JPH11258137A - Method and apparatus for evaluating form rolling workability of metallic material - Google Patents

Method and apparatus for evaluating form rolling workability of metallic material

Info

Publication number
JPH11258137A
JPH11258137A JP10082964A JP8296498A JPH11258137A JP H11258137 A JPH11258137 A JP H11258137A JP 10082964 A JP10082964 A JP 10082964A JP 8296498 A JP8296498 A JP 8296498A JP H11258137 A JPH11258137 A JP H11258137A
Authority
JP
Japan
Prior art keywords
indentation
evaluating
value
work hardening
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10082964A
Other languages
Japanese (ja)
Inventor
Tadatsugu Yoshida
忠継 吉田
Masakazu Yano
正和 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP10082964A priority Critical patent/JPH11258137A/en
Publication of JPH11258137A publication Critical patent/JPH11258137A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method for evaluating simply a bumpy shape of an edge part of an indentation transferred to a material to be processed in a form rolling process. SOLUTION: This evaluation method for form rolling workability of a metallic material includes process wherein a steel ball or a ball-head tool is pressed to a material to be processed with a predetermined load, a process wherein a size and a depth distribution of an indentation transferred to the material to be processed by the processing a measured, a process where in a work hardening coefficient (n) is obtained from a conversion graph or dynamic model, and a process wherein a transfer shape of an actual machine is evaluated by the conversion graph or dynamic model on the basis of the work hardening coefficient (n).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0001】本発明は、転造加工において被加工材に転
写された圧痕の縁部の凹凸形状を推定する評価試験方法
および装置に関する。
[0001] The present invention relates to an evaluation test method and apparatus for estimating an uneven shape of an edge of an indentation transferred to a workpiece in a rolling process.

【0002】[0002]

【従来の技術】ねじ溝などを転造加工により成形する際
に、工具が直接接触しない部分でも工具接触部近傍では
転写部の被加工材が加工により排除されて周囲に移動す
るために、変形を生じる。そのため加工ままの転写部を
直接製品として利用する場合には、この部分の形状変化
を考慮しないと機能上問題となる場合がある。しかし、
転写部近傍の変形には、被加工材の化学成分、熱処理履
歴、加工履歴などが影響するために、実機に近い条件の
転造試験を行うなど、試行錯誤により評価を行うことが
一般的であった。そのため、最終的な転写条件を決定す
るのに多くの時間とコストが発生し、迅速な開発の障害
となっていた。
2. Description of the Related Art When a thread groove or the like is formed by rolling, even in a portion where a tool does not directly contact, in the vicinity of a tool contact portion, a workpiece in a transfer portion is removed by machining and moves to the periphery. Is generated. Therefore, when the as-processed transfer portion is directly used as a product, a functional problem may occur unless the shape change of this portion is considered. But,
Since the deformation near the transfer part is affected by the chemical composition of the workpiece, heat treatment history, processing history, etc., it is common to evaluate by trial and error, such as performing a rolling test under conditions close to the actual machine. there were. Therefore, it takes much time and cost to determine the final transfer conditions, which has hindered rapid development.

【0003】[0003]

【発明が解決しようとする課題】以上に述べたように、
転造加工において被加工材の転造部の形状を簡便に予測
する方法や装置が無いために、実機に近い条件で試行錯
誤しなければならず、開発時間、コスト上問題であっ
た。即ち、転造加工において被加工材に転写された圧痕
の縁部の凹凸形状を簡便に評価する手法の開発が望まれ
ていた。
As described above, as described above,
Since there is no method or apparatus for easily predicting the shape of the rolled portion of the workpiece in the rolling process, trial and error must be performed under conditions close to the actual machine, which is a problem in development time and cost. That is, it has been desired to develop a method for easily evaluating the uneven shape of the edge of the indentation transferred to the workpiece in the rolling process.

