JPH11255948A - Information transmission type molecule recognizing polymer, and preparation and use thereof - Google Patents

Information transmission type molecule recognizing polymer, and preparation and use thereof

Info

Publication number
JPH11255948A
JPH11255948A JP10686998A JP10686998A JPH11255948A JP H11255948 A JPH11255948 A JP H11255948A JP 10686998 A JP10686998 A JP 10686998A JP 10686998 A JP10686998 A JP 10686998A JP H11255948 A JPH11255948 A JP H11255948A
Authority
JP
Japan
Prior art keywords
molecule
polymer
target molecule
organic
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10686998A
Other languages
Japanese (ja)
Other versions
JP4036961B2 (en
Inventor
Toshibumi Takeuchi
俊文 竹内
Atsushi Matsui
淳 松井
Toshihiro Mizukami
利洋 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP10686998A priority Critical patent/JP4036961B2/en
Publication of JPH11255948A publication Critical patent/JPH11255948A/en
Application granted granted Critical
Publication of JP4036961B2 publication Critical patent/JP4036961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an information transmission type molecule recognizing polymer, capable of being preserved for a long period of time, and further, capable of detecting a target molecule simply as an object for measurement not requiring a special device. SOLUTION: This information transmission type molecule recognizing polymer is obtained by isolating and removing a target molecule from an organic polymer obtained by polymerizing in the co-presence of the target molecule and an organic molecule having an interaction with the target molecule, and has a molecular shape structure of the target molecule as a multiply cellular material. In this case, when the target molecule and the polymer interact each other, a change in an optical characteristics of the polymer occurs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特異的結合を利用
した物質の測定において、例えば、酵素基質反応あるい
は抗原抗体反応などの利用による物質の測定に代わる、
標的分子と特異的結合部位を有する分子認識物質(ポリ
マー)を利用した情報発信型分子認識高分子およびその
調製方法ならびに利用に関する。
The present invention relates to a method for measuring a substance utilizing specific binding, which is an alternative to the measurement of a substance utilizing, for example, an enzyme substrate reaction or an antigen-antibody reaction.
The present invention relates to an information-transmitting type molecular recognition polymer using a molecular recognition substance (polymer) having a target molecule and a specific binding site, a method for preparing and using the same.

【0002】[0002]

【従来の技術】生体内では、優れた分子認識能によっ
て、極めて特異性が高く、かつ高選択的に化学反応が進
行している。例えば酵素は、構造のわずかに異なる一連
の化合物の中から特定物質を厳密に分子認識し、その特
定物質の中の特定の位置のみに化学反応を行わせ、目的
生成物を選択的に生成している。このような、生体内の
巧妙な分子認識を模倣し、種々のバイオセンサー素子が
開発されている。
2. Description of the Related Art In a living body, a chemical reaction is extremely highly specific and highly selective due to its excellent molecular recognition ability. For example, an enzyme strictly recognizes a specific substance from a series of compounds having slightly different structures, causes a chemical reaction to occur only at a specific position within the specific substance, and selectively generates the target product. ing. Various biosensor elements have been developed by imitating such sophisticated in vivo molecular recognition.

【0003】これらのバイオセンサー素子は、例えば、
酵素基質反応を利用した素子の場合、高い基質選択性が
得られる。さらに、抗原抗体反応を利用したセンサー素
子も開発されており、抗体の特徴である非常に高い特異
性により、測定試料中に微量に含まれる物質の検出に広
く利用されている。
[0003] These biosensor elements are, for example,
In the case of a device utilizing an enzyme-substrate reaction, high substrate selectivity can be obtained. Further, a sensor element utilizing an antigen-antibody reaction has been developed, and is widely used for detecting a substance contained in a trace amount in a measurement sample due to the extremely high specificity characteristic of an antibody.

【0004】一方、生体内の特異的な反応を人工的な手
法で模倣する試みがなされている。近年、モレキュラー
インプリンティング法という技術が開発され、天然の抗
体を模倣した人工の分子認識物質が容易に調製できるよ
うになった(Wuff,G.:Angew.Chem.
Int.Ed.Engl.,34,1812−1832
(1995))。このモレキュラーインプリンティング
法で得られる分子認識物質は、標的分子と該標的分子と
相互作用を有する重合可能な有機分子(機能性モノマ
ー)、および該標的分子と前記機能性モノマーとを共に
架橋反応により重合させることができる架橋性モノマー
との共存下で重合させて得られた有機重合体から、前記
標的分子を遊離除去させて得られる、前記標的分子の分
子形状構造を多孔体として有する特徴をもつ。この人工
の分子認識物質(人工抗体)の製造方法と使用に関して
は既に特表平8−506320号で開示されている。そ
こにはこの人工抗体の利用に関する記述も見られ、イム
ノアッセイ、特に、ラジオイムノアッセイによる検出法
が記載されている。
On the other hand, attempts have been made to imitate a specific reaction in a living body by an artificial technique. In recent years, a technique called molecular imprinting has been developed, and artificial molecular recognition substances that mimic natural antibodies can be easily prepared (Wuff, G .: Angew. Chem.
Int. Ed. Engl. , 34, 1812-1832
(1995)). The molecular recognizing substance obtained by the molecular imprinting method includes a target molecule, a polymerizable organic molecule (functional monomer) having an interaction with the target molecule, and a cross-linking reaction between the target molecule and the functional monomer. The organic polymer obtained by polymerization in the presence of a crosslinkable monomer that can be polymerized is characterized by having the molecular shape structure of the target molecule as a porous body, obtained by free removal of the target molecule. . The production method and use of this artificial molecular recognizing substance (artificial antibody) have already been disclosed in Japanese Patent Publication No. Hei 8-506320. There is also a description about the use of this artificial antibody, which describes a detection method using an immunoassay, particularly a radioimmunoassay.

