JPH11258190A - Measuring method for moisture content of wood - Google Patents

Measuring method for moisture content of wood

Info

Publication number
JPH11258190A
JPH11258190A JP7656598A JP7656598A JPH11258190A JP H11258190 A JPH11258190 A JP H11258190A JP 7656598 A JP7656598 A JP 7656598A JP 7656598 A JP7656598 A JP 7656598A JP H11258190 A JPH11258190 A JP H11258190A
Authority
JP
Japan
Prior art keywords
wood
section
water content
cross
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7656598A
Other languages
Japanese (ja)
Other versions
JP2896130B1 (en
Inventor
Masataka Sakai
正孝 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA PREF GOV
Toyama Prefecture
Original Assignee
TOYAMA PREF GOV
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA PREF GOV, Toyama Prefecture filed Critical TOYAMA PREF GOV
Priority to JP7656598A priority Critical patent/JP2896130B1/en
Application granted granted Critical
Publication of JP2896130B1 publication Critical patent/JP2896130B1/en
Publication of JPH11258190A publication Critical patent/JPH11258190A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which the distribution of the moisture content in an arbitrary place on the section of wood can be measured mondestructively by a simple device. SOLUTION: The electric resistance and the temperature in several places between mutually opposite side faces in arbitrary sections 1, 2, 3, 4 of wood are measured. Their values are substituted into a multiple regression expression which is found in advance by a multiple regression analysis, and the moisture content in respective parts between the side faces on the respective sections 1, 2, 3, 4 of the wood is found. The electric resistance and the temperature of the wood in several places on a side face which is the section 3 in a position adjacent to the section 1 and which is a direction at right angles to the side face of the section 1 are measured. The moisture content of the wood is found in the same manner as above. On the basis of data on the moistutre content based on the temperature and the electric resistance of the wood between the respective side faces at right angles to each other, the moisture content in a small region in a prescribed divided area at the inside of the wood is computed by a reverse projection method in which the moisture content is projected reversely on a prescribed section. Thereby, the distribution of the moisture content at the inside of the wood is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、木材の任意断面
において数カ所の電気抵抗等を測定することによって、
その木材内部の含水率分布を推定する木材含水率測定方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the electrical resistance and the like at several points on an arbitrary section of wood.
The present invention relates to a method for measuring the moisture content of wood for estimating the moisture content distribution inside the wood.

【0002】[0002]

【従来の技術】一般に、木材の乾燥は、含水率低下に伴
う割れ、その他の損傷を生じさせないように温度、湿度
等を人為的にコントロールして行なわれる。従って、こ
れらの操作を自動化して連続的に実施するためには、ま
ず木材内部の含水率とその経時的変化の把握が不可欠で
ある。
2. Description of the Related Art In general, drying of wood is performed by artificially controlling the temperature, humidity, and the like so as not to cause cracks or other damage due to a decrease in water content. Therefore, in order to carry out these operations automatically and continuously, it is first necessary to grasp the water content inside the wood and its temporal change.

【0003】一方、近年住宅メーカは、高品質住宅生産
のための使用部材の寸法精度の安定化、あるいはプレカ
ット加工の精度向上のため、乾燥材の供給ニーズが強く
なる傾向にある。従って、建築用木材の生産工場におけ
る木材乾燥工程においては、より高精度な乾燥管理が求
められている。
[0003] On the other hand, in recent years, house makers have tended to have a stronger need for supplying a drying agent in order to stabilize the dimensional accuracy of the members used for producing high-quality houses or to improve the accuracy of precut processing. Therefore, in a wood drying process in a building wood production factory, more accurate drying management is required.

【0004】従来、木材含水率の測定は、重量法あるい
は電気式含水率計等を用いて行なわれている。この重量
法とは、木材から小試片を採取し小試片の含水率をJI
S規格による全乾法にて測定するものであった。また、
例えば特開平3−140853号公報に開示されている
ように、電気式含水率計は、木材表面に一対の電極を差
し込み、この電極の間の電気抵抗または電気容量等を検
知して、その値と既知の含水率に対する抵抗または容量
により作成された検量線とを照合し、含水率を求めるも
のであった。
Conventionally, the measurement of the moisture content of wood has been carried out using a gravimetric method or an electric moisture content meter. This gravimetric method means that a small specimen is collected from wood and the water content of the small specimen is determined by JI.
It was measured by a total drying method according to S standard. Also,
For example, as disclosed in JP-A-3-140853, an electric water content meter inserts a pair of electrodes into the surface of wood, detects electric resistance or electric capacity between the electrodes, and reads the value. This was compared with a calibration curve created by resistance or capacity for a known moisture content to determine the moisture content.

【0005】[0005]

【発明が解決しようとする課題】ここで、木材の高精度
な乾燥管理を行なうためには、木材内部の含水率分布を
求める必要があった。しかし、上記従来技術の重量法の
場合、木材から小試片を採集するため、まず木材の断面
を厚さ数cmに鋸断後、これを縦横に適当な数に分割し
て小試片を作る必要があり、人手等によって行なってい
るため作業性が悪く、実用的には問題があった。しか
も、サンプルとして検査する木材は分割してしまうため
に製品とすることができず、製品となる実際の木材の含
水率を検査することはできないものであった。
Here, in order to control the drying of wood with high accuracy, it is necessary to obtain the water content distribution inside the wood. However, in the case of the above-mentioned prior art gravimetric method, in order to collect small specimens from wood, first cut a cross section of the wood to a thickness of several cm, and then divide the wood into appropriate numbers vertically and horizontally to obtain small specimens. It is necessary to make it, and since it is performed manually, the workability is poor and there is a problem in practical use. Moreover, the wood to be inspected as a sample is divided into pieces and cannot be made into a product, so that the actual moisture content of the wood cannot be tested.