【0004】[0004]

【課題を解決するための手段】本発明は、近年技術革新
が多く、技術進展が著しい計算機支援技術(以下、「C
AE」という。)により、従来の硬さ試験として知られ
ているブリネル試験の圧痕形状から、被加工材の転写特
性を評価することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a computer-assisted technology (hereinafter referred to as "C"), which has undergone many technological innovations in recent years and has made remarkable technological progress.
AE ". The purpose of the present invention is to evaluate the transfer characteristics of the workpiece from the indentation shape of the Brinell test known as a conventional hardness test.

【0005】即ち、課題を解決するための本発明の手段
として、請求項1の発明では、金属材料の転造加工性の
評価方法において、鋼球または球頭工具を平面状の被加
工材に所定荷重で押し込む工程、押し込みにより被加工
材に転写した圧痕の寸法および深さ分布を測定する工
程、換算グラフまたは力学モデルにより加工硬化指数n
値を求める工程、加工硬化指数n値をもとに換算グラフ
または力学モデルより実機の転写形状を評価する工程か
らなることを特徴とする。
[0005] That is, as means of the present invention for solving the problem, according to the invention of claim 1, in a method for evaluating the rolling workability of a metal material, a steel ball or a ball head tool is applied to a planar workpiece. A step of pressing with a predetermined load, a step of measuring the size and depth distribution of the indentation transferred to the workpiece by the pressing, a work hardening index n by a conversion graph or a dynamic model.
The method is characterized by a step of obtaining a value and a step of evaluating the transfer shape of the actual machine from a conversion graph or a dynamic model based on the work hardening index n value.

【0006】さらに、請求項2の発明では、金属材料の
転造加工性の評価装置において、鋼球または球頭工具を
平面状の被加工材に所定荷重で押し込む加工装置、押し
込みにより被加工材に転写した圧痕の寸法および深さ分
布を測定する接触式または非接触式の形状測定装置、形
状測定装置からの信号をもとに圧痕の寸法および縁部高
さ変化量を求める処理部、該圧痕の寸法および縁部高さ
変化量から所定の換算グラフまたは力学モデルにより加
工硬化指数n値を推定する処理部、加工硬化指数n値を
もとに換算グラフまたは力学モデルより実機の転写形状
を評価する処理部、および結果を出力する処理部からな
ることを特徴とする。
Further, according to the present invention, there is provided an apparatus for evaluating the formability of rolling of a metal material, wherein the steel ball or the ball-head tool is pushed into a flat workpiece by a predetermined load, and the workpiece is pushed into the workpiece. A contact or non-contact shape measuring device for measuring the size and depth distribution of the indent transferred to a processing unit for determining the size and the edge height variation of the indent based on a signal from the shape measuring device; A processing unit for estimating the work hardening index n value from the indentation size and the edge height change amount using a predetermined conversion graph or dynamic model, the transfer shape of the actual machine from the conversion graph or dynamic model based on the work hardening index n value. It is characterized by comprising a processing unit for evaluating and a processing unit for outputting the result.

【0007】本発明の作用について説明する。図1は本
発明の材料の転造加工性の評価試験システム、図2は本
発明の評価試験装置を示す図である。
The operation of the present invention will be described. FIG. 1 is a diagram showing an evaluation test system for rolling workability of a material of the present invention, and FIG. 2 is a diagram showing an evaluation test device of the present invention.

【0008】本発明の特徴は、従来試行錯誤で行ってい
た転造条件の最適化を図1および図2の評価試験で自動
的に行うので、迅速に安価に最適化を図れることであ
る。
A feature of the present invention is that the optimization of the rolling conditions, which has been conventionally performed by trial and error, is automatically performed by the evaluation tests of FIGS. 1 and 2, so that the optimization can be performed quickly and inexpensively.