【0005】その方法は、既知量の標識された標的分子
と試料中の未知量の標的分子とを、競合的に人工の分子
認識物質(ポリマー)と反応させて、上清中の遊離の標
識された標的分子または、ポリマーに結合した標識され
た標的分子のいずれか一方を測定するアッセイ方法であ
る。
The method comprises reacting a known amount of a labeled target molecule and an unknown amount of a target molecule in a sample with an artificial molecular recognition substance (polymer) in a competitive manner to obtain a free labeled substance in the supernatant. This is an assay method for measuring either the labeled target molecule or the labeled target molecule bound to the polymer.

【0006】さらに、このモレキュラーインプリンティ
ングポリマーを利用したアッセイ法として、特開平8−
15160号では、かび臭物質の検出として、水晶振動
子の周波数変化あるいは、表面プラズモン共鳴を利用し
た光の共鳴角変化の利用による検出法を用いた方法が開
示されている。
Further, an assay method using the molecular imprinting polymer is disclosed in
No. 15160 discloses a method using a detection method based on a change in the frequency of a quartz oscillator or a change in the resonance angle of light using surface plasmon resonance as detection of a musty odor substance.

【0007】[0007]

【発明が解決しようとする課題】上記のバイオセンサー
素子は、酵素基質反応を利用した素子の場合、酵素反応
に基づく高い基質選択性が得られるが、酵素をセンサー
上に固定化させるための特殊な固定化技術を必要とす
る。また、酵素は、生物由来の物質であるため、安定性
に欠けることから、その取り扱いが慎重にならざるを得
ず、長期保存できないものが大半である。
In the case of the above-described biosensor element, a high substrate selectivity based on the enzyme reaction can be obtained in the case of an element utilizing an enzyme-substrate reaction, but a special technique for immobilizing the enzyme on the sensor is required. Requires immobilization technology. In addition, enzymes are substances derived from living organisms and therefore lack stability, so that most of them must be handled carefully and cannot be stored for a long time.

【0008】さらに、抗原抗体反応を利用したセンサー
素子では、高い特異性が得られるものの、酵素同様、生
物由来の物質を用いて試薬が構成されていることから、
その試薬の取扱は大変注意を払う必要がある。また、特
異抗体などを得るためには、抗血清からの煩雑な精製工
程を行う必要がある。このように抗体の利用は取扱いが
煩雑で、高価につくなどの問題点が考えられる。また、
保存による安定性が悪く、長期保存した場合、性能が劣
化するという問題もある。
[0008] Further, although high specificity can be obtained with a sensor element utilizing an antigen-antibody reaction, the reagent is composed of a substance derived from a living organism, like an enzyme.
The handling of the reagent requires great care. In addition, in order to obtain a specific antibody or the like, it is necessary to perform a complicated purification step from antiserum. As described above, it is considered that the use of the antibody is troublesome in handling and expensive. Also,
There is also a problem that the stability due to storage is poor, and the performance deteriorates when stored for a long period of time.

【0009】そこで近年、上記課題の解決のためにモレ
キュラーインプリンティング法による、天然の抗体を模
倣した高分子ポリマーによる人工の分子認識物質を利用
したアッセイ又はセンサに関する方法が開示されてい
る。
[0009] In recent years, in order to solve the above-mentioned problems, there has been disclosed a method relating to an assay or a sensor using an artificial molecular recognition substance by a high molecular weight polymer imitating a natural antibody by a molecular imprinting method.

【0010】特表平8−506320号では、測定対象
となる標的分子に標識を付けた試薬と標的分子との競合
的バインディングアッセイ法が開示されている。しか
し、この方法では別に標識を付した試薬の調製が必須で
あり、このための試薬構成が複雑となる。さらに標的分
子の検出のために遊離の標識分子と、人工抗体と結合し
た標識・標的分子複合体とを分離して計測する必要があ
り、検出操作も煩雑となるなどの問題が生じる。
Japanese Patent Publication No. Hei 8-506320 discloses a competitive binding assay between a target molecule and a reagent in which a target molecule to be measured is labeled. However, this method requires the preparation of a separately labeled reagent, which complicates the composition of the reagent. Furthermore, for detection of the target molecule, it is necessary to separate and measure the free labeled molecule and the label / target molecule complex bound to the artificial antibody, which causes a problem that the detection operation becomes complicated.

【0011】次に、特開平8−15160号で開示され
ている方法では、水晶振動子上あるいは、金属薄膜上に
モレキュラーインプリントポリマーを層状に固定化させ
る必要が生じ、そのための特殊なポリマー合成技術が必
要となり、また、検出に関しては、水晶振動子あるい
は、表面プラズモン共鳴装置といった高価で特殊な専用
装置を必要とするといった問題が生じる。特に表面プラ
ズモン共鳴装置を利用した場合、薄膜近傍のエバネッセ
ント波という極めて特殊な光学パラメータを使用するた
め、装置が非常に高価になるという問題がある。
Next, in the method disclosed in Japanese Patent Application Laid-Open No. H8-15160, it is necessary to immobilize a molecular imprint polymer in a layer on a quartz oscillator or a metal thin film. A technique is required, and the detection involves a problem that an expensive special device such as a quartz oscillator or a surface plasmon resonance device is required. In particular, when a surface plasmon resonance device is used, there is a problem that the device becomes very expensive because an extremely special optical parameter such as an evanescent wave near the thin film is used.

【0012】本発明は、長期保存が可能であり、さらに
特殊な装置を必要とせず、簡便に測定対象とする標的分
子の検出を可能とする分子認識物質及びその調製方法を
提供することを目的とする。またそれを用いた標的分子
の検出方法を提供することを目的とする。
An object of the present invention is to provide a molecule recognizing substance which can be stored for a long period of time, does not require a special apparatus, and can easily detect a target molecule to be measured, and a method for preparing the same. And It is another object of the present invention to provide a method for detecting a target molecule using the same.