【0006】一方、電気式含水率計は木材表面付近の含
水率が測定されるだけで、柱類など大断面材の品質管理
上最も重要な因子である内部の含水率分布を知ることは
困難であった。さらに、上記特開平3−140853号
公報に開示されているように、木材内部に水分傾斜を有
する場合でも断面全体としての含水率を推測することが
できるものは提案されているが、正確性に欠け、しかも
内部の部分的な含水率まで算出することができるもので
はなかった。
On the other hand, an electric water content meter only measures the water content near the surface of wood, and it is difficult to know the internal water content distribution which is the most important factor in quality control of large cross-section materials such as columns. Met. Further, as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 3-140853, there has been proposed a device capable of estimating the water content of the entire cross section even when there is a water gradient inside the wood. It was not possible to calculate chipping and even partial moisture content inside.

【0007】しかも、これら上記従来の測定方法は、測
定の度に高温・高湿度で稼働中の乾燥作業を中断せざる
を得ないので、木材からの含水率情報を連続的にモニタ
リングすることができない等の問題があった。
Moreover, in the above-mentioned conventional measuring methods, the drying operation during operation at high temperature and high humidity has to be interrupted every time the measurement is carried out, so that the water content information from the wood can be continuously monitored. There were problems such as inability to do so.

【0008】以上より、従来の木材の含水率測定方法で
は、乾燥能率を低下させ、生産された乾燥材の品質が不
安定になることがあり、このような木材を建築用材とし
て使用したとき、施工後に狂い、割れ等のトラブルが発
生することもあった。
As described above, in the conventional method for measuring the moisture content of wood, the drying efficiency may be reduced, and the quality of the produced dried material may become unstable. When such wood is used as a building material, Troubles, such as breaks and cracks, may occur after construction.

【0009】この発明は、上記従来の技術に鑑みてなさ
れたもので、簡単な装置で木材断面の任意個所の含水率
分布を非破壊的に測定することができ、連続的なモニタ
リングも可能な木材含水率測定方法を提供することを目
的とする。
The present invention has been made in view of the above-mentioned conventional technology, and it is possible to nondestructively measure a water content distribution at an arbitrary portion of a wood cross section with a simple device, and it is also possible to perform continuous monitoring. An object of the present invention is to provide a method for measuring wood moisture content.

【0010】[0010]

【課題を解決するための手段】この発明は、木材の任意
断面において互いに対面する側面間の複数カ所の電気抵
抗と温度を測定し、この値を、あらかじめ重回帰分析に
より求めた含水率推定式である重回帰式に代入して各々
上記断面の上記側面間の各部位の含水率を求め、さらに
上記断面と近接した位置の断面であって上記側面と直交
する方向の側面間の複数カ所の電気抵抗と温度を測定
し、上記と同様に含水率を求める。そして、この互いに
直交する各側面間の温度及び電気抵抗に基づく含水率デ
ータをもとにして、この含水率を所定の断面に逆投影す
る逆投影法によって、木材内部の所定の分割区域の小領
域の含水率を算出し、木材内部の含水率分布を求める木
材含水率測定方法である。
SUMMARY OF THE INVENTION The present invention measures the electrical resistance and temperature at a plurality of locations between mutually facing side faces in an arbitrary cross section of wood, and calculates the water content estimating equation obtained in advance by multiple regression analysis. Substituting into the multiple regression equation to determine the moisture content of each part between the side surfaces of the cross section, furthermore, at a plurality of positions between the side surfaces in a direction orthogonal to the side surface and a cross section at a position close to the cross section. The electric resistance and the temperature are measured, and the water content is determined in the same manner as described above. Then, based on the moisture content data based on the temperature and the electric resistance between the mutually orthogonal side surfaces, the back projection method of back-projecting the moisture content onto a predetermined cross section is used to reduce the size of a predetermined divided area inside the wood. This is a wood moisture content measurement method in which the moisture content of a region is calculated and the moisture content distribution inside the wood is determined.

【0011】まず、木材の長手方向に対して略直角で任
意の位置に第一断面及び第二断面を設定し、この第一断
面の相対する2側面に各々同数、例えば5対の電気抵抗
測定用の第一電極を設け、この第一電極を互いにほぼ等
間隔に設定し、次にこの第二断面の上記第一断面で上記
第一電極が設けられた2側面以外の相対する2側面にも
同様に各々同数、例えば5対の電気抵抗測定用の第二電
極を設け、この第二電極も互いにほぼ等間隔に設定す
る。
First, a first section and a second section are set at arbitrary positions substantially perpendicular to the longitudinal direction of the wood, and the same number, for example, 5 pairs of electric resistance measurements are made on two opposite sides of the first section. First electrodes are provided at substantially equal intervals to each other, and then on the two opposite sides of the second section other than the two sides on which the first electrodes are provided in the first section. Similarly, the same number, for example, five pairs of second electrodes for measuring electric resistance are provided, and the second electrodes are also set at substantially equal intervals.

【0012】そして、上記第一断面近傍には、上記第一
電極が取り付けられた2側面のうちの一方の側面から木
材の中心へ向かって差し込まれ上記第一電極の対と等し
い数、例えば5個の第一熱電対等の温度センサが設けら
れ、上記第二断面近傍にも同様に、上記第二電極が取り
付けられた2側面のうちの一方の側面から木材の中心へ
向かって差し込まれ上記第二電極の対と等しい数、例え
ば5個の第二熱電対等の温度センサが設けられている。
[0012] In the vicinity of the first section, one of the two side surfaces to which the first electrode is attached is inserted toward the center of the wood, and the number equal to the number of the first electrode pairs, for example, 5 Temperature sensors, such as a first thermocouple, are also provided in the vicinity of the second section, and similarly, one of the two side surfaces to which the second electrode is attached is inserted from one side surface toward the center of wood, and A number of temperature sensors, such as five second thermocouples, are provided, equal in number to the two electrode pairs.