【0009】図3は鋼球押し込みの圧痕形状に及ぼす被
加工材の加工硬化指数n値の影響を示す。鋼球の直径を
D、圧痕の直径をd、圧痕縁の押し込み面からの高さを
hとする。n値が大きい場合、即ち加工硬化が顕著に生
じる場合にはhが小であり、反対にn値が小の場合、即
ち加工硬化が生じない場合にはhが大であることが判
る。
FIG. 3 shows the effect of the work hardening index n of the workpiece on the indentation shape of the steel ball indentation. The diameter of the steel ball is D, the diameter of the indentation is d, and the height of the indentation edge from the pressed surface is h. When the n value is large, that is, when work hardening occurs remarkably, h is small, and when the n value is small, that is, when work hardening does not occur, h is large.

【0010】図4は図3の条件で圧痕の近傍のひずみ分
布を調べたものである。n値が大で加工硬化を生じる場
合は図中の圧痕からくさび状にひずみが集中しており、
この部分が硬くなって工具のように作用するのでhが小
であるのに対して、n値が小の場合はひずみが広がるの
で圧痕の縁部に盛り上がりが生じる。
FIG. 4 shows the results of examining the strain distribution near the indentation under the conditions shown in FIG. If the n value is large and work hardening occurs, the strain is concentrated in a wedge shape from the indentation in the figure,
When this portion is hardened and acts like a tool, h is small, whereas when the n value is small, the strain is widened, and the edge of the indentation rises.

【0011】図5は縦軸に鋼球押し込みの圧痕縁部の盛
り上がり高さhを鋼球直径Dで除して無次元化した高
さ、横軸に被加工材の加工硬化指数n値をとり、圧痕の
直径dを鋼球直径Dで除して無次元化したパラメーター
で示す。圧痕直径dが一定であれば、縁の高さhはn値
の単調減少関数である。これは、図4のようにhがひず
み分布を通じてn値と明確な力学的関係によって決まる
ことに対応している。即ち、hを測定してaが判れば図
5に示す換算グラフのbから被加工材のn値のcが決定
できる。
In FIG. 5, the vertical axis represents a dimensionless height obtained by dividing the bulging height h of the indentation edge of the steel ball indentation by the steel ball diameter D, and the horizontal axis represents the work hardening index n of the workpiece. It is shown as a dimensionless parameter obtained by dividing the diameter d of the indentation by the steel ball diameter D. If the indentation diameter d is constant, the edge height h is a monotonically decreasing function of the n value. This corresponds to the fact that h is determined by the n value and a clear mechanical relationship through the strain distribution as shown in FIG. That is, if h is measured and a is known, c of the n value of the workpiece can be determined from b in the conversion graph shown in FIG.

【0012】図6は製品の転造部分の縁の盛り上がり高
さHと被加工材の加工硬化指数n値の関係を、縦軸に縁
の盛り上がり高さH、横軸に被加工材の加工硬化指数n
値をとり示す。図5と同様に、n値のpが判れば、即ち
材料が決まれば、図6の換算グラフのqから製品の縁の
盛り上がり高さHのrは推定することができる。
FIG. 6 shows the relationship between the height H of the edge of the rolled portion of the product and the work hardening index n of the workpiece, the vertical height H of the edge on the vertical axis, and the processing of the workpiece on the horizontal axis. Hardening index n
Show the value. As in the case of FIG. 5, if p of the n value is known, that is, if the material is determined, r of the height H of the edge of the product can be estimated from q in the conversion graph of FIG.

【0013】[0013]

【発明の実施形態】本発明の実施形態を図1および図2
を用いて説明する。図2は本発明の材料の転造加工性の
評価装置である。装置は測定装置16、制御装置17、
演算装置18、出力装置15の4つの装置に大別され
る。
1 and 2 show an embodiment of the present invention.
This will be described with reference to FIG. FIG. 2 shows an apparatus for evaluating the rolling workability of the material of the present invention. The device is a measuring device 16, a control device 17,
The operation device 18 and the output device 15 are roughly classified into four devices.