【0013】[0013]

【課題を解決するための手段】これらの問題点を解決す
るため鋭意検討を重ねた結果、本発明者らは、モレキュ
ラーインプリント法で得られる分子認識ポリマー(モレ
キュラーインプリンティングポリマー(MIP))が物
理的に安定であること、また、ある分子が標的分子と結
合するとその分子の光学的特性が変化することに着目
し、このような光学的特性を有する分子をあらかじめM
IP内に取り込むことによって、容易に標的分子の検出
ができることを見出した。
As a result of intensive studies to solve these problems, the present inventors have found that a molecular recognition polymer (molecularly imprinting polymer (MIP)) obtained by the molecular imprinting method has been developed. Focusing on the fact that the molecule is physically stable, and that when a certain molecule binds to a target molecule, the optical characteristics of the molecule change, the molecules having such optical characteristics are identified in advance by M
It has been found that the target molecule can be easily detected by incorporating it into the IP.

【0014】すなわち本発明の情報発信型分子認識高分
子は、標的分子と、前記標的分子と相互作用を有する有
機分子との共存下で重合させて得られる有機重合体か
ら、前記標的分子を遊離除去させて得られる、前記標的
分子の分子形状構造を多孔体として有するポリマーであ
って、前記標的分子と前記ポリマーとが特異的相互作用
により複合体を形成したときに、前記ポリマーの光学的
特性変化が生じる事を特徴とする。
That is, the information-transmitting molecule-recognizing polymer of the present invention releases the target molecule from an organic polymer obtained by polymerization in the presence of a target molecule and an organic molecule interacting with the target molecule. A polymer having a molecular shape structure of the target molecule as a porous body obtained by removing the polymer, and when the target molecule and the polymer form a complex by specific interaction, the optical characteristics of the polymer It is characterized by a change.

【0015】また、本発明の情報発信型分子認識高分子
の使用方法は、標的分子と、前記標的分子と相互作用を
有する有機分子との共存下で重合させて得られる有機重
合体から、前記標的分子を遊離除去させて得られる、前
記標的分子の分子形状構造を多孔体として有するポリマ
ーであって、標的分子と前記ポリマーとが相互作用した
ときに前記ポリマーの光学的特性変化が生じる情報発信
型分子認識高分子を、標的分子を含む試料と混合し、そ
の混合物の光学的特性変化を測定することを特徴とす
る。
Further, the method of using the information-transmitting type molecule-recognizing polymer of the present invention is characterized in that an organic polymer obtained by polymerization in the presence of a target molecule and an organic molecule having an interaction with the target molecule is obtained by A polymer having a molecular structure of the target molecule as a porous body obtained by free removal of the target molecule, wherein information transmission occurs in which a change in optical properties of the polymer occurs when the target molecule interacts with the polymer. The method is characterized in that a type molecule recognizing polymer is mixed with a sample containing a target molecule, and a change in optical properties of the mixture is measured.

【0016】さらに、本発明の情報発信型分子認識高分
子の調製方法は、標的分子と、前記標的分子と相互作用
をしたときにその光学的特性が変化する有機分子との共
存下で重合させて得られる有機重合体から、前記標的分
子を遊離除去させて得ることを特徴とする。
Further, the method for preparing the information-transmitting type molecule-recognizing polymer of the present invention is characterized in that the polymer is polymerized in the coexistence of a target molecule and an organic molecule whose optical property changes when interacting with the target molecule. The target molecule is obtained by free removal of the target molecule from the organic polymer obtained by the above method.

【0017】[0017]

【発明の実施の形態】本発明でいう相互作用とは、イオ
ン結合(静電的相互作用)、共有結合、配位結合、金属
結合、分子間結合(水素結合、ファンデルワールス力)
が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The interaction referred to in the present invention means an ionic bond (electrostatic interaction), a covalent bond, a coordinate bond, a metal bond, an intermolecular bond (hydrogen bond, van der Waals force).
Is mentioned.

【0018】ところで、アビジンとビオチンの関係のよ
うに、ある特定の分子間で特異的に結合する反応物質が
知られており、ホスト・ゲスト化学として研究されてい
る。これは、抗原抗体反応、酵素反応あるいはリガンド
−レセプター反応のような生物体で起こる反応を離れ
て、一方の分子が他方の分子を認識すると考え、一個の
有機反応として扱い、それぞれの分子を一個の機能性物
質として扱う化学領域である。
By the way, a reactant that specifically binds to a specific molecule, such as the relationship between avidin and biotin, is known and has been studied as host-guest chemistry. This assumes that one molecule recognizes the other molecule apart from reactions that occur in the organism, such as an antigen-antibody reaction, an enzymatic reaction, or a ligand-receptor reaction, and treats each molecule as one organic reaction. This is a chemical area treated as a functional material.

【0019】このような機能性物質は種々のものがある
が、溶液中のある異なる分子間では、特異的な結合が起
こると、それら分子の光学的特性が変化することは、こ
れまでに知られているところである。例えば、ピレン修
飾γ−シクロデキストリンとコール酸との結合によって
蛍光強度の増強が認められることや、2本鎖核酸とエチ
ジウムブロマイドとの結合によって、蛍光波長が長波長
側にシフトすることが知られている。これは、異なる分
子間の特異結合によって、結合前後で分子の電子状態が
変化するためと考えられる。また、クリプタントとAT
Pが複合体を形成したときにATPのアデニン残基とホ
ストのアクリジン残基が重なってπ電子相互作用を誘起
し、アクリジン残基の発光強度が増大するといったこと
も知られている。
Although there are various kinds of such functional substances, it has been known that when specific binding occurs between certain different molecules in a solution, the optical properties of those molecules are changed. Is being done. For example, it is known that the fluorescence intensity is enhanced by the bond between pyrene-modified γ-cyclodextrin and cholic acid, and that the fluorescence wavelength is shifted to a longer wavelength side by the bond between the double-stranded nucleic acid and ethidium bromide. ing. This is probably because the electronic state of the molecule changes before and after the binding due to the specific binding between different molecules. Also, cryptant and AT
It is also known that when P forms a complex, the adenine residue of ATP and the acridine residue of the host overlap to induce a π-electron interaction, thereby increasing the emission intensity of the acridine residue.