【0013】そして、上記第一断面と上記第二断面につ
いて各々複数カ所、この場合5カ所について電気抵抗値
と材内温度が計測される。この計測後、上記第一断面を
上記一対の第一電極の設定位置間の分割部分である小試
片に均等に互いに平行に5分割し、上記第二断面を同様
に上記一対の第二電極の設定位置間の分割部分である小
試片に均等に互いに平行に5分割する。ここで、第一断
面と第二断面は対になっている電極の方向が互いに直角
であり、第一断面と第二断面は互いに直角方向に分割さ
れて小試片が形成される。次に、各々5分割されたこの
小試片の含水率を全乾法で測定し、全乾法による含水率
を目的変数、上記各電気抵抗値と上記各材内温度を説明
変数として重回帰分析を行ない、上記各小試片ごとの含
水率を推定する重回帰式を求める。
[0013] Then, the electrical resistance value and the in-material temperature are measured at a plurality of locations, in this case, at five locations in each of the first section and the second section. After this measurement, the first section is equally divided into five small specimens, which are divisions between the set positions of the pair of first electrodes, parallel to each other, and the second section is similarly divided into the pair of second electrodes. Are equally divided into five small test pieces, which are divisions between the set positions. Here, the directions of the paired electrodes of the first section and the second section are perpendicular to each other, and the first section and the second section are divided at right angles to each other to form a small specimen. Next, the water content of each of the small test pieces divided into 5 was measured by the dry method, and the water content by the dry method was used as an objective variable, and the electric resistance value and the temperature in each material were used as multiple explanatory variables. Analysis is performed to obtain a multiple regression equation for estimating the water content of each small specimen.

【0014】そして、含水率を求める被測定木材は、上
記基準木材と同様に第一断面と第二断面を設定し第一電
極、第二電極、第一温度センサ、第二温度センサが取り
付けられ、上記小試片に相当する部位ごとの電気抵抗値
と材内温度が計測される。そして、この電気抵抗値と材
内温度を上記重回帰式に代入して各部位ごとの含水率を
算出する。
The wood to be measured for which the moisture content is to be determined has a first section and a second section similar to the above-mentioned reference wood, and the first electrode, the second electrode, the first temperature sensor, and the second temperature sensor are attached. Then, the electrical resistance value and the in-material temperature of each part corresponding to the small specimen are measured. Then, the electric resistance value and the in-material temperature are substituted into the multiple regression equation to calculate the water content for each part.

【0015】次に縦横の各小試片部分の含水率をもと
に、その含水率を所定断面に逆投影する逆投影法によっ
て、被測定木材内部の木口断面を上記小試片の数を乗じ
た数、即ち均等に5×5の25分割された各小領域の含
水率を演算し、被測定木材の含水率を非破壊的にかつ連
続的に測定する。
Next, based on the water content of each of the small and vertical small sample portions, the cross section of the inside of the wood to be measured is subjected to a backprojection method in which the water content is back-projected to a predetermined cross section. The multiplied number, that is, the water content of each divided 5 × 5 divided into 25 regions is calculated, and the water content of the measured wood is measured nondestructively and continuously.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施形態につい
て、図面に基づいて説明する。図1〜図5はこの発明の
一実施形態を示すもので、まず含水率の推定式を求める
ための供試木である木材12に、木材12の長手方向に
沿って四カ所の任意断面1、2、3、4を設定する。任
意断面1、2、3、4は比較的近くに設定されている。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 5 show an embodiment of the present invention. First, a wood 12 as a test tree for obtaining an equation for estimating a water content is provided with four arbitrary cross sections 1 along the longitudinal direction of the wood 12. 2, 3, and 4 are set. The arbitrary cross sections 1, 2, 3, 4 are set relatively close.

【0017】任意断面1には、図2に示すように、任意
断面1の相対する2側面に、各々5本の電気抵抗測定用
の針状の電極5a、5b、5c、5d、5e、5A、5
B、5C、5D、5Eがほぼ等間隔に設けられ、木材1
2内部に浅く差し込まれている。任意断面2には、図3
に示すように、任意断面1で電極5A、5B、5C、5
D、5Eが設けられた側面から5本の温度センサである
熱電対7A、7B、7C、7D、7Eが、電極5a〜5
e、5A〜5E間方向に、ほぼ等間隔に木材12の中心
付近にまで差し込まれている。任意断面3には、図4に
示すように任意断面1に設けられた電極5a〜5e、5
A〜5Eが差し込まれている2側面と直交する側面に、
各々5本の電気抵抗測定用の針状の電極6a、6b、6
c、6d、6e、6A、6B、6C、6D、6Eが、ほ
ぼ等間隔に設けられ、木材12内部に浅く差し込まれて
いる。任意断面4には、図5に示すように任意断面3で
電極6A〜6Eが設けられた側面から、5本の熱電対8
A、8B、8C、8D、8Eが、電極6a〜6e、6A
〜6E間方向に、ほぼ等間隔に木材12の中心付近にま
で差し込まれている。
As shown in FIG. 2, five arbitrary needle-like electrodes 5a, 5b, 5c, 5d, 5e, and 5A for measuring electric resistance are provided on two opposing side surfaces of the arbitrary cross section 1 as shown in FIG. , 5
B, 5C, 5D, 5E are provided at substantially equal intervals,
2 It is inserted shallowly inside. In the optional cross section 2, FIG.
As shown in the figure, the electrodes 5A, 5B, 5C, 5
The thermocouples 7A, 7B, 7C, 7D, and 7E, which are five temperature sensors, are provided on the electrodes 5a to 5E from the side on which D and 5E are provided.
In the direction between e and 5A to 5E, the wood 12 is inserted into the vicinity of the center of the wood 12 at substantially equal intervals. The arbitrary cross section 3 includes electrodes 5a to 5e, 5 provided on the arbitrary cross section 1 as shown in FIG.
On the side surface orthogonal to the two side surfaces into which A to 5E are inserted,
Five needle-like electrodes 6a, 6b, 6 for measuring electric resistance
c, 6d, 6e, 6A, 6B, 6C, 6D, and 6E are provided at substantially equal intervals, and are inserted shallowly into the wood 12. As shown in FIG. 5, the arbitrary cross section 4 has five thermocouples 8 from the side where the electrodes 6A to 6E are provided.
A, 8B, 8C, 8D, 8E are electrodes 6a to 6e, 6A
The wood 12 is inserted into the vicinity of the center of the wood 12 at substantially equal intervals in the direction from to 6E.