【0014】測定装置16は、架台8とこれに取り付け
られた装置からなる。鋼球1は被加工材2に圧痕を生じ
させるために用いる工具である。試験片2は転造加工性
を評価する実機に用いる予定の被加工材から切り出した
もので、実機での転造加工面を鋼球1により圧痕を施す
面と一致させると、被加工材の化学成分、熱処理履歴、
加工履歴などの影響を考慮できるので、より精度良く実
機の転造加工性を評価できる。荷重計3は転造の際の工
具に加わる荷重を評価するために、試験片を設置する台
にロードセルを埋め込んだ構造とする。変位計4は鋼球
1の押し込みストロークを測定する。圧縮駆動装置5は
鋼球1を押し込むため荷重を発生するもので、制御性の
よい油圧式のものが望ましい。形状測定装置6は圧痕の
凹凸を測定するセンサーで、レーザー光線を用いる非接
触式が望ましいが、ダイヤモンドなどの探触子を用いる
接触式でも良い。試験片移動装置7は鋼球1で圧痕を加
工した試験片2を形状測定装置6に移動するために用い
るもので、マニピュレータにより試験片2を掴んで図2
の矢印で示すように移動する。
The measuring device 16 comprises a gantry 8 and a device attached thereto. The steel ball 1 is a tool used to generate an indentation on the workpiece 2. The test piece 2 was cut out from a work material to be used in an actual machine for evaluating rolling workability. When the rolled surface in the actual machine was matched with the surface on which the indentation was made by the steel ball 1, the test piece 2 was cut. Chemical composition, heat treatment history,
Since the influence of the processing history and the like can be considered, the rolling workability of the actual machine can be more accurately evaluated. The load cell 3 has a structure in which a load cell is embedded in a table on which a test piece is installed in order to evaluate the load applied to the tool during rolling. The displacement meter 4 measures the pushing stroke of the steel ball 1. The compression drive device 5 generates a load to push the steel ball 1 in, and is preferably a hydraulic type with good controllability. The shape measuring device 6 is a sensor for measuring the unevenness of the indentation, and is preferably a non-contact type using a laser beam, but may be a contact type using a probe such as diamond. The test piece moving device 7 is used to move the test piece 2 having the indentation formed by the steel ball 1 to the shape measuring device 6, and the test piece 2 is grasped by the manipulator, and FIG.
Move as indicated by the arrow.

【0015】制御装置17は、負荷制御装置9、形状測
定制御装置10、試験片移動制御装置11の3つの装置
に大別され、演算装置の信号に基づき、それぞれが測定
装置の負荷制御、形状測定制御、試験片移動制御を行
う。
The control device 17 is roughly divided into three devices: a load control device 9, a shape measurement control device 10, and a test piece movement control device 11. Performs measurement control and test piece movement control.

【0016】演算装置18は、寸法形状処理装置12、
変形抵抗推定装置13、転写形状評価装置14の三つの
装置に大別される。
The arithmetic unit 18 includes a dimension / shape processing unit 12,
It is roughly classified into three devices, a deformation resistance estimation device 13 and a transfer shape evaluation device 14.

【0017】図1は本発明の材料の転造加工性の評価シ
ステムである。図2の計測装置16により被加工材から
切り出した試験片2に直径Dの鋼球1を押し込んで、そ
の際、試験片2の表面に発生した圧痕の形状を形状測定
装置6により測定する。
FIG. 1 is a system for evaluating the rolling workability of a material according to the present invention. A steel ball 1 having a diameter D is pushed into a test piece 2 cut out from a workpiece by a measuring device 16 of FIG. 2, and the shape of an indentation generated on the surface of the test piece 2 is measured by a shape measuring device 6.