【0020】なお、光学的特性変化とは、吸光度、蛍
光、りん光、散乱光、旋光などの光学的パラメータの変
化を意味する。また、最大吸収波長や蛍光波長のシフト
なども本発明の光学的特性変化に含まれる。
The change in optical characteristics means a change in optical parameters such as absorbance, fluorescence, phosphorescence, scattered light, and optical rotation. Further, the shift of the maximum absorption wavelength and the fluorescence wavelength are also included in the change in the optical characteristics of the present invention.

【0021】本発明の情報発信型分子認識高分子を調製
するには、機能性モノマーとして、標的分子と相互作用
したときに光学的特性が変化する有機分子を使用する。
このような分子としては、ポルフィリン類、シクロデキ
ストリン類、クラウンエーテル類、カリックスアレーン
類、スフェランド類及びクリプタンド類などが挙げられ
る。築部 浩編著:分子認識化学−超分子へのアプロー
チ− 三共出版(1997)には、種々の化合物が記載
されている。これらの分子(ホスト分子)は、特異的に
結合する分子(ゲスト分子)と結合すると、光学的特性
が変化する。
In preparing the information-transmitting molecule-recognizing polymer of the present invention, an organic molecule whose optical properties change when interacting with a target molecule is used as a functional monomer.
Such molecules include porphyrins, cyclodextrins, crown ethers, calixarenes, spherands, cryptands, and the like. Edited by Hiroshi Tsukibe: Molecular Recognition Chemistry -Approach to Supramolecules- Various compounds are described in Sankyo Shuppan (1997). When these molecules (host molecules) bind to molecules that specifically bind (guest molecules), their optical properties change.

【0022】なお、これらの分子を重合させるには、そ
の分子中にビニル基やアリル基などのような重合可能な
官能基が必要であるが、ポルフィリンのように重合可能
な官能基がその分子中にない場合には、適当な方法で重
合可能な官能基を導入して誘導体化すればよい。例えば
ポルフィリンでは、メタクリロイルクロライドと反応さ
せることによってビニル基を導入することができる。
In order to polymerize these molecules, a polymerizable functional group such as a vinyl group or an allyl group is required in the molecule, and a polymerizable functional group such as porphyrin is used in the molecule. If not, the polymerizable functional group may be introduced by an appropriate method for derivatization. For example, in porphyrin, a vinyl group can be introduced by reacting with methacryloyl chloride.

【0023】重合に際しては、架橋性モノマーを使用す
ることができる。MIPを調製するのに使用できるもの
であれば特に制限はないが、例えばエチレングリコール
ジメタクリレートが好適に用いられる。
In the polymerization, a crosslinkable monomer can be used. There is no particular limitation as long as it can be used to prepare MIP. For example, ethylene glycol dimethacrylate is suitably used.

【0024】MIPを調製するには、標的分子(ゲスト
分子)、標的分子と特異的に結合する機能性モノマー
(ホスト分子)、及び架橋性モノマーの混合物に、例え
ば2,2−アゾビス(2,4−ジメチル−バレロニトリ
ル)のような適当な重合開始剤を添加して重合を開始す
る。重合方法は公知の手段にしたがって行うことができ
る。重合後、適当な溶媒を用いて洗浄することにより標
的分子を除去する。
To prepare MIP, a mixture of a target molecule (guest molecule), a functional monomer that specifically binds to the target molecule (host molecule), and a crosslinkable monomer, for example, 2,2-azobis (2, The polymerization is started by adding a suitable polymerization initiator such as 4-dimethyl-valeronitrile). The polymerization method can be performed according to known means. After the polymerization, the target molecule is removed by washing with a suitable solvent.

【0025】例えばポルフィリン誘導体とエチレングリ
コールジメタクリレートを使い、例えば、核酸誘導体で
ある9−エチルアデニン分子と、その周りに集めたモノ
マー(ポルフィリン誘導体とエチレングリコールジメタ
クリレート)とをそのまま重合させた後、9−エチルア
デニンを除去すると、9−エチルアデニンの立体的分子
構造を記憶させたMIPを作製することができる。作製
したMIPは、標的分子である9−エチルアデニン分子
と特異的な結合能を有しており、その結合によって、例
えば、濃度に応じて最大吸収波長のシフトがみられる。
For example, using a porphyrin derivative and ethylene glycol dimethacrylate, for example, a 9-ethyladenine molecule as a nucleic acid derivative is polymerized with monomers (porphyrin derivative and ethylene glycol dimethacrylate) collected around the molecule. By removing 9-ethyladenine, a MIP in which the three-dimensional molecular structure of 9-ethyladenine is stored can be produced. The prepared MIP has a specific binding ability to a target molecule, 9-ethyladenine molecule, and the binding causes a shift in the maximum absorption wavelength depending on the concentration, for example.

【0026】従って、調製したMIPと未知試料を混合
した溶液の最大吸収波長を測定することで、標的物質を
検出できる。
Therefore, the target substance can be detected by measuring the maximum absorption wavelength of the solution obtained by mixing the prepared MIP and the unknown sample.

【0027】[0027]

【実施例】実施例1:ポルフィリン誘導体の製造 まず、インプリントポリマーで使用するポルフィリン誘
導体を以下の工程により製造した。
EXAMPLES Example 1 Production of Porphyrin Derivative First, a porphyrin derivative used in an imprint polymer was produced by the following steps.