【0018】そして、各電極間の電気抵抗を4端子法に
て測定し、また木材12内部の温度を測定する。次に、
任意断面1、3から厚さ3cmの木口試片9、10を採
取し、木口試片9を各々一対の電極5A、5a〜5E、
5eを含む小試片9A、9B、9C、9D、9Eに分割
する。小試片9A〜9Eは、互いに平行で同じ幅に形成
される。また木口試片10も同様に、各々一対の電極6
A、6a〜6E、6eを含む小試片10A、10B、1
0C、10D、10Eに分割し、小試片10A〜10E
は、互いに平行で同じ幅に形成され、小試片9A〜9E
に対して直角方向に位置している。そして、各小試片9
A〜10Eについて、各々全乾法で含水率を求める。そ
して、全乾法による含水率を目的変数、電気抵抗と温度
を説明変数として重回帰分析を行ない、各小試片9A〜
10Eにおける含水率推定式である重回帰式を求める。
Then, the electric resistance between the electrodes is measured by a four-terminal method, and the temperature inside the wood 12 is measured. next,
3 cm thick specimens 9 and 10 are sampled from arbitrary cross sections 1 and 3 and the specimen 9 is paired with a pair of electrodes 5A, 5a to 5E, respectively.
The sample is divided into small test pieces 9A, 9B, 9C, 9D and 9E containing 5e. The small test pieces 9A to 9E are formed to be parallel to each other and to have the same width. Similarly, the Kiguchi test piece 10 also has a pair of electrodes 6.
A, small specimens 10A, 10B, 1 including 6a to 6E, 6e
Divided into 0C, 10D and 10E, small specimens 10A to 10E
Are formed in the same width in parallel with each other, and small specimens 9A to 9E
Are located at right angles to. And each small sample 9
For each of A to 10E, the moisture content is determined by a completely dry method. Then, multiple regression analysis was performed using the moisture content as a target variable and the electrical resistance and temperature as explanatory variables by the completely dry method, and each small specimen 9A to
A multiple regression equation, which is an equation for estimating the water content at 10E, is obtained.

【0019】次に、これから含水率を求める木材12に
対して、長手方向に沿って四カ所の任意断面を設定し、
先に含水率を求めた木材12と同様に、二つの任意断面
には各々5対の電極が取り付けられ、その他二つの任意
断面には各々5本の熱電対がセットされ、各電気抵抗と
各温度が測定される。この電気抵抗と温度の値を上記の
重回帰式に代入して含水率を算出する。このとき含水率
は、この木材12の各任意断面を各々5等分した、小試
片9A〜10Eに相当する部位ごとに算出する。さら
に、逆投影法によって、木材12内部の木口断面を碁盤
の目状に5×5の25分割した小領域ごとの含水率が演
算され、これを材内の含水率分布図として表示する。
Next, four arbitrary cross sections are set along the longitudinal direction of the wood 12 from which the moisture content is to be determined.
As in the case of the wood 12 whose moisture content was previously determined, five pairs of electrodes are attached to two arbitrary cross sections, and five thermocouples are set to the other two arbitrary cross sections. The temperature is measured. The values of the electric resistance and the temperature are substituted into the above multiple regression equation to calculate the water content. At this time, the water content is calculated for each part corresponding to the small test pieces 9A to 10E obtained by dividing each arbitrary cross section of the wood 12 into five equal parts. Further, the water content of each small area obtained by dividing the cross-section of the inside of the wood 12 into 5 × 5 divided into 25 sections by a back-projection is calculated by the back projection method, and this is displayed as a water content distribution map in the material.

【0020】この逆投影法は、ある断面についての所定
方向の抵抗値を、その方向の側面間の含水率に対応する
投影データとし、その抵抗値の分布をその断面について
求め、その投影データである抵抗値をその断面の投影方
向の0〜180度の範囲又は0〜360度の範囲につい
て求め、これをフーリエ変換及び逆フーリエ変換して、
投影データから断面データの強度分布を算出するもので
ある。この問題は数学的に、1917年Radonによ
って解かれており、今日においては断層画像を得るCT
やMR等の医療器械に広く応用されている。ここでは、
互いに直交する方向に走査して投影データを各々取り、
これをもとに逆投影して断面の含水率の分布を得るもの
である。
In the back projection method, a resistance value in a predetermined section in a predetermined direction is set as projection data corresponding to a moisture content between side surfaces in the direction, and a distribution of the resistance value is obtained for the section. A certain resistance value is obtained for a range of 0 to 180 degrees or a range of 0 to 360 degrees in the projection direction of the cross section, and this is subjected to Fourier transform and inverse Fourier transform,
This is to calculate the intensity distribution of the cross-sectional data from the projection data. This problem was mathematically solved by Radon in 1917, and nowadays CT
Widely applied to medical instruments such as MR and MR. here,
Scan in orthogonal directions to obtain projection data,
The distribution of the moisture content of the cross section is obtained by back-projecting based on this.