【0018】その結果は演算装置17に転送され、先
ず、寸法形状処理装置12で図3に示す圧痕の直径dと
縁の高さhが演算される。次に、変形抵抗装置13によ
り、図5の換算グラフを用いて試験片の加工硬化指数n
値が演算される。即ち、図5でd/Dの曲線が選択さ
れ、h/Dの値から図のa、b、cの順にn値が求めら
れる。換算グラフは近年技術進展が著しいCAEを用い
て精度良く求められる。また、換算グラフのかわりに直
接CAEに基づく力学モデルを用いると汎用性がある。
次に、転写形状評価装置14により実機の転写形状を評
価し、最適な工具形状および加工条件を求める。即ち、
実機の目標形状および潤滑等の境界条件が判明すれば、
図6のように転写形状と加工硬化指数n値とは1対1の
対応関係になり、図6の換算グラフを用いることにより
n値からp、q、rの順にHが求められ、実機の転写形
状を評価できる。換算グラフはCAEを用いて精度良く
求められる。また換算グラフの代りに直接CAEに基づ
く力学モデルを用いると汎用性がある。最適な加工条件
がみつかるまで、計算機を用いて最適化が図れるので、
時間および試験回数を削減できる。
The result is transferred to the arithmetic unit 17, and the dimension and shape processing unit 12 first calculates the diameter d of the indentation and the height h of the edge shown in FIG. Next, the work hardening index n of the test piece is measured by the deformation resistance device 13 using the conversion graph of FIG.
The value is calculated. That is, the curve of d / D is selected in FIG. 5, and the n value is obtained in the order of a, b, and c in the figure from the value of h / D. The conversion graph is obtained with high accuracy using CAE, whose technology has been remarkably advanced in recent years. Further, if a dynamic model based on CAE is directly used instead of the conversion graph, there is versatility.
Next, the transfer shape evaluation device 14 evaluates the transfer shape of the actual machine, and determines the optimum tool shape and processing conditions. That is,
Once the boundary conditions such as the target shape and lubrication of the actual machine are known,
As shown in FIG. 6, there is a one-to-one correspondence between the transfer shape and the work hardening index n, and H is obtained in the order of p, q, and r from the n by using the conversion graph of FIG. The transfer shape can be evaluated. The conversion graph is obtained with high accuracy using CAE. If a dynamic model based on CAE is directly used instead of the conversion graph, there is versatility. Until the optimal processing conditions are found, optimization can be performed using a computer.
Time and number of tests can be reduced.

【0019】[0019]

【実施例】表1および表2に実施例を示す。表1はボー
ルネジを転造で加工する際に、被加工材の熱処理履歴が
及ぼす溝の縁の盛り上がり高さHの実機測定結果と、本
発明の図1および図2の方法および装置を用いて求めた
推定結果を示す。実機測定結果で、焼鈍材は圧延まま材
に比べてHが小である。一方、推定結果も同様の結果と
なり、本発明の方法および装置が有用であることが判
る。
EXAMPLES Examples are shown in Tables 1 and 2. Table 1 shows the results of actual machine measurement of the height H of the groove edge exerted by the heat treatment history of the workpiece when the ball screw is formed by rolling, and the method and apparatus of FIGS. 1 and 2 of the present invention. The obtained estimation result is shown. As a result of actual machine measurement, H of the annealed material is smaller than that of the as-rolled material. On the other hand, the estimation result is similar to the above, indicating that the method and apparatus of the present invention are useful.

【0020】表2は、転造工具の形状を最適化させるた
めに、実際に型を作って試し加工により修正する試行錯
誤の回数、すなわち最適工具の試加工回数を、ボールネ
ジと軸受けのレースの場合で調べたものである。従来の
試行錯誤では複数回必要であったが、本発明の技術では
予め最適か否かを事前に解析モデルで検討できるので、
1回で最適化が図れることが判る。
Table 2 shows the number of trial-and-error times for actually forming a mold and correcting it by trial machining in order to optimize the shape of a rolling tool, that is, the number of trial machining of the optimal tool. It is a case that was examined. Conventional trial and error required multiple times, but with the technology of the present invention, it is possible to examine in advance whether it is optimal or not using an analytical model,
It can be seen that optimization can be achieved at one time.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明は、実機のスケールモデル試験機
を省略して、実機に近い条件で材料の転造加工性評価試
験が可能となるため、開発期間とコストを大幅に減少す
るのに効果がある。
According to the present invention, it is possible to evaluate the rollability of a material under conditions similar to those of an actual machine by omitting a scale model tester of the actual machine, thereby greatly reducing the development period and cost. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の材料の転造加工性評価システムを示す
図である。
FIG. 1 is a view showing a system for evaluating rolling workability of a material according to the present invention.

【図2】本発明の材料の転造加工性の評価装置を示す図
である。
FIG. 2 is a diagram showing an apparatus for evaluating the rolling workability of a material according to the present invention.

【図3】鋼球押し込みの圧痕形状と材料の加工硬化指数
n値の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the shape of an indentation of steel ball indentation and the work hardening index n value of a material.

【図4】鋼球押し込みのひずみ分布と加工硬化指数n値
の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the strain distribution of steel ball indentation and the work hardening index n value.

【図5】縁部高さと加工硬化指数n値の関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between an edge height and a work hardening index n value.

【図6】実機の縁部盛り上がり高さHと加工硬化指数n
値の関係を示すグラフである。
FIG. 6 shows the height H and the work hardening index n of the edge of the actual machine.
It is a graph which shows the relationship of a value.

【符号の説明】[Explanation of symbols]

1 鋼球 2 試験片 3 荷重計 4 変位計 5 圧縮駆動装置 6 形状測定装置 7 試験片移動装置 8 架台 9 負荷制御装置 10 形状測定制御装置 11 試験片移動制御装置 12 寸法形状処理装置 13 変形抵抗推定装置 14 転写形状評価装置 15 出力装置 16 測定装置 17 制御装置 18 演算装置 REFERENCE SIGNS LIST 1 steel ball 2 test piece 3 load meter 4 displacement meter 5 compression drive device 6 shape measuring device 7 test piece moving device 8 gantry 9 load control device 10 shape measuring control device 11 test piece moving control device 12 dimension and shape processing device 13 deformation resistance Estimation device 14 Transfer shape evaluation device 15 Output device 16 Measurement device 17 Control device 18 Arithmetic device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の転造加工性の評価方法におい
て、鋼球または球頭工具を平面状の被加工材に所定荷重
で押し込む工程、押し込みにより被加工材に転写した圧
痕の寸法および深さ分布を測定する工程、換算グラフま
たは力学モデルにより加工硬化指数n値を求める工程、
加工硬化指数n値をもとに換算グラフまたは力学モデル
により実機の転写形状を評価する工程からなることを特
徴とする金属材料の転造加工性の評価方法。
In a method for evaluating the rolling workability of a metal material, a step of pushing a steel ball or a ball-point tool into a planar workpiece with a predetermined load, and a dimension and depth of an indentation transferred to the workpiece by the pushing. Measuring a work distribution, obtaining a work hardening index n value by a conversion graph or a dynamic model,
A method for evaluating the rolling workability of a metal material, comprising a step of evaluating a transfer shape of an actual machine by a conversion graph or a dynamic model based on a work hardening index n value.
【請求項2】 金属材料の転造加工性の評価装置におい
て、鋼球または球頭工具を平面状の被加工材に所定荷重
で押し込む加工装置、押し込みにより被加工材に転写し
た圧痕の寸法および深さ分布を測定する接触式または非
接触式の形状測定装置、形状測定装置からの信号をもと
に圧痕の寸法および縁部高さ変化量を求める処理部、該
圧痕の寸法および縁部高さ変化量から所定の換算グラフ
または力学モデルにより加工硬化指数n値を推定する処
理部、加工硬化指数n値をもとに換算グラフまたは力学
モデルにより実機の転写形状を評価する処理部、および
結果を出力する処理部からなることを特徴とする金属材
料の転造加工性の評価装置。
2. An apparatus for evaluating the rolling workability of a metal material, comprising: a processing device for pushing a steel ball or a ball-point tool into a planar workpiece with a predetermined load; A contact or non-contact shape measuring device for measuring the depth distribution, a processing unit for obtaining the size of the indentation and an edge height change amount based on a signal from the shape measuring device, the size and the edge height of the indentation A processing unit for estimating the work hardening index n value from the change amount using a predetermined conversion graph or dynamic model, a processing unit for evaluating the transfer shape of the actual machine using the conversion graph or dynamic model based on the work hardening index n value, and the result An evaluation device for rolling workability of a metal material, characterized by comprising a processing section for outputting a value.
JP10082964A 1998-03-12 1998-03-12 Method and apparatus for evaluating form rolling workability of metallic material Pending JPH11258137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082964A JPH11258137A (en) 1998-03-12 1998-03-12 Method and apparatus for evaluating form rolling workability of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082964A JPH11258137A (en) 1998-03-12 1998-03-12 Method and apparatus for evaluating form rolling workability of metallic material

Publications (1)

Publication Number Publication Date
JPH11258137A true JPH11258137A (en) 1999-09-24

Family

ID=13788918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082964A Pending JPH11258137A (en) 1998-03-12 1998-03-12 Method and apparatus for evaluating form rolling workability of metallic material

Country Status (1)

Country Link
JP (1) JPH11258137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791880A (en) * 2014-01-23 2014-05-14 中国科学院长春光学精密机械与物理研究所 Device for accurate measurement of micro deformation of composite rod for space
CN105865955A (en) * 2016-03-23 2016-08-17 成都创源油气技术开发有限公司 Logging evaluation method for brittleness of shale

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791880A (en) * 2014-01-23 2014-05-14 中国科学院长春光学精密机械与物理研究所 Device for accurate measurement of micro deformation of composite rod for space
CN105865955A (en) * 2016-03-23 2016-08-17 成都创源油气技术开发有限公司 Logging evaluation method for brittleness of shale

Similar Documents

Publication Publication Date Title
Yang et al. Evaluation of change in material properties due to plastic deformation
JP5434622B2 (en) Break determination method and break determination apparatus in press forming simulation of thin plate
Han et al. Influence of metal forming parameters on surface roughness and establishment of surface roughness prediction model
Frącz et al. Aspects of verification and optimization of sheet metal numerical simulations process using the photogrammetric system
Harsch et al. Influence of scattering material properties on the robustness of deep drawing processes
Arunkumar A review of indentation theory
JP6399269B1 (en) Hardness estimation method for cold-worked parts and hardness-equivalent plastic strain curve acquisition method for steel
JP5758284B2 (en) Method for predicting the life of casting molds
JPH11258137A (en) Method and apparatus for evaluating form rolling workability of metallic material
Satošek et al. Study of influential parameters of the sphere indentation used for the control function of material properties in forming operations
Şimşir et al. A flow stress model for steel in cold forging process range and the associated method for parameter identification
JP2003311338A (en) Forming simulation method, and method for determining apparent coefficient of friction applied to the method
Mentink et al. Determining material properties of sheet metal on a press brake
US20030000268A1 (en) Sheet thickness detecting method and device therefor in bending machine, reference inter-blade distance detecting method and device therefor, and bending method and bending device
JP4415668B2 (en) Surface shape distortion amount calculation method and apparatus in molding process simulation
WO2014065325A1 (en) Device and method for detecting final punch depth in processing machine
KR100940685B1 (en) Method for Evaluating Friction Property of Steel Material Using Cup Drawing Experiment
Zaides et al. Automated complex for stabilized straightening of low-stiff cylindrical parts
CN113853605A (en) Method and device for determining main cause part of springback value deviation
JPH06154874A (en) Method and device for processing bottoming for press brake
JP2010115702A (en) Press machine for adjusting press forming mold and method for adjusting mold
KR100384732B1 (en) Determination of yield strength using continuous indentation test
KR100367205B1 (en) Determination of strain-hardening exponent and strength coefficient using continuous indentation test
JP2012086255A (en) Method of calculating load of press forming
CN117067669B (en) Automatic discharging control method and system for stamping die