【0028】1.ポルフィリンの合成 プロピオン酸(propionic acid)300
ml、p−イソプロピルベンズアルデヒド(p−iso
propylbenzaldehyde)4.20g、
p−ヒドロキシベンズアルデヒド(p−hydroxy
benzaldehyde)1.16g、ピロール(p
yrrole)2.7mlを混合し、150℃の油浴上
で、2時間還流後、室温で冷却した。酸性溶媒を減圧蒸
留により除去後、適量のクロロホルムを添加した。反応
液に炭酸水素ナトリウム溶液を少量づづ添加し、中和さ
せた。反応液をクロロホルムで抽出、硫酸ナトリウムで
乾燥後、フロリジール(和光純薬工業(株))を添加
し、乾固させた。反応液をカラムクロマトグラフィー
(吸着剤 フロリジール、展開溶媒 ジクロロメタ
ン)、シリカゲルクロマトグラフィー(展開溶媒 3:
1 クロロホルム:石油エーテル、およびクロロホル
ム)で精製した。上記クロマトグラフィー操作を数回繰
り返し、5−(4−ヒドロキシフェニル)−10,1
5,20−トリス(4−イソプロピルフェニル)ポルフ
ィリン(5−(4−hydroxyphenyl)−1
0,15,20−tris(4−isopropylp
henyl)porphyrin)を得た。
1. Synthesis of porphyrin propionic acid 300
ml, p-isopropylbenzaldehyde (p-iso
4.20 g of propylbenzaldehyde)
p-hydroxybenzaldehyde (p-hydroxy
Benzaldehyde (1.16 g), pyrrole (p
2.7 ml were mixed, refluxed on an oil bath at 150 ° C. for 2 hours, and then cooled at room temperature. After removing the acidic solvent by distillation under reduced pressure, an appropriate amount of chloroform was added. The reaction solution was neutralized by adding a sodium hydrogen carbonate solution little by little. The reaction solution was extracted with chloroform, dried over sodium sulfate, and added with Florisil (Wako Pure Chemical Industries, Ltd.) to dryness. The reaction solution is subjected to column chromatography (adsorbent Florisil, developing solvent dichloromethane), silica gel chromatography (developing solvent 3:
1 chloroform: petroleum ether, and chloroform). The above-mentioned chromatography operation was repeated several times, and 5- (4-hydroxyphenyl) -10,1
5,20-tris (4-isopropylphenyl) porphyrin (5- (4-hydroxyphenyl) -1
0,15,20-tris (4-isopropylp
henyl) porphyrin) was obtained.

【0029】TLC(シリカゲル、クロロホルム):R
f=0.073〜0.2441H−NMR(CDCl
3):σ−2.77(2H,s,NH),1.52−
1.54(18H,m,Pr−Me),3.17−3.
31(3H,septet,Pr−H),7.17−
7.20(2H,d,COH),7.57−7.
59(6H,d,CPr),8.05−8.07
(2H,d,COH),8.10−8.13(6
H,d,CPr),8.86(8H,s,β−
H)
TLC (silica gel, chloroform): R
f = 0.073-0.2441H-NMR (CDCl
3): σ-2.77 (2H, s, NH), 1.52-
1.54 (18H, m, Pr-Me), 3.17-3.
31 (3H, septet, Pr-H), 7.17-
7.20 (2H, d, C 6 H 4 OH), 7.57-7.
59 (6H, d, C 6 H 4 Pr), 8.05-8.07
(2H, d, C 6 H 4 OH), 8.10-8.13 (6
H, d, C 6 H 4 Pr), 8.86 (8H, s, β-
H)

【0030】2.ポルフィリンの亜鉛錯体化 5−(4−ヒドロキシフェニル)−10,15,20−
トリス(4−イソプロピルフェニル)ポルフィリン(5
−(4−hydroxyphenyl)−10,15,
20−tris(4−isopropylpheny
l)porphyrin)118mgをクロロホルム2
0mlに添加、還流後、酢酸亜鉛650mgを含む飽和
メタノール溶液5mlを滴下し、3時間還流した。反応
溶液を蒸留水で洗浄後、有機層を抽出、硫酸ナトリウム
で乾燥させた。反応液をシリカゲルカラムクロマトグラ
フィー(展開溶媒 19:1 クロロホルム:酢酸エチ
ル)および吸光度測定で確認した。
2. Zinc complexation of porphyrin 5- (4-hydroxyphenyl) -10,15,20-
Tris (4-isopropylphenyl) porphyrin (5
-(4-hydroxyphenyl) -10,15,
20-tris (4-isopropyphenyly
l) Porphyrin) 118 mg in chloroform 2
After adding to 0 ml and refluxing, 5 ml of a saturated methanol solution containing 650 mg of zinc acetate was added dropwise and refluxed for 3 hours. After washing the reaction solution with distilled water, the organic layer was extracted and dried over sodium sulfate. The reaction solution was confirmed by silica gel column chromatography (developing solvent 19: 1 chloroform: ethyl acetate) and absorbance measurement.

【0031】 吸光度:出発原料のλmax(nm):419,45
0,518,554,650 生成物のλmax(nm):423,551 1H−NMR(CDCl):σ1.52−1.54
(18H,m,Pr−Me),3.15−3.24(3
H,septet,Pr−H),7.10−7.14
(2H,d,COH),7.51−7.54(6
H,d,Cpr),7.99−8.00(2H,
d,COH),8.02−8.07(6H,d,
pr),8.90(8H,s,β−H)
[0031] Absorbance: λmax (nm) of starting material: 419, 45
0,518,554,650 λmax (nm) of product: 423,551 1H-NMR (CDCl 3 ): σ1.52-1.54
(18H, m, Pr-Me), 3.15-3.24 (3
H, septet, Pr-H), 7.10-7.14.
(2H, d, C 6 H 4 OH), 7.51-7.54 (6
H, d, C 6 H 4 pr), 7.99-8.00 (2H,
d, C 6 H 4 OH) , 8.02-8.07 (6H, d,
C 6 H 4 pr), 8.90 (8H, s, β-H)

【0032】3.ポルフィリン亜鉛錯体の誘導体化 ポルフィリン亜鉛錯体558.0mgとトリエチルアミ
ン(triethylamine)454.5μlとを
ジエチルエーテル溶液30mlに添加した。この溶液中
に、メタクリロイルクロライド(methacrylo
yl chloride)318.9μlを含むジエチ
ルエーテル溶液30mlを滴下し、8時間攪拌した。反
応液を蒸留水で洗浄後、有機層を硫酸ナトリウムで乾
燥、濃縮した。分種TLC(吸着剤:シリカゲル、展開
溶媒:クロロホルム)により精製し、生成物(ポルフィ
リン亜鉛錯体の誘導体)515.0mgを得た。
3. Derivatization of porphyrin zinc complex 558.0 mg of porphyrin zinc complex and 454.5 μl of triethylamine were added to 30 ml of diethyl ether solution. In this solution, methacryloyl chloride (methacryloyl chloride) is added.
30 ml of a diethyl ether solution containing 318.9 μl of yl chloride was added dropwise, and the mixture was stirred for 8 hours. After washing the reaction solution with distilled water, the organic layer was dried over sodium sulfate and concentrated. Purification by fractional TLC (adsorbent: silica gel, developing solvent: chloroform) gave 515.0 mg of product (porphyrin zinc complex derivative).

【0033】1H−NMR(CDCl):σ1.51
−1.55(18H,m,Pr−Me),2.42(3
H,s,COCO−CH),3.21−3.3
0(3H,septet,Pr−H),6.53−6.
89(2H,d,COCOC=CH),7.4
1−7.43(2H,d,C−O),7.57−
7.60(6H,d,CPr),8.23−8.
24(2H,d,C−O),8.10−8.13
(6H,d,CPr),8.98(8H,s,β
−H)
1H-NMR (CDCl 3 ): σ1.51
−1.55 (18H, m, Pr—Me), 2.42 (3
H, s, C 6 H 4 OCO-CH 3), 3.21-3.3
0 (3H, septet, Pr-H), 6.53-6.
89 (2H, d, C 6 H 4 OCOC = CH 2), 7.4
1-7.43 (2H, d, C 6 H 4 -O), 7.57-
7.60 (6H, d, C 6 H 4 Pr), 8.23-8.
24 (2H, d, C 6 H 4 -O), 8.10-8.13
(6H, d, C 6 H 4 Pr), 8.98 (8H, s, β
-H)

【0034】実施例2:MIPの製造 実施例1で製造した、ポルフィリン亜鉛錯体の誘導体2
46mg、9−エチルアデニン49mg、エチレングリ
コールジメタクリレート2.81g、2,2−アゾビス
(2,4−ジメチル−バレロニトリル)15mgをそれ
ぞれクロロホルム7.5mlに添加した。混合液をガラ
スの試験管に移し替え、5分間、窒素ガスで置換し、蓋
をした後、45℃の水浴中で、13時間熱重合した。固
化したポリマーを粉砕し、ふるいにかけて粒径を32〜
106μmにそろえ、メタノールで洗浄し、標的分子で
ある9−エチルアデニンを除去した。
Example 2: Preparation of MIP Derivative 2 of porphyrin zinc complex prepared in Example 1
46 mg, 49 mg of 9-ethyladenine, 2.81 g of ethylene glycol dimethacrylate, and 15 mg of 2,2-azobis (2,4-dimethyl-valeronitrile) were each added to 7.5 ml of chloroform. The mixture was transferred to a glass test tube, replaced with nitrogen gas for 5 minutes, covered, and subjected to thermal polymerization in a 45 ° C water bath for 13 hours. The solidified polymer is crushed and sieved to a particle size of 32 to
It was adjusted to 106 μm and washed with methanol to remove 9-ethyladenine as a target molecule.

【0035】実施例3:分光学的評価 実施例2で製造した、9−エチルアデニンインプリント
ポリマー1mgを、0μM,1μM,10μM,100
μM,1mM,10mM,100mMの9−エチルアデ
ニン溶液5ml中に添加してインキュベーションし、分
光光度計により可視吸収スペクトルの測定を行った。
Example 3 Spectroscopic Evaluation 1 mg of the 9-ethyladenine imprinted polymer prepared in Example 2 was added to 0 μM, 1 μM, 10 μM, and 100 μM.
It was added to 5 ml of a 9-ethyladenine solution of μM, 1 mM, 10 mM, and 100 mM, incubated, and the visible absorption spectrum was measured by a spectrophotometer.

【0036】9−エチルアデニンの濃度上昇に従い、最
大吸収波長の長波長側へのシフトが認められた。従っ
て、吸収波長を求めることで、9−エチルアデニンの定
量が可能であることが確認された。
As the concentration of 9-ethyladenine increased, a shift of the maximum absorption wavelength to longer wavelengths was observed. Therefore, it was confirmed that 9-ethyladenine can be quantified by determining the absorption wavelength.

【0037】[0037]

【発明の効果】本発明による情報発信型分子認識高分子
(ポリマー)は、化学物質、例えば、9−エチルアデニ
ンと結合することで、ポリマーの光学的特性、例えば最
大吸収波長が濃度に応じて変化し、標的化学物質を検出
することができる。本発明による情報発信型分子認識高
分子を種々のオプティカルセンサーなどに応用すること
により、簡便、高感度に標的物質の検出が可能となる。
The information-transmitting molecular recognition polymer (polymer) according to the present invention can be combined with a chemical substance, for example, 9-ethyladenine, so that the optical properties of the polymer, for example, the maximum absorption wavelength according to the concentration. Can change and detect target chemicals. By applying the information-transmitting molecule-recognizing polymer according to the present invention to various optical sensors and the like, it becomes possible to detect a target substance simply and with high sensitivity.

【0038】本発明によると、特表平8−506320
号で開示されているような、測定対象となる標的分子に
標識を付けるといった、煩雑な操作が不必要になる。本
発明で使用する光学的パラメータは、吸光度、蛍光な
ど、汎用性の高いパラメータで良く、特別な標識物質も
しくは高価な専用装置を必要としない。また、この光学
的パラメータ変化が、可視領域で起こる場合、目視によ
る検出、定量が可能となる。
According to the present invention, JP-A-8-506320
No complicated operation, such as labeling a target molecule to be measured as disclosed in the above publication, is required. The optical parameters used in the present invention may be highly versatile parameters such as absorbance and fluorescence, and do not require a special labeling substance or an expensive dedicated device. Further, when this optical parameter change occurs in the visible region, visual detection and quantification become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の情報発信型分子認識高分子の製造方法
(モレキュラーインプリンティング法)の概略図であ
る。
FIG. 1 is a schematic diagram of a method (molecular imprinting method) for producing an information-transmitting molecular recognition polymer of the present invention.