【0021】この発明の木材含水率測定方法によれば、
供試木を非破壊的にかつ連続的に、木材内部の含水率を
推定し、木口断面の含水率分布図として表示することが
できる。そして、被測定物である木材に電極と熱電対を
所定位置に設け、乾燥機にセットするだけで、高温・高
湿度で稼働中の乾燥を中断することなく、木材内部の含
水率情報を得ることができ、全乾法による含水率の測定
のように小試片を作る必要がなく、簡単で作業効率が良
い。また、推定された含水率は正確で、乾燥材の品質管
理を確実に行なうことができる。乾燥スケジュール等の
違いによる含水率変化の追随、あるいは、その推移等を
視覚的に容易に知ることができる。これにより乾燥損傷
等を未然に防止することができ、乾燥の低コスト化、操
作の完全自動化を図ることができる。つまり乾燥工程で
の含水率むらを少なくするとともに、均一な含水率の木
材を加工工程へ供給するための含水率管理システムの構
築が可能となることから、製材工場、集成材工場、木質
住宅メーカ等の木材関連産業に広く利用されることが期
待される。本発明を応用した含水率分布測定装置は、比
較的容易に工場の乾燥システムに導入することが可能で
ある。
According to the wood moisture content measuring method of the present invention,
It is possible to non-destructively and continuously estimate the water content of the test tree and display it as a water content distribution diagram of the cross section of the wood. Then, by providing electrodes and thermocouples at predetermined positions on the wood to be measured and setting them in a dryer, the moisture content information inside the wood is obtained without interrupting drying during operation at high temperature and high humidity. It does not need to make small specimens as in the measurement of water content by the dry method, and is simple and has good work efficiency. Further, the estimated moisture content is accurate, and quality control of the desiccant can be reliably performed. It is possible to easily follow the change in the water content due to a difference in the drying schedule or the like, or to visually easily know the change or the like. Thereby, drying damage and the like can be prevented beforehand, and the cost of drying can be reduced and the operation can be completely automated. In other words, since the water content unevenness in the drying process can be reduced and a water content management system for supplying wood with a uniform water content to the processing process can be constructed, lumber mills, glued lumber mills, and wooden house manufacturers It is expected to be widely used in wood-related industries such as. The moisture content distribution measuring device to which the present invention is applied can be relatively easily introduced into a factory drying system.

【0022】[0022]

【実施例】以下、具体的な実施例を挙げて本発明を詳細
に説明する。まず、この実施例の含水率を推定する重回
帰式を求めるための供試材である木材12は、杉心持ち
柱材(12cm角、長さ50cm、含水率40〜140
%、背割り無し、18本)を用い、乾燥条件は、温度を
常温から100℃(18条件)、期間を約3〜30日間
とし、仕上がり含水率は約19〜55%である。
The present invention will be described in detail below with reference to specific examples. First, wood 12 as a test material for obtaining a multiple regression equation for estimating the water content in this embodiment is a cedar core material (12 cm square, 50 cm in length, water content 40 to 140).
%, No spine split, 18 pieces), and drying conditions are a temperature from normal temperature to 100 ° C. (18 conditions), a period of about 3 to 30 days, and a finished water content of about 19 to 55%.

【0023】電極5a〜5e、6A〜6eは、例えば径
2mm、長さ43mmのステンレス釘を用い、任意断面
1、3には、相対する2側面で、一方の端部から12、
36、84、108mmの位置に、電極5A〜5e、6
A〜6eを挿入し、4端子法にて電気抵抗を測定した。
そして任意断面2、4の一側面には、電極と同様に一方
の端部から12、36、84、108mmの位置に、径
2mm、深さ60mmの下穴をあけ、この下穴にそれぞ
れ熱電対7A〜7E、8A〜8Eを挿入し、木材12の
内部温度を計測した。
The electrodes 5a to 5e and 6A to 6e are made of, for example, stainless steel nails having a diameter of 2 mm and a length of 43 mm.
The electrodes 5A to 5e, 6 are located at positions of 36, 84, 108 mm.
A to 6e were inserted, and the electric resistance was measured by a four-terminal method.
Then, a prepared hole having a diameter of 2 mm and a depth of 60 mm is formed on one side surface of the arbitrary cross section 2 or 4 at a position of 12, 36, 84, or 108 mm from one end similarly to the electrode. Pairs 7A to 7E and 8A to 8E were inserted, and the internal temperature of the wood 12 was measured.

【0024】木材12がおおよそ希望の含水率に達した
と思われる時、ただちに任意断面1、3から厚さ3cm
の木口試片9、10を採取し、これを一対の電極5A、
5a〜6E、6eを含む小試片9A〜9E、10A〜1
0Eを作り、各小試片について全乾法で含水率を求め
た。
As soon as the wood 12 seems to have reached the desired moisture content, an arbitrary section 1, 3 to 3 cm thick
Samples 9 and 10 are collected and used as a pair of electrodes 5A,
Small specimens 9A to 9E including 5a to 6E and 6e, 10A to 1
0E was prepared, and the water content of each small test piece was determined by a completely dry method.

【0025】推定含水率範囲を100%以下として、目
的変数に全乾法による含水率(M.C;%)、説明変数
に電気抵抗(R;kΩ)及び材内温度(t;℃)とし
て、含水率に対する電気抵抗と温度との関係を重回帰分
析により求めた。
The estimated moisture content range is set to 100% or less, and the objective variable is the moisture content (MC;%) by the completely dry method, and the explanatory variables are electric resistance (R; kΩ) and temperature in the material (t; ° C). The relationship between electric resistance and temperature with respect to water content was determined by multiple regression analysis.

【0026】その結果、含水率を推定する重回帰式は、
以下の通りとなった。 M.C=−0.144×R−0.532×t+70.7
25
As a result, the multiple regression equation for estimating the water content is
It was as follows. MC = −0.144 × R−0.532 × t + 70.7
25

【0027】次に、含水率を求める木材は、木材12と
同様に杉心持ち柱材(12cm角、長さ50cm、平均
含水率73%、背割り無し)で、乾燥温度を常温とし、
長手方向に沿って四カ所の任意断面を設定し、木材12
と同様に、二つの任意断面には電極を取り付け、その他
二つの任意断面に熱電対をセットし、電気抵抗と温度を
測定する。この電気抵抗と温度の値を上記の重回帰式に
代入し、この木材の電極が取り付けられた二つの任意断
面の含水率を算出する。そして、逆投影法によって、木
材内部の木口断面を碁盤の目状に5×5の25分割した
小領域ごとの含水率を演算し、図6に示した。
Next, the wood for which the moisture content is to be determined is a pillar material having a cedar core (12 cm square, 50 cm in length, an average moisture content of 73%, no split) as in the case of the wood 12, and the drying temperature is normal temperature.
Four arbitrary sections are set along the longitudinal direction, and timber 12
Similarly to the above, electrodes are attached to two arbitrary cross sections, and thermocouples are set to the other two arbitrary cross sections, and electric resistance and temperature are measured. The values of the electric resistance and the temperature are substituted into the above-described multiple regression equation, and the water content of the two arbitrary cross sections to which the wood electrode is attached is calculated. Then, the water content of each of the small regions obtained by dividing the cross section of the inside of the wood into 5 grids of 5 × 5 by a back projection method in a grid pattern was calculated, and the results are shown in FIG.

【0028】また、上記算出結果を確認するために、こ
の電気抵抗とこの温度を計測した後、直ちに電極が取り
付けられた二つの任意断面付近から厚さ3cmの木口試
片を各一枚採材し、この小口試片を5×5の25分割に
して小試片を作り、この小試片の含水率を全乾法で求
め、この2枚の木口試片の平均値を図7に示した。
In order to confirm the above calculation results, immediately after measuring the electric resistance and the temperature, one piece of a 3 cm thick wood tip specimen was sampled from the vicinity of any two arbitrary cross sections where the electrodes were attached. Then, the small test piece was divided into 25 parts of 5 × 5 to make a small test piece, and the water content of the small test piece was obtained by a completely dry method. The average value of the two wood test pieces is shown in FIG. Was.

【0029】この結果、図6、図7は差が少なく、この
発明の木材含水率測定方法は実用精度上問題がなく、非
破壊的に木材中心部等の含水率が測定可能であることが
判明した。この木材12のように乾燥温度が常温で、比
較的高含水率域での含水率測定が可能である。
As a result, the difference between FIG. 6 and FIG. 7 is small, and the method for measuring the water content of wood of the present invention has no problem in practical accuracy, and it is possible to non-destructively measure the water content of the center of wood. found. As in the case of the wood 12, the drying temperature is normal temperature, and the moisture content can be measured in a relatively high moisture content region.

【0030】次に、含水率を求める他の木材は、先に含
水率を求めた木材12と同様に杉心持ち柱材(12cm
角、長さ50cm、平均含水率73%、背割り無し)
で、乾燥温度を50℃とし、木材12と同様に電極と熱
電対をセットし、電気抵抗と温度を測定する。この電気
抵抗と温度の値を上記の重回帰式に代入し、この木材の
電極が取り付けられた二つの任意断面の含水率を算出す
る。そして、逆投影法によって、木材内部の木口断面を
碁盤の目状に5×5の25分割した小領域ごとの含水率
を演算し、図8に示した。
Next, the other wood for which the moisture content is to be determined is the same as the wood 12 for which the moisture content was previously determined.
(Square, length 50cm, average moisture content 73%, no split)
Then, the drying temperature is set to 50 ° C., the electrodes and the thermocouple are set as in the case of the wood 12, and the electric resistance and the temperature are measured. The values of the electric resistance and the temperature are substituted into the above-described multiple regression equation, and the water content of the two arbitrary cross sections to which the wood electrode is attached is calculated. Then, the back panel projection method was used to calculate the water content of each of the small regions obtained by dividing the cross section of the wood inside the wood into 5 × 5 divided into 25 sections in a grid pattern, and the results are shown in FIG.

【0031】また、この電気抵抗とこの温度を計測した
後、上記算出結果を確認するために、直ちに電極が取り
付けられた二つの任意断面付近から厚さ3cmの木口試
片を各一枚採材し、この小口試片を5×5の25分割に
して小試片を作り、この小試片の含水率を全乾法で求
め、この2枚の木口試片の平均値を図9に示した。
After measuring the electric resistance and the temperature, in order to confirm the above calculation results, one sample of a 3 cm-thick wood-mouth specimen was immediately sampled from the vicinity of two arbitrary cross-sections where electrodes were attached. Then, the small test piece was divided into 25 pieces of 5 × 5 to make a small test piece, and the moisture content of the small test piece was determined by a completely dry method. The average value of the two wood test pieces is shown in FIG. Was.

【0032】この結果からも、実用精度上問題がなく、
非破壊的に中心部等の含水率が測定可能であることが判
明した。この木材のように低含水率及び高温域において
も含水率測定が可能で、連続的に乾燥中の含水率の推定
等が可能である。
From this result, there is no problem in practical accuracy.
It was found that the water content of the center and the like could be measured nondestructively. The moisture content can be measured even in the low moisture content and high temperature regions as in the case of this wood, and the moisture content during continuous drying can be estimated.

【0033】[0033]

【発明の効果】この発明の木材含水率測定方法は、乾燥
過程中の木材の任意断面を非破壊的かつ連続的に測定
し、乾燥スケジュール等の違いによる含水率変化や、そ
の推移などを視覚的に容易に知ることができる。また、
乾燥損傷等を未然に防止することができ、低コスト乾
燥、乾燥操作の自動化等を容易に可能にする。
According to the method for measuring the moisture content of wood of the present invention, an arbitrary cross section of wood during the drying process is measured nondestructively and continuously, and a change in moisture content due to a difference in a drying schedule and the transition thereof are visually observed. Can easily be known. Also,
Drying damage can be prevented beforehand, and low-cost drying, automation of the drying operation, and the like can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の木材含水率測定方法の一実施形態の
供試木を示す斜視図である。
FIG. 1 is a perspective view showing a test tree of one embodiment of a method for measuring wood moisture content according to the present invention.

【図2】図1における任意断面1と電極5a、5b、5
c、5d、5e、5A、5B、5C、5D、5Eを示す
縦断面図である。
FIG. 2 shows an arbitrary cross section 1 and electrodes 5a, 5b, 5 in FIG.
It is a longitudinal section showing c, 5d, 5e, 5A, 5B, 5C, 5D, and 5E.

【図3】図1における任意断面2と熱電対7A、7B、
7C、7D、7Eを示す縦断面図である。
FIG. 3 shows an arbitrary cross section 2 and thermocouples 7A and 7B in FIG.
It is a longitudinal cross-sectional view which shows 7C, 7D, and 7E.

【図4】図1における任意断面3と電極6a、6b、6
c、6d、6e、6A、6B、6C、6D、6Eを示す
縦断面図である。
FIG. 4 shows an arbitrary cross section 3 and electrodes 6a, 6b, 6 in FIG.
It is a longitudinal section showing c, 6d, 6e, 6A, 6B, 6C, 6D, and 6E.

【図5】図1における任意断面4と熱電対8A、8B、
8C、8D、8Eを示す縦断面図である。
FIG. 5 shows an arbitrary cross section 4 and thermocouples 8A and 8B in FIG.
It is a longitudinal cross-sectional view which shows 8C, 8D, and 8E.

【図6】この発明の木材含水率測定方法による、木材の
常温乾燥時の含水率を示す木口面図である。
FIG. 6 is a front view showing the water content of wood at room temperature drying according to the wood water content measurement method of the present invention.

【図7】図6の木材の全乾法による含水率を示す木口面
図である。
FIG. 7 is a front view showing the moisture content of the wood of FIG. 6 by a completely dry method.

【図8】この発明の木材含水率測定方法による、木材の
高温乾燥時の含水率を示す木口面図である。
FIG. 8 is a front view showing the moisture content of wood at the time of high-temperature drying by the wood moisture content measuring method of the present invention.

【図9】図8の木材の全乾法による含水率を示す木口面
図である。
FIG. 9 is a front view showing the moisture content of the wood of FIG. 8 according to a completely dry method.

【符号の説明】[Explanation of symbols]

1,2,3,4 任意断面 5A〜5E,5a〜5e、6A〜6E,6a〜6e
電極 7A〜7E,8A〜8E 熱電対 9,10 木口試片 9A〜9E,10A〜10E 小試片 12 木材
1, 2, 3, 4 Arbitrary cross section 5A to 5E, 5a to 5e, 6A to 6E, 6a to 6e
Electrode 7A-7E, 8A-8E Thermocouple 9,10 Kiguchi 9A-9E, 10A-10E Small specimen 12 Wood

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 木材の任意断面において互いに対面する
側面間の複数カ所の電気抵抗と温度を測定し、この値
を、あらかじめ重回帰分析により求めた含水率推定式で
ある重回帰式に代入して各々上記断面の上記側面間の各
部位の含水率を求め、さらに上記断面と近接した位置の
断面であって上記側面と直交する方向の側面間の複数カ
所の電気抵抗と温度を測定し、上記と同様に含水率を求
め、この互いに直交する各側面間の温度及び電気抵抗に
基づく含水率データをもとにして、この含水率を所定の
断面に逆投影する逆投影法によって、木材内部の所定の
分割区域の小領域の含水率を算出し、木材内部の含水率
分布を求める木材含水率測定方法。
1. An electric resistance and a temperature at a plurality of locations between side faces facing each other in an arbitrary cross section of wood are measured, and these values are substituted into a multiple regression equation which is a water content estimation equation previously obtained by a multiple regression analysis. Determine the moisture content of each part between the side surfaces of the cross section, respectively, and further measure the electrical resistance and temperature at a plurality of locations between the side surfaces in a direction orthogonal to the side surface in a cross section at a position close to the cross section, The water content is determined in the same manner as described above, and based on the water content data based on the temperature and the electric resistance between the mutually orthogonal sides, the back projection method of back-projecting the water content onto a predetermined cross section is used to estimate the inside of the wood. A method for calculating the water content of a small area in a predetermined divided area to obtain a water content distribution inside the wood.
【請求項2】 測定対象となる被測定木材とこの被測定
木材と同様の寸法で同様の状態に置かれ含水率測定の基
礎となる基準木材を用意し、この基準木材の長手方向に
対して略直角で任意の位置に設定された第一断面及び第
二断面と、この第一断面の相対する2側面に互いに対向
して複数対設けられほぼ等間隔に位置する電気抵抗測定
用の複数対の第一電極と、この第二断面の上記第一断面
で電極が設けられた2側面と直交する2側面に互いに対
向して複数対設けられほぼ等間隔に位置する電気抵抗測
定用の第二電極と、上記第一断面近傍に設けられ上記第
一電極が取り付けられた2側面のうちの一方の側面から
木材の中心へ向かって差し込まれ上記第一電極の対と同
数の第一温度センサと、上記第二断面近傍に設けられ上
記第二電極が取り付けられた2側面のうちの一方の側面
から木材の中心へ向かって差し込まれ上記第二電極の対
と同数の第二温度センサが設けられ、 上記第一断面と上記第二断面について各々複数の電気抵
抗値と材内温度を計測し、この計測後に、上記第一断面
を含む木材試料を上記一対の第一電極の設定位置を含む
小試片に均等に互いに平行に分割するとともに、上記第
二断面を含む木材試料を上記一対の第二電極の設定位置
を含む小試片に均等に互いに平行に分割し、これら小試
片の含水率を全乾法で測定し、全乾法による含水率を目
的変数、上記各電気抵抗値と上記各材内温度を説明変数
として重回帰分析を行ない、上記各電極間毎の含水率を
推定する重回帰式を求め、 含水率を求める被測定木材は、上記基準木材と同様に第
一断面と第二断面を設定し第一電極、第二電極、第一温
度センサ、第二温度センサを取り付け、上記各電極間に
相当する部位ごとの電気抵抗値と材内温度を計測し、こ
の電気抵抗値と材内温度を上記重回帰式に代入すること
によって各電極間の部位毎の含水率を算出し、 この互いに直交する2側面間の含水率をもとに所定の断
面にその含水率を逆投影する逆投影法によって、上記被
測定木材内部を上記各電極間の小試片の数同士を乗じた
数に分割された各小領域の含水率を演算し、非破壊的に
かつ連続的に上記被測定木材の含水率分布を得ることを
特徴とする木材含水率測定方法。
2. A measurement target wood to be measured and a reference wood which is placed in a similar state with the same dimensions as the measurement target wood and is used as a basis for moisture content measurement, are prepared with respect to the longitudinal direction of the reference wood. A first cross section and a second cross section set at an arbitrary position at a substantially right angle, and a plurality of pairs for opposing each other are provided on two opposing side surfaces of the first cross section and located at substantially equal intervals. And a plurality of pairs of second electrodes for measuring electrical resistance, which are provided in a plurality of pairs facing each other on two side surfaces orthogonal to the two side surfaces on which the electrodes are provided in the first cross section of the second cross section, and located at substantially equal intervals. An electrode and the same number of first temperature sensors as the number of pairs of the first electrodes inserted from one of the two side surfaces provided near the first cross section and having the first electrode attached thereto toward the center of the wood. , The second electrode is provided near the second section, The same number of second temperature sensors as the pair of the second electrodes are provided to be inserted from one of the two side surfaces toward the center of the wood, and a plurality of the second temperature sensors are provided for each of the first section and the second section. The electrical resistance value and the in-material temperature are measured, and after this measurement, the wood sample including the first cross section is divided into small specimens including the set positions of the pair of first electrodes evenly and parallel to each other, and The wood sample including the two cross sections is equally divided into small specimens including the set positions of the pair of second electrodes in parallel with each other, and the water content of these small specimens is measured by the dry method, and the water content by the dry method is measured. Rate as a target variable, the above-mentioned electrical resistance values and the above-mentioned respective temperatures in the material are used as explanatory variables, and multiple regression analysis is performed to obtain a multiple regression equation for estimating the water content for each of the above-mentioned electrodes. Set the first cross section and the second cross section in the same way as the above standard wood Attach one electrode, second electrode, first temperature sensor, second temperature sensor, measure the electrical resistance value and material temperature for each part corresponding to between the above electrodes, and measure the electrical resistance value and material temperature By substituting into the multiple regression equation, the water content of each part between the electrodes is calculated, and the backprojection method of back-projecting the water content on a predetermined cross section based on the water content between two mutually perpendicular sides is performed. Calculate the water content of each small area divided into a number obtained by multiplying the number of small test pieces between the electrodes by measuring the inside of the measured wood, and non-destructively and continuously hydrate the wood to be measured. A method for measuring wood moisture content, characterized by obtaining a water content distribution.
JP7656598A 1998-03-09 1998-03-09 Wood moisture content measurement method Expired - Fee Related JP2896130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7656598A JP2896130B1 (en) 1998-03-09 1998-03-09 Wood moisture content measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7656598A JP2896130B1 (en) 1998-03-09 1998-03-09 Wood moisture content measurement method

Publications (2)

Publication Number Publication Date
JP2896130B1 JP2896130B1 (en) 1999-05-31
JPH11258190A true JPH11258190A (en) 1999-09-24

Family

ID=13608765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7656598A Expired - Fee Related JP2896130B1 (en) 1998-03-09 1998-03-09 Wood moisture content measurement method

Country Status (1)

Country Link
JP (1) JP2896130B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014867A (en) * 2017-04-17 2017-08-04 张家港市检验检测中心 The method of resistance calibration moisture content measuring instrument indicating value

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289618B (en) * 2020-03-18 2023-03-21 中国林业科学研究院木材工业研究所 Method and device for determining mechanical strength of existing building in-service wood member
CN111426884A (en) * 2020-04-24 2020-07-17 东北林业大学 Method for mapping wood cross section resistance distribution
CN111781006B (en) * 2020-07-22 2023-08-29 江苏中烟工业有限责任公司 Tobacco leaf moisture content stability evaluation method in leaf wetting process
CN112378982A (en) * 2020-10-15 2021-02-19 中国林业科学研究院木材工业研究所 On-line detection method and device for water content of wood

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014867A (en) * 2017-04-17 2017-08-04 张家港市检验检测中心 The method of resistance calibration moisture content measuring instrument indicating value

Also Published As

Publication number Publication date
JP2896130B1 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
Mosley et al. Penetration of ambient fine particles into the indoor environment
ATE295541T1 (en) METHOD AND DEVICE FOR EXAMINING ACTIVE INGREDIENTS CANDIDATES AND FOR DETERMINING THEIR PHARMACOKINETIC PARAMETERS
CN106896032A (en) A kind of pipe tobacco, stem, reconstituted tobacco of determining cuts filler the method for uniformity
JP2896130B1 (en) Wood moisture content measurement method
JP5868800B2 (en) Evaluation method, evaluation apparatus and evaluation program for concrete property values
US7043970B2 (en) Method for monitoring wood-drying kiln state
CN104390932A (en) Method for detecting moisture content of wood on basis of infrared differential spectrum technology
Setzer et al. Freeze-thaw and deicing salt resistance of concrete testing by the CDF method CDF resistance limit and evaluation of precision
CN106225969A (en) A kind of timber drying stress appraisal method controlled for lumber quality
US5873182A (en) Kiln control based on changing shrinkage rate
Goncalves et al. Evaluating the salt content of salt-contaminated samples on the basis of their hygroscopic behavior. Part I: Fundamentals, scope and accuracy of the method
Schmid et al. Charring of timber—determination of the residual virgin cross section and charring rates
CN115166034A (en) Method for detecting wood structure defects by utilizing multipath stress waves
JP2002048514A (en) Method and system for measuring length change of sample
Reichardt et al. A parameterised equation to estimate soil hydraulic conductivity in the field
JPS58196450A (en) Detection of crack shape
Koc et al. Computer aided identification of the moisture transport parameters in spruce wood
JPS60135842A (en) Preparation of calibration curve
Resch et al. Drying Douglas-fir lumber: A computer simulation
Gallego et al. First results of the application of infrared thermography to the crack inspection in wooden beams
JP2997764B2 (en) Non-destructive inspection equipment for tree decay
Fuller et al. Factors that influence the prong test
Lebow et al. Use of a resistance-type moisture meter above the fiber saturation point
CN113092303A (en) Nondestructive testing method for water content of ancient building wood member
RU2696674C1 (en) Method of determining change in thermal resistance and coefficient of heat conductivity when external effect of counter heat flux originates in external wall based on results of thermophysical tests in natural conditions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees