これ
と共に、構造部材72は剛性マトリックスK2 によって
図6(D)に破線の矢印で表す曲率−曲げモーメント特
性を示す。そして、時点t0 から時間dt後に構造部材
70は、図5(E)に実線で表す曲率−曲げモーメント
特性を示して終局に至る。これと共に、構造部材72
は、図6(E)に実線で表す曲率−曲げモーメント特性
を示して終局に至る。この図5(A)〜(E)は構造部
材70の履歴特性を表しており、図6(A)〜(E)は
構造部材72の履歴特性を表している。
Therefore, in the next operation, the rigidity matrix of the structural member 70 is changed to K 2 . Thus, the curvature structural member 70 is represented by broken line arrow in FIG. 5 (D) by a rigid matrix K 2 - shows the bending moment characteristics. At the same time, the structural member 72 the curvature represented by broken line arrow in FIG. 6 (D) by a rigid matrix K 2 - shows the bending moment characteristics. The structural member 70 from the time t 0 after the time dt, the curvature represented by the solid line in FIG. 5 (E) - leading to the eventual shows the bending moment characteristics. At the same time, the structural member 72
Shows the curvature-bending moment characteristic indicated by the solid line in FIG. FIGS. 5A to 5E show the hysteresis characteristics of the structural member 70, and FIGS. 6A to 6E show the hysteresis characteristics of the structural member 72.

【0027】このように、加速度ベクトルddαをかけ
てN個の構造部材の曲率φの演算を行い、N個の構造部
材のうちどの構造部材が最も早い時点で曲率−曲げモー
メント特性(剛性)が変化するかを見つけ、その構造部
材の剛性マトリックスKを変更して繰り返し演算を行う
ため、従来の収束法のように解のばらつきを生じたり不
安定な挙動を示すことがなく、収束回数や時間分割数や
収束誤差等の計算条件を指定するパラメータを設定する
必要がない。
As described above, the curvature φ of the N structural members is calculated by multiplying the acceleration vector ddα, and the curvature-bending moment characteristic (rigidity) of the N structural members at the earliest point in time is calculated. Since the change is found and the stiffness matrix K of the structural member is changed and the calculation is performed repeatedly, the convergence method does not produce a dispersion or unstable behavior as in the conventional convergence method. There is no need to set parameters that specify calculation conditions such as the number of divisions and the convergence error.

【0028】また、1度の演算でいずれかの構造部材の
曲率−曲げモーメント特性(剛性)が変化するまでの期
間の構造物の挙動を確定できるため、従来の荷重増分法
に比べて計算時間が短くなり、計算誤差が蓄積して解の
信頼性が低下することがなく、解析の精度が向上し、ま
た、計算条件を指定するパラメータを設定する必要がな
い。
Further, since the behavior of the structure during the period until the curvature-bending moment characteristic (rigidity) of any structural member changes can be determined by one calculation, the calculation time is longer than that of the conventional load increment method. , The calculation error does not accumulate and the reliability of the solution does not decrease, the accuracy of analysis is improved, and there is no need to set parameters for specifying calculation conditions.

【0029】なお、耐震構造の構造解析を行う場合は、
地震波の加速度ベクトルddαを連続して印加して解析
することにより、各構造部材の図5,図6に示すような
履歴特性を得る。なお、ステップS12,S112が歪
み演算手段に対応し、ステップS14,114が検出手
段に対応し、ステップS18,118が変更手段に対応
する。
When performing a structural analysis of an earthquake-resistant structure,
By continuously applying and analyzing the acceleration vector ddα of the seismic wave, a hysteresis characteristic as shown in FIGS. 5 and 6 of each structural member is obtained. Steps S12 and S112 correspond to distortion calculation means, steps S14 and S114 correspond to detection means, and steps S18 and S118 correspond to change means.

【0030】[0030]

【発明の効果】上述の如く、請求項1に記載の発明は、
歪み演算手段での歪み演算、検出手段での歪み−応力特
性の変化検出及び変更手段での運動方程式の歪み−応力
特性値の変更を繰り返し、各構造部材毎の履歴特性を得
るため、解のばらつきを生じたり不安定な挙動を示すこ
とがなく、収束回数や時間分割数や収束誤差等の計算条
件を指定するパラメータを設定する必要がなく、また、
1度の演算でいずれかの構造部材の歪み−応力特性(剛
性)が変化するまでの期間の構造物の挙動を確定できる
ため、計算時間が短くなり、計算誤差が蓄積して解の信
頼性が低下することを防止できる。
As described above, the first aspect of the present invention provides
In order to obtain the hysteresis characteristic of each structural member, the distortion calculation by the distortion calculation means, the detection of the change in the strain-stress characteristic by the detection means, and the change of the distortion-stress characteristic value of the equation of motion by the change means are repeated. There is no need to set parameters that specify calculation conditions such as the number of times of convergence, the number of time divisions, and the convergence error.
A single operation can determine the behavior of a structure until the strain-stress characteristics (rigidity) of any of the structural members change, shortening the calculation time, accumulating calculation errors, and improving the reliability of the solution. Can be prevented from decreasing.

【0031】また、請求項2に記載の記録媒体を使用す
ることにより、構造解析を行うことができ、これにより
請求項1記載の発明を実現できる。
Further, by using the recording medium according to the second aspect, structural analysis can be performed, thereby realizing the invention according to the first aspect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構造解析システムの一実施例のブロッ
ク図である。
FIG. 1 is a block diagram of an embodiment of a structural analysis system according to the present invention.

【図2】本発明の構造解析システムが実行する構造解析
処理の第1実施例のフローチャートである。
FIG. 2 is a flowchart of a first embodiment of a structural analysis process executed by the structural analysis system of the present invention.

【図3】本発明の構造解析システムが実行する構造解析
処理の第2実施例のフローチャートである。
FIG. 3 is a flowchart of a second embodiment of the structure analysis processing executed by the structure analysis system of the present invention.

【図4】本発明の構造解析システムで構造解析するラー
メン構造モデルを示す図である。
FIG. 4 is a diagram showing a ramen structure model subjected to a structure analysis by the structure analysis system of the present invention.

【図5】構造部材70の履歴特性を表す図である。FIG. 5 is a diagram illustrating hysteresis characteristics of a structural member 70.

【図6】構造部材72の履歴特性を表す図である。FIG. 6 is a diagram illustrating hysteresis characteristics of a structural member 72.

【符号の説明】[Explanation of symbols]

10 中央処理装置(CPU) 20 入力装置 21 キーボード 22 マウス 23 スキャナ 30 記憶装置 31 RAM 32 ROM 33 ハードディスク装置 34 フレキシブルディスク装置 35 CD−ROM装置 40 表示装置 50 印刷装置 70〜74 構造部材 Reference Signs List 10 central processing unit (CPU) 20 input device 21 keyboard 22 mouse 23 scanner 30 storage device 31 RAM 32 ROM 33 hard disk device 34 flexible disk device 35 CD-ROM device 40 display device 50 printing device 70 to 74 structural members

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弾塑性を有する複数の構造部材で構成さ
れた構造物に外力が加えられた場合の構造解析を行う構
造解析システムにおいて、 前記構造物に外力が加えられた状態の前記構造物を構成
する各構造部材の運動方程式から前記各構造部材の歪み
を演算する歪み演算手段と、 前記各構造部材毎の歪み−応力特性から前記歪みに対応
してどの構造部材が最も早い時点で歪み−応力特性が変
化するかを検出する検出手段と、 前記検出手段で変化が検出された構造部材について前記
検出された時点の外力から先の外力に対する前記運動方
程式の歪み−応力特性値を変更する変更手段を有し、 前記歪み演算手段での歪み演算、検出手段での歪み−応
力特性の変化検出及び変更手段での運動方程式の変更を
繰り返し、前記各構造部材毎の履歴特性を得ることを特
徴とする構造解析システム。
1. A structural analysis system for performing structural analysis when an external force is applied to a structure composed of a plurality of elasto-plastic structural members, wherein the structure has an external force applied to the structure. A strain calculating means for calculating the strain of each of the structural members from the equation of motion of each of the structural members, and which structural member has the earliest strain corresponding to the strain from the strain-stress characteristic of each of the structural members. Detecting means for detecting whether the stress characteristic changes; and changing the distortion-stress characteristic value of the equation of motion with respect to the external force from the external force at the time of the detection with respect to the structural member in which the change is detected by the detecting means. A change means, a strain calculation by the strain calculation means, a change in strain-stress characteristic detected by the detection means, and a change of the equation of motion by the change means are repeated, and the hysteresis characteristic of each of the structural members is repeated. Structure analysis system and obtaining.
【請求項2】 コンピュータを、 弾塑性を有する複数の構造部材で構成された構造物に外
力が加えられた場合の構造解析を行うために、 前記構造物に外力が加えられた状態の前記構造物を構成
する各構造部材の運動方程式から前記各構造部材の歪み
を演算させる歪み演算手段と、 前記各構造部材毎の歪み−応力特性から前記歪みに対応
してどの構造部材が最も早い時点で歪み−応力特性が変
化するかを検出させる検出手段と、 前記検出手段で変化が検出された構造部材について前記
検出された時点の外力から先の外力に対する前記運動方
程式の歪み−応力特性値を変更させる変更手段と、 前記歪み演算手段での歪み演算、検出手段での歪み−応
力特性の変化検出及び変更手段での運動方程式の歪み−
応力特性値の変更を繰り返し、前記各構造部材毎の履歴
特性を得るよう機能させるためのプログラムを記録した
コンピュータ読み取り可能な記録媒体。
2. The computer according to claim 1, wherein the computer is configured to perform a structural analysis when an external force is applied to a structure including a plurality of structural members having elasto-plasticity. A strain calculating means for calculating a strain of each of the structural members from an equation of motion of each of the structural members constituting the object; and a structural member corresponding to the strain from the strain-stress characteristic of each of the structural members at the earliest time point. Detecting means for detecting whether the strain-stress characteristic changes; and changing the strain-stress characteristic value of the equation of motion with respect to the external force from the external force at the time of the detection for the structural member for which the change is detected by the detecting means. Changing means for performing the strain calculation in the strain calculating means, distortion in the detecting means, detection of a change in stress characteristics, and distortion in the equation of motion in the changing means.
A computer-readable recording medium on which a program for causing a function to obtain a hysteresis characteristic for each of the structural members by repeatedly changing a stress characteristic value is recorded.
JP05685498A 1998-03-09 1998-03-09 Structure analysis system and recording medium recording structure analysis program Expired - Lifetime JP3771035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05685498A JP3771035B2 (en) 1998-03-09 1998-03-09 Structure analysis system and recording medium recording structure analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05685498A JP3771035B2 (en) 1998-03-09 1998-03-09 Structure analysis system and recording medium recording structure analysis program

Publications (2)

Publication Number Publication Date
JPH11259543A true JPH11259543A (en) 1999-09-24
JP3771035B2 JP3771035B2 (en) 2006-04-26

Family

ID=13039009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05685498A Expired - Lifetime JP3771035B2 (en) 1998-03-09 1998-03-09 Structure analysis system and recording medium recording structure analysis program

Country Status (1)

Country Link
JP (1) JP3771035B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192239A (en) * 2000-12-22 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method for selecting heating sequence of heating filament
JP2011111735A (en) * 2009-11-24 2011-06-09 Taishin Kaiseki Kenkyusho:Kk Method of structural analysis of structure
CN103207932A (en) * 2013-03-12 2013-07-17 天津市市政工程设计研究院 Method for determining automobile wheelbases to conduct load analysis
CN105926465A (en) * 2016-04-15 2016-09-07 武汉理工大学 Modeling method for bridge preventive maintenance model under overload operation condition and maintenance method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192239A (en) * 2000-12-22 2002-07-10 Ishikawajima Harima Heavy Ind Co Ltd Method for selecting heating sequence of heating filament
JP4688287B2 (en) * 2000-12-22 2011-05-25 株式会社アイ・エイチ・アイ マリンユナイテッド Heating sequence selection method for linear heating
JP2011111735A (en) * 2009-11-24 2011-06-09 Taishin Kaiseki Kenkyusho:Kk Method of structural analysis of structure
CN103207932A (en) * 2013-03-12 2013-07-17 天津市市政工程设计研究院 Method for determining automobile wheelbases to conduct load analysis
CN105926465A (en) * 2016-04-15 2016-09-07 武汉理工大学 Modeling method for bridge preventive maintenance model under overload operation condition and maintenance method

Also Published As

Publication number Publication date
JP3771035B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US7286972B2 (en) Implicit-explicit switching for finite element analysis
WO2006046297A1 (en) Analyzing method and device
EP1762952A1 (en) Welding deformation computing method, welding deformation computing device, computer program, and recording medium
JP3771035B2 (en) Structure analysis system and recording medium recording structure analysis program
JP4433769B2 (en) Nonlinear finite element analysis apparatus and method, computer program, and recording medium
US20200278241A1 (en) Vibration determination device, vibration determination method, and program
US20130173241A1 (en) Method, Apparatus and Computer Program Product for the Finite Element Analysis of Frequency Dependent Behavior of Nonlinear Materials and Contacts
JPH1185829A (en) Vibration analysis method for structure including viscoelastic body and record medium
JP2007263623A (en) Seismic response analysis method
JP2001208641A (en) Method for analyzing response to earthquake
JP2001289841A (en) Method and system for analysis of reinforced concrete pillar as well as recording medium with recorded computer program for execution of analytical method for reinforced concrete pillar
JP2740057B2 (en) Weight measuring device
WO2020202338A1 (en) Information processing device, information processing method, and program
KR100417976B1 (en) Analysis method for dynamic load in aircraft modeling
JP3326562B2 (en) Building dynamic characteristics evaluation method
JP4429118B2 (en) Time history response analysis method, apparatus, and program
JP2715904B2 (en) Computer system performance evaluation device
JP2903098B2 (en) Structural design method
JP3055788B2 (en) Vibration characteristic analysis method and device
JP3240757B2 (en) Structure vibration test apparatus and method
CN116256058A (en) Building multi-order frequency identification method, subsystem and storage medium
JPH10123008A (en) Apparatus and method for vibration test of structure
JP2001290848A (en) Method for analyzing earthquake response of piping
JP4771774B2 (en) Time history response analysis method, apparatus, and program
US20210182457A1 (en) Simulation method, simulation apparatus, and computer readable medium storing program

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term