【図2】本発明の実施例1の反応式を示した図である。FIG. 2 is a view showing a reaction formula of Example 1 of the present invention.

【図3】本発明の実施例3の測定結果を示した図であ
る。
FIG. 3 is a diagram showing measurement results of Example 3 of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 標的分子と、前記標的分子と相互作用を
有する有機分子との共存下で重合させて得られる有機重
合体から、前記標的分子を遊離除去させて得られる、前
記標的分子の分子形状構造を多孔体として有するポリマ
ーであって、前記標的分子と前記ポリマーとが相互作用
したときに前記ポリマーの光学的特性変化が生じる事を
特徴とする情報発信型分子認識高分子。
1. A molecule of the target molecule obtained by free-removing the target molecule from an organic polymer obtained by polymerization in the presence of a target molecule and an organic molecule having an interaction with the target molecule. An information-transmitting molecule-recognizing polymer, which is a polymer having a shape structure as a porous body, wherein a change in optical properties of the polymer occurs when the target molecule interacts with the polymer.
【請求項2】 前記有機分子がホスト分子であり、標的
分子がゲスト分子であって、ホスト−ゲスト分子の複合
体を形成したときに分子の光学的特性が変化する物質で
ある請求項1記載の情報発信型分子認識高分子。
2. The organic molecule according to claim 1, wherein the organic molecule is a host molecule, the target molecule is a guest molecule, and the optical property of the molecule changes when a host-guest molecule complex is formed. Information transmission type molecular recognition polymer.
【請求項3】 前記有機分子が、ポルフィリン類、シク
ロデキストリン類、クラウンエーテル類、カリックスア
レーン類、スフェランド類およびクリプタンド類からな
る群より選択される請求項2記載の情報発信型分子認識
高分子。
3. The information-transmitting molecule-recognizing polymer according to claim 2, wherein the organic molecule is selected from the group consisting of porphyrins, cyclodextrins, crown ethers, calixarenes, spherands, and cryptands.
【請求項4】 前記有機分子が、ビニル基およびアリル
基より選択される重合可能な官能基により重合している
ことを特徴とする請求項1〜3記載の情報発信型分子認
識高分子。
4. The information-transmitting molecular recognition polymer according to claim 1, wherein said organic molecule is polymerized by a polymerizable functional group selected from a vinyl group and an allyl group.
【請求項5】 前記光学的特性変化が、吸光度、蛍光、
りん光、散乱光、旋光からなる群より選ばれる光学的パ
ラメータの変化である請求項1〜4記載の情報発信型分
子認識高分子。
5. The method according to claim 1, wherein the change in the optical property is absorbance, fluorescence,
5. The information-transmitting molecular recognition polymer according to claim 1, wherein the change is an optical parameter selected from the group consisting of phosphorescence, scattered light, and optical rotation.
【請求項6】 標的分子と、前記標的分子と相互作用を
有する有機分子との共存下で重合させて得られる有機重
合体から、前記標的分子を遊離除去させて得られる、前
記標的分子の分子形状構造を多孔体として有するポリマ
ーであって、標的分子と前記ポリマーとが相互作用した
ときに前記ポリマーの光学的特性変化が生じる情報発信
型分子認識高分子を、標的分子を含む試料と混合し、そ
の混合物の光学的特性変化を測定することを特徴とする
情報発信型分子認識高分子の使用方法。
6. A molecule of the target molecule obtained by freeing and removing the target molecule from an organic polymer obtained by polymerization in the presence of a target molecule and an organic molecule having an interaction with the target molecule. A polymer having a shape structure as a porous body, and an information-transmitting type molecule-recognizing polymer in which a change in optical characteristics of the polymer occurs when the target molecule interacts with the polymer, is mixed with a sample containing the target molecule. And a method for measuring the change in optical properties of the mixture.
【請求項7】 前記光学的特性変化が、吸光度、蛍光、
りん光、散乱光、旋光からなる群より選ばれる光学的パ
ラメータの変化である請求項6記載の情報発信型分子認
識高分子の使用方法。
7. The method according to claim 7, wherein the change in the optical property is absorbance, fluorescence,
7. The method according to claim 6, wherein the change is an optical parameter selected from the group consisting of phosphorescence, scattered light, and optical rotation.
【請求項8】 標的分子と、前記標的分子と相互作用を
したときにその光学的特性が変化する有機分子との共存
下で重合させて得られる有機重合体から、前記標的分子
を遊離除去させて得ることを特徴とする情報発信型分子
認識高分子の調製方法。
8. An organic polymer obtained by polymerizing in the coexistence of a target molecule and an organic molecule whose optical properties change when interacting with the target molecule is freed of the target molecule. A method for preparing an information-transmitting molecule-recognizing polymer, characterized by being obtained by:
JP10686998A 1998-03-13 1998-03-13 Information dissemination type molecular recognition polymer, its preparation and use Expired - Fee Related JP4036961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10686998A JP4036961B2 (en) 1998-03-13 1998-03-13 Information dissemination type molecular recognition polymer, its preparation and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10686998A JP4036961B2 (en) 1998-03-13 1998-03-13 Information dissemination type molecular recognition polymer, its preparation and use

Publications (2)

Publication Number Publication Date
JPH11255948A true JPH11255948A (en) 1999-09-21
JP4036961B2 JP4036961B2 (en) 2008-01-23

Family

ID=14444557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10686998A Expired - Fee Related JP4036961B2 (en) 1998-03-13 1998-03-13 Information dissemination type molecular recognition polymer, its preparation and use

Country Status (1)

Country Link
JP (1) JP4036961B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513112A (en) * 1999-10-23 2003-04-08 クランフィールド・ユニバーシティ Molecularly imprinted polymer produced by template polymerization
JP2003523465A (en) * 2000-01-25 2003-08-05 クランフィールド ユニバーシティ Molecular imprinted polymer
JP2004027207A (en) * 2002-05-09 2004-01-29 Daicel Chem Ind Ltd Method for producing molecule-recognizing polymer
JP2005533146A (en) * 2002-07-13 2005-11-04 クランフィールド ユニヴァーシティー Molecularly imprinted polymer material
WO2005108443A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Molecule recognition polymer enabling reconstruction of recognition field for target molecule and method of producing the same
JP2007056055A (en) * 2005-08-22 2007-03-08 Wakayama Prefecture Porous thin film, its production method, gas sensor, and quartz oscillator microbalance
JP2007520704A (en) * 2004-01-20 2007-07-26 ビオメリュー Prion protein detection method using at least one positive charge and / or at least one glycosidic bond and a ligand other than a protein ligand
JP2007525570A (en) * 2003-12-08 2007-09-06 ザ リサーチ ファウンデイション オブ ステイト ユニバーシティー オブ ニューヨーク Site-selectively tagged and cast molecularly imprinted polymers for sensor applications
JP2013509585A (en) * 2009-10-30 2013-03-14 メドテック ディテクト、エル・エル・シー Compositions, devices and methods for colorimetric detection of analytes using imprinted polymers and photochromic switch molecules

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487592B2 (en) 2008-10-24 2016-11-08 Fujifilm Corporation Immobilization substrate and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513112A (en) * 1999-10-23 2003-04-08 クランフィールド・ユニバーシティ Molecularly imprinted polymer produced by template polymerization
JP5026649B2 (en) * 1999-10-23 2012-09-12 クランフィールド・ユニバーシティ Molecularly imprinted polymer produced by template polymerization
JP2003523465A (en) * 2000-01-25 2003-08-05 クランフィールド ユニバーシティ Molecular imprinted polymer
JP2004027207A (en) * 2002-05-09 2004-01-29 Daicel Chem Ind Ltd Method for producing molecule-recognizing polymer
JP2005533146A (en) * 2002-07-13 2005-11-04 クランフィールド ユニヴァーシティー Molecularly imprinted polymer material
JP4804361B2 (en) * 2003-12-08 2011-11-02 ザ リサーチ ファウンデイション オブ ステイト ユニバーシティー オブ ニューヨーク Site-selectively tagged and cast molecularly imprinted polymers for sensor applications
JP2007525570A (en) * 2003-12-08 2007-09-06 ザ リサーチ ファウンデイション オブ ステイト ユニバーシティー オブ ニューヨーク Site-selectively tagged and cast molecularly imprinted polymers for sensor applications
JP2007520704A (en) * 2004-01-20 2007-07-26 ビオメリュー Prion protein detection method using at least one positive charge and / or at least one glycosidic bond and a ligand other than a protein ligand
US8021893B2 (en) 2004-05-07 2011-09-20 Japan Science And Technology Agency Molecular recognition polymer enabling reconstruction of recognition field for target molecule and method of producing the same
WO2005108443A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Molecule recognition polymer enabling reconstruction of recognition field for target molecule and method of producing the same
JP5184780B2 (en) * 2004-05-07 2013-04-17 独立行政法人科学技術振興機構 Molecular recognition polymer capable of reconstructing recognition field of target molecule and method for producing the same
JP2007056055A (en) * 2005-08-22 2007-03-08 Wakayama Prefecture Porous thin film, its production method, gas sensor, and quartz oscillator microbalance
JP2013509585A (en) * 2009-10-30 2013-03-14 メドテック ディテクト、エル・エル・シー Compositions, devices and methods for colorimetric detection of analytes using imprinted polymers and photochromic switch molecules

Also Published As

Publication number Publication date
JP4036961B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
Ye et al. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery
Ge et al. Molecularly imprinted sorbent assays: recent developments and applications
Kandimalla et al. Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry
JP3583496B2 (en) Electrobiochemical methods and systems for the determination of analytes that are members of a recognition pair in a liquid medium and electrodes thereof
Percival et al. Molecular imprinted polymer coated QCM for the detection of nandrolone
Inoue et al. Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline
AU2005205341B2 (en) Protein imprinted polymers with integrated emission sites
JPH0145026B2 (en)
JP4036961B2 (en) Information dissemination type molecular recognition polymer, its preparation and use
CN108929233B (en) Fluorescence probe for detecting hydrogen peroxide based on aggregation-induced emission characteristics and preparation method and application thereof
Chow et al. Fluorescent sensing of homocysteine by molecular imprinting
US11899011B2 (en) Selective optical detection of organic analytes in liquids
EP1798250B1 (en) Molecules suitable for binding to a metal layer for covalently immobilizing biomolecules
Fernández-González et al. Assessment of molecularly imprinted sol–gel materials for selective room temperature phosphorescence recognition of nafcillin
Gobi et al. Surface plasmon resonance detection of endocrine disruptors using immunoprobes based on self-assembled monolayers
Tang et al. Photoregulated uptake and release of drug by an organic–inorganic hybrid sol–gel material
Stanley et al. Enantioselective detection of l-serine
Ren et al. A novel fluorescent functional monomer as the recognition element in core–shell imprinted sensors responding to concentration of 2, 4, 6-trichlorophenol
JP3721097B2 (en) Molecular recognition phosphor and target substance measurement method using the same
Vo-Dinh Biosensors and biochips
Piletsky et al. New materials based on imprinted polymers and their application in optical sensors
EP1173761A1 (en) Polymer for binding amine containing ligands and uses thereof
Piletsky et al. Imprinted polymers and their application in optical sensors
Brimo et al. Molecular Imprinted Polymers for Mass Sensitive Sensors: Comparation of Performance Toward Immuno-Sensing Strategies
WO2005090379A1 (en) Compounds and sensor for detecion of polycyclic aromatic hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees