JPH11255734A - Manufacture of high purity aromatic cyanate ester - Google Patents

Manufacture of high purity aromatic cyanate ester

Info

Publication number
JPH11255734A
JPH11255734A JP5985398A JP5985398A JPH11255734A JP H11255734 A JPH11255734 A JP H11255734A JP 5985398 A JP5985398 A JP 5985398A JP 5985398 A JP5985398 A JP 5985398A JP H11255734 A JPH11255734 A JP H11255734A
Authority
JP
Japan
Prior art keywords
water
bis
cyanate ester
hydroxy
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5985398A
Other languages
Japanese (ja)
Inventor
Satoshi Okamoto
敏 岡本
Hisashi Watabe
久 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5985398A priority Critical patent/JPH11255734A/en
Publication of JPH11255734A publication Critical patent/JPH11255734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an aromatic cyanate ester simple and safe in processing, capable of obtaining a high purity aromatic cyanate ester in high yield. SOLUTION: The objectire compound is obtained by contacting an aqueous solution of a phenolate prepared from a phenols expressed by the formula (A is independently H or a 1 to 6C alkyl group, X is a single bond, a 1 to 20C organic group, carbonyl group, sulfone group, or a divalent S atom of O atom I is an integer of 0 to 4),hydroxide of an alkaline metal and water, with an acidic aqueous solution obtained by adding a mineral acid to an aqueous solution including a cyanogen halide and a tertiary amine and adjusting the pH to acidic side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子部品の封止用、
積層板用、複合材料用、成形材料用および接着材用とし
て有用な熱硬化性芳香族シアン酸エステルの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to sealing electronic parts,
The present invention relates to a method for producing a thermosetting aromatic cyanate ester useful as a laminate, a composite material, a molding material, and an adhesive.

【0002】[0002]

【従来の技術】従来のシアン酸エステルの製法の1つ
に、揮発性の低い液状の不純物であるジアルキルシアノ
アミドの副生を避けるため、アルカリ金属の水酸化物を
塩基として用いたフェノールのアルカリ金属塩とハロゲ
ン化シアンとの反応が知られている(K. A. Je
nsen et al., in the Chemi
stry of Cyanates and thei
r Thio Derivatives, Part
1, ed. S. Patai Wiley,New
York pp.569−617 (1977))。
この方法の場合、これまで、生成したシアン酸エステル
がフェノキサイドと反応してイミドカーボネートを生じ
るため、水酸基の隣接位に嵩高い置換基を有するアルコ
ール系あるいはフェノール系化合物以外には適用できな
いとされてきた(R. Strohet al, An
gew. Chem., 72, 1000 (196
4))。一方、水と有機溶媒の混合溶媒を用いて、置換
基を有しないフェノール類のシアン酸エステルを製造す
る方法が報告(特公昭 56−3859号)されている
が、後述の比較例1に示したように、最近の分析法によ
れば、この方法ではイミドカーボネート類が多く副生
し、シアン酸エステルが高収率で得られないことが明ら
かになった。
2. Description of the Related Art One of the conventional methods for producing a cyanate ester is to use an alkali metal hydroxide as a base in order to avoid by-products of dialkyl cyanoamide, a liquid impurity having low volatility. A reaction between a metal salt and a cyanogen halide is known (KA Je).
nsen et al. , In the Chemi
try of cyanates and theei
r Thio Derivatives, Part
1, ed. S. Patai Wiley, New
York pp. 569-617 (1977)).
In the case of this method, since the produced cyanate ester reacts with phenoxide to produce imide carbonate, it is considered that this method cannot be applied to any other than an alcoholic or phenolic compound having a bulky substituent at a position adjacent to a hydroxyl group. (R. Strohet al, An
gew. Chem. , 72, 1000 (196
4)). On the other hand, a method for producing a cyanate ester of a phenol having no substituent using a mixed solvent of water and an organic solvent has been reported (Japanese Patent Publication No. 56-3859). As described above, according to a recent analysis method, it has been revealed that this method produces a large amount of imidocarbonates as a by-product and cannot obtain a cyanate ester in a high yield.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は上記の
問題点に鑑み、プロセス的に安全かつ簡便で、高純度の
芳香族シアン酸エステルを高収率で得られる芳香族シア
ン酸エステルの製造方法を提供することである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide an aromatic cyanate ester which is safe and simple in terms of process and which can obtain a high-purity aromatic cyanate ester in a high yield. It is to provide a manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者等は、シアン酸
エステルの製造方法について鋭意研究を続けた結果、水
のみを単独で反応溶媒として用い、特定の操作を行うこ
とにより、高い転化率で、水中に安定な芳香族シアン酸
エステルが生成、析出することを見出し、本発明を完成
するに至った。即ち、本発明は下記一般式(I)
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a method for producing a cyanate ester, and as a result, by using water alone as a reaction solvent and performing a specific operation, a high conversion rate was obtained. It was found that a stable aromatic cyanate ester was formed and precipitated in water, and the present invention was completed. That is, the present invention provides the following general formula (I)

【0005】[0005]

【化3】 (式中、Aはそれぞれに独立に水素原子または炭素数1
以上6以下のアルキル基、Xは単結合、炭素数1から2
0の有機基、カルボニル基、スルホン基、2価の硫黄原
子または酸素原子、Iは0以上4以下の整数値を示
す。)で表されるフェノール類、アルカリ金属水酸化物
および水から調製されるフェノラート水溶液と、ハロゲ
ン化シアンおよび3級アミンを含む水溶液を鉱酸を加え
ることによりpHを酸性に調整した水溶液とを、接触さ
せて反応させることを特徴とする芳香族シアン酸エステ
ルを高純度で得るための製造方法に関する。
Embedded image (Wherein, A is each independently a hydrogen atom or carbon atom 1
An alkyl group of 6 or more and X is a single bond, and having 1 to 2 carbon atoms.
0 represents an organic group, carbonyl group, sulfone group, divalent sulfur atom or oxygen atom, and I represents an integer of 0 or more and 4 or less. A) a phenolate aqueous solution prepared from a phenol, an alkali metal hydroxide and water represented by the formula (1), and an aqueous solution containing a cyanogen halide and a tertiary amine and adjusted to an acidic pH by adding a mineral acid to The present invention relates to a method for producing an aromatic cyanate ester with high purity, which is characterized by contacting and reacting.

【0006】[0006]

【発明の実施の形態】本発明において用いられるフェノ
ール類は、一般式(I)を満足するものであれば、いか
なるものでも使用可能できるが、フェノラートとして水
に一部または全て溶解可能なものであることが必要であ
る。即ち、水100重量部に対して少なくとも1重量部
以上のフェノール類と、アルカリ金属の水酸化物を混合
したとき、均一な溶液となることが必要である。具体的
にフェノール類を例示すると、4, 4'−ジヒドロキ
シジフェニル、3,3',5,5'−テトラメチル−4,
4'−ジヒドロキシジフェニル、ビス(4−ヒドロキシ
フェニル)メタン、ビス(4−ヒドロキシ−3−メチル
フェニル)メタン、ビス(4−ヒドロキシ−3−t−ブ
チルフェニル)メタン、ビス(4−ヒドロキシ−3−i
−プロピルフェニル)メタン、ビス(4−ヒドロキシ−
3,5−ジメチルフェニル)メタン、ビス(2−ヒドロ
キシ−3−t−ブチル−5−メチルフェニル)メタン、
ビス(4−ヒドロキシフェニル)エタン、ビス(4−ヒ
ドロキシ−3−メチルフェニル)エタン、ビス(4−ヒ
ドロキシ−3−t−ブチルフェニル)エタン、ビス(4
−ヒドロキシ−3−i−プロピルフェニル)エタン、ビ
ス(4−ヒドロキシ−3,5−ジメチルフェニル)エタ
ン、ビス(2−ヒドロキシ−3−t−ブチル−5−メチ
ルフェニル)エタン、2,2−ビス(4−ヒドロキシフ
ェニル)プロパン(式
DETAILED DESCRIPTION OF THE INVENTION The phenols used in the present invention can be used as long as they satisfy the general formula (I), but they can be partially or wholly soluble in water as phenolates. It is necessary to be. That is, when at least 1 part by weight or more of a phenol and an alkali metal hydroxide are mixed with respect to 100 parts by weight of water, it is necessary to form a uniform solution. Specific examples of phenols include 4,4'-dihydroxydiphenyl, 3,3 ', 5,5'-tetramethyl-4,
4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-3-methylphenyl) methane, bis (4-hydroxy-3-t-butylphenyl) methane, bis (4-hydroxy-3) −i
-Propylphenyl) methane, bis (4-hydroxy-
3,5-dimethylphenyl) methane, bis (2-hydroxy-3-t-butyl-5-methylphenyl) methane,
Bis (4-hydroxyphenyl) ethane, bis (4-hydroxy-3-methylphenyl) ethane, bis (4-hydroxy-3-t-butylphenyl) ethane, bis (4
-Hydroxy-3-i-propylphenyl) ethane, bis (4-hydroxy-3,5-dimethylphenyl) ethane, bis (2-hydroxy-3-t-butyl-5-methylphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) propane (formula

【0007】 で表される。)、2,2−ビス(4−ヒドロキシ−3−
メチルフェニル)プロパン、2,2−ビス(4−ヒドロ
キシ−3−t−ブチルフェニル)プロパン、2,2−ビ
ス(4−ヒドロキシ−3−i−プロピルフェニル)プロ
パン、2,2−ビス(4−ヒドロキシ−3,5−ジメチ
ルフェニル)プロパン、2,2−ビス(2−ヒドロキシ
−3−t−ブチル−5−メチルフェニル)プロパン、
2,2−ビス(4−ヒドロキシ−3−t−ブチル−6−
メチルフェニル)プロパン、2,2−ビス(3−アリル
−4−ヒドロキシフェニル)プロパン,1,1−ビス
(4−ヒドロキシフェニル)ブタン、1,1−ビス(4
−ヒドロキシ−3−メチルフェニル)ブタン、1,1−
ビス(4−ヒドロキシ−3−t−ブチルフェニル)ブタ
ン、1,1−ビス(4−ヒドロキシ−3−i−プロピル
フェニル)ブタン、1,1−ビス(4−ヒドロキシ−
3,5−ジメチルフェニル)ブタン、1,1−ビス(2
−ヒドロキシ−3−t−ブチル−5−メチルフェニル)
ブタン、1,1−ビス(4−ヒドロキシ−3−t−ブチ
ル−6−メチルフェニル)ブタン、2,2−ビス(3−
アリル−4−ヒドロキシフェニル)プロパン、1,1−
ビス(3−アリル−4−ヒドロキシフェニル)ブタン,
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサ
ン、1,1−ビス(4−ヒドロキシ−3−メチルフェニ
ル)シクロヘキサン、ビス(4−ヒドロキシフェニル)
スルフィド、ビス(4−ヒドロキシ−3−メチルフェニ
ル)スルフィド、ビス(4−ヒドロキシ−3−t−ブチ
ルフェニル)スルフィド、ビス(4−ヒドロキシ−3−
i−プロピルフェニル)スルフィド、ビス(4−ヒドロ
キシ−3,5−ジメチルフェニル)スルフィド、ビス
(2−ヒドロキシ−3−t−ブチル−5−メチルフェニ
ル)スルフィド、ビス(4−ヒドロキシフェニル)スル
ホン、ビス(4−ヒドロキシ−3−メチルフェニル)ス
ルホン、ビス(4−ヒドロキシ−3−t−ブチルフェニ
ル)スルホン、ビス(4−ヒドロキシ−3−i−プロピ
ルフェニル)スルホン、ビス(4−ヒドロキシ−3,5
−ジメチルフェニル)スルホン、ビス(2−ヒドロキシ
−3−t−ブチル−5−メチルフェニル)スルホン、ビ
ス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒ
ドロキシ−3−メチルフェニル)エーテル、ビス(4−
ヒドロキシ−3−t−ブチルフェニル)エーテル、ビス
(4−ヒドロキシ−3−i−プロピルフェニル)エーテ
ル、ビス(4−ヒドロキシ−3,5−ジメチルフェニ
ル)エーテル、ビス(2−ヒドロキシ−3−t−ブチル
−5−メチルフェニル)エーテル、ビス(4−ヒドロキ
シフェニル)カルボニル、ビス(4−ヒドロキシ−3−
メチルフェニル)カルボニル、ビス(4−ヒドロキシ−
3−t−ブチルフェニル)スルフィド、ビス(4−ヒド
ロキシ−3−i−プロピルフェニル)カルボニル、ビス
(4−ヒドロキシ−3,5−ジメチルフェニル)カルボ
ニル、ビス(2−ヒドロキシ−3−t−ブチル−5−メ
チルフェニル)カルボニル等が挙げられる。特に2,2
−ビス(4−ヒドロキシフェニル)プロパンは工業的に
入手しやすい。
[0007] It is represented by ), 2,2-bis (4-hydroxy-3-
Methylphenyl) propane, 2,2-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-i-propylphenyl) propane, 2,2-bis (4 -Hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (2-hydroxy-3-t-butyl-5-methylphenyl) propane,
2,2-bis (4-hydroxy-3-t-butyl-6-
Methylphenyl) propane, 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) butane, 1,1-bis (4
-Hydroxy-3-methylphenyl) butane, 1,1-
Bis (4-hydroxy-3-t-butylphenyl) butane, 1,1-bis (4-hydroxy-3-i-propylphenyl) butane, 1,1-bis (4-hydroxy-
3,5-dimethylphenyl) butane, 1,1-bis (2
-Hydroxy-3-t-butyl-5-methylphenyl)
Butane, 1,1-bis (4-hydroxy-3-t-butyl-6-methylphenyl) butane, 2,2-bis (3-
Allyl-4-hydroxyphenyl) propane, 1,1-
Bis (3-allyl-4-hydroxyphenyl) butane,
1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, bis (4-hydroxyphenyl)
Sulfide, bis (4-hydroxy-3-methylphenyl) sulfide, bis (4-hydroxy-3-t-butylphenyl) sulfide, bis (4-hydroxy-3-
i-propylphenyl) sulfide, bis (4-hydroxy-3,5-dimethylphenyl) sulfide, bis (2-hydroxy-3-t-butyl-5-methylphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, Bis (4-hydroxy-3-methylphenyl) sulfone, bis (4-hydroxy-3-t-butylphenyl) sulfone, bis (4-hydroxy-3-i-propylphenyl) sulfone, bis (4-hydroxy-3) , 5
-Dimethylphenyl) sulfone, bis (2-hydroxy-3-t-butyl-5-methylphenyl) sulfone, bis (4-hydroxyphenyl) ether, bis (4-hydroxy-3-methylphenyl) ether, bis (4 −
Hydroxy-3-t-butylphenyl) ether, bis (4-hydroxy-3-i-propylphenyl) ether, bis (4-hydroxy-3,5-dimethylphenyl) ether, bis (2-hydroxy-3-t) -Butyl-5-methylphenyl) ether, bis (4-hydroxyphenyl) carbonyl, bis (4-hydroxy-3-
Methylphenyl) carbonyl, bis (4-hydroxy-
3-t-butylphenyl) sulfide, bis (4-hydroxy-3-i-propylphenyl) carbonyl, bis (4-hydroxy-3,5-dimethylphenyl) carbonyl, bis (2-hydroxy-3-t-butyl) -5-methylphenyl) carbonyl and the like. Especially 2,2
-Bis (4-hydroxyphenyl) propane is industrially available.

【0008】フェノラート水溶液を調製するのに用いら
れるアルカリ金属の水酸化物としては、特に限定されな
いが工業的に一般的に用いられる水酸化ナトリウム、水
酸化カリウム、水酸化リチウム等が挙げられる。特に水
酸化ナトリウムは安価に入手できることから好ましい。
アルカリ金属の水酸化物について、使用量はフェノール
類の水酸基に対して過剰に用いられることが好ましい。
具体的には、1.0〜5.0倍当量、より好ましくは
1.0〜3.5倍当量である。
The alkali metal hydroxide used for preparing the aqueous phenolate solution is not particularly limited, but includes sodium hydroxide, potassium hydroxide, lithium hydroxide and the like generally used industrially. Particularly, sodium hydroxide is preferable because it can be obtained at low cost.
The amount of the alkali metal hydroxide used is preferably used in excess with respect to the hydroxyl group of the phenol.
Specifically, it is 1.0 to 5.0 times equivalent, more preferably 1.0 to 3.5 times equivalent.

【0009】ハロゲン化シアンとしては、塩化シアン或
いは臭化シアンが用いられる。ハロゲン化シアンの使用
量としては、不純物のイミドカーボネート類の副生を抑
制するためアルカリ金属の水酸化物の当量に対し過剰に
用いられることが好ましく、具体的にフェノール類の水
酸基に対して1.05〜6.0倍当量、より好ましくは
1.5〜4.0倍当量である。
As the cyanogen halide, cyanogen chloride or cyanogen bromide is used. The amount of the cyanogen halide used is preferably an excess with respect to the equivalent of the alkali metal hydroxide in order to suppress by-products of the imide carbonates as impurities. It is 0.05 to 6.0 equivalents, more preferably 1.5 to 4.0 equivalents.

【0010】ハロゲン化シアンおよび3級アミンを含む
水溶液は、ハロゲン化シアンと3級アミンを水に溶解さ
せて調製される。そのときの水の量としては、ハロゲン
化シアンを溶解させるのに必要最小限度以上用いること
が望ましい。これよりも少ない水量を用いるならば、ハ
ロゲン化シアンが鉱酸により活性化されず、芳香族シア
ン酸エステルの収率向上は望めない。一方、水量が多く
なると、その生産性が低下して好ましくない。
An aqueous solution containing a cyanogen halide and a tertiary amine is prepared by dissolving a cyanogen halide and a tertiary amine in water. The amount of water at that time is preferably at least the minimum necessary for dissolving the cyanogen halide. If a smaller amount of water is used, the cyanogen halide will not be activated by the mineral acid, and an improvement in the yield of aromatic cyanate ester cannot be expected. On the other hand, when the amount of water is large, the productivity is undesirably reduced.

【0011】3級アミンとしては、トリメチルアミン、
トリエチルアミン、トリプロピルアミン、トリブチルア
ミン、ジメチルエチルアミン、ジメチルアニリン、ジエ
チルアニリン、ピリジン、キノリン等が挙げられる。特
にトリエチルアミンは沸点が適当で工業的に取り扱いや
すく好ましい。3級アミンの量としては、フェノール類
100重量部に対して0.05〜2.0重量部用いるこ
とが望ましく、ジアルキルシアノアミドの副生を避ける
ため、さらに好ましくは0.05〜1.0重量部用いる
ことが好ましい。
As the tertiary amine, trimethylamine,
Examples include triethylamine, tripropylamine, tributylamine, dimethylethylamine, dimethylaniline, diethylaniline, pyridine, quinoline and the like. Particularly, triethylamine is preferable because it has an appropriate boiling point and is easy to handle industrially. The tertiary amine is preferably used in an amount of 0.05 to 2.0 parts by weight based on 100 parts by weight of phenols, and more preferably 0.05 to 1.0 parts by weight to avoid by-products of dialkylcyanoamide. It is preferable to use parts by weight.

【0012】ハロゲン化シアンおよび3級アミンを含む
水溶液のpH調整に用いる鉱酸としては、硫酸、硝酸、
燐酸、塩酸が用いられるが、特に塩酸、硫酸の入手が容
易で好ましい。鉱酸の濃度としては、特に限定されない
が、ハロゲン化シアンおよび3級アミンを含む水溶液を
pH3〜5の弱酸に調整することから、0.1〜5Nの
希酸の濃度が好ましい。
Mineral acids used for adjusting the pH of an aqueous solution containing a cyanogen halide and a tertiary amine include sulfuric acid, nitric acid, and the like.
Phosphoric acid and hydrochloric acid are used, and particularly, hydrochloric acid and sulfuric acid are easily available and preferred. The concentration of the mineral acid is not particularly limited, but a concentration of a dilute acid of 0.1 to 5 N is preferable since an aqueous solution containing a cyanogen halide and a tertiary amine is adjusted to a weak acid having a pH of 3 to 5.

【0013】本発明において、フェノラート水溶液と、
ハロゲン化シアンおよび3級アミンを含む水溶液のpH
を酸性に調整した水溶液とを、接触させて反応させる
際、反応器内の反応温度は、ハロゲン化シアンとして塩
化シアンを用いる場合は、−5〜30℃が好ましく、よ
り安全に取り扱うためより好ましくは−5〜20℃であ
る。臭化シアンを用いる場合は、反応温度は−5〜65
℃が好ましい。−5℃より下では反応液が凍結してしま
い好ましくない。
[0013] In the present invention, an aqueous phenolate solution,
PH of aqueous solution containing cyanogen halide and tertiary amine
When reacting with an aqueous solution adjusted to be acidic, the reaction temperature in the reactor is preferably −5 to 30 ° C. when using cyanogen chloride as cyanogen halide, and more preferably for safer handling. Is −5 to 20 ° C. When using cyanogen bromide, the reaction temperature is -5 to 65.
C is preferred. If the temperature is lower than −5 ° C., the reaction solution freezes, which is not preferable.

【0014】本発明において、フェノラート水溶液と、
ハロゲン化シアンおよび3級アミンを含む水溶液のpH
を酸性に調整した水溶液とを、接触させて反応させる方
法としては、任意の方法で行われるが、例えば、それら
の両水溶液をそれぞれ別の入口から反応器に同時に併行
して連続的または間欠的に滴下して加える方法があげら
れる。
[0014] In the present invention, an aqueous phenolate solution,
PH of aqueous solution containing cyanogen halide and tertiary amine
An aqueous solution adjusted to be acidic may be contacted and reacted by any method.For example, both of these aqueous solutions may be simultaneously or simultaneously introduced into the reactor from different inlets, continuously or intermittently. Is added dropwise.

【0015】反応後、反応溶液の後処理、精製は任意の
方法で行われる。例えば、反応終了後、シアン酸エステ
ルを含む反応溶液と、水と分液可能な有機溶媒とを混合
し、混合液からシアン酸エステルを含む有機溶媒層を分
液して回収し、該有機溶媒層を(必要により濃縮して)
水洗後、それに2級アルコール類、3級アルコール類、
脂肪族炭化水素の中から任意に選ばれる貧溶媒を接触さ
せて、晶析または沈殿させることにより行われる。濃縮
は120℃以下の温度で減圧下行うのが好ましく、温度
を上げすぎると3量化が始まるので好ましくない。晶析
あるいは沈殿は、シアン酸エステルを含む有機溶媒液を
冷却するか、あるいはそれを貧溶媒に添加するか、ある
いは逆に添加するか、あるいはその貧溶媒との混合液を
冷却することにより行われる。
After the reaction, post-treatment and purification of the reaction solution are performed by any method. For example, after the reaction is completed, a reaction solution containing a cyanate ester is mixed with water and an organic solvent capable of being separated from water, and an organic solvent layer containing a cyanate ester is separated and recovered from the mixed solution. Layer (concentrated if necessary)
After washing with water, secondary alcohols, tertiary alcohols,
It is carried out by contacting a poor solvent arbitrarily selected from aliphatic hydrocarbons to cause crystallization or precipitation. The concentration is preferably carried out under a reduced pressure at a temperature of 120 ° C. or lower. If the temperature is too high, trimerization starts, which is not preferable. Crystallization or precipitation is carried out by cooling the organic solvent solution containing the cyanate ester, adding it to the poor solvent, adding it in reverse, or cooling the mixture with the poor solvent. Will be

【0016】水と分液可能な有機溶媒としては、メチル
エチルケトン、メチルイソブチルケトン等のケトン系溶
媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、
ジエチルエーテル、テトラヒドロフラン等のエーテル系
溶媒、塩化メチレン、クロロホルム、四塩化炭素、クロ
ロベンゼン等のハロゲン化炭化水素、ベンゾニトリル等
のニトリル系溶媒、ニトロベンゼン等のニトロ系溶媒、
酢酸エチル、安息香酸エチルなどのエステル系溶媒が使
用可能である。中でもケトン系溶媒、芳香族系溶媒が、
シアン酸エステルを収率よくとるためには好ましく、さ
らにその中でもメチルイソブチルケトン、トルエンが好
ましい。最も好ましいのがメチルイソブチルケトンであ
る。貧溶媒としては、イソプロピルアルコール、アミル
アルコール、t−ブチルアルコール等の2級または3級
アルコール溶媒、ベンゼン、トルエン、キシレン、ヘキ
サン、石油エーテル等の脂肪族炭化水素が好ましい。ア
ルコール類については、水と任意の割合で混合しても良
い。また上記の複数の溶媒を任意に混合しても良い。メ
タノール、エタノール等の1級アルコールは使用可能で
あるが、シアン酸エステルの収率が低下するため好まし
くない。
Organic solvents which can be separated from water include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; aromatic solvents such as benzene, toluene and xylene;
Ether solvents such as diethyl ether and tetrahydrofuran, methylene chloride, chloroform, carbon tetrachloride, halogenated hydrocarbons such as chlorobenzene, nitrile solvents such as benzonitrile, nitro solvents such as nitrobenzene,
Ester solvents such as ethyl acetate and ethyl benzoate can be used. Among them, ketone solvents and aromatic solvents,
It is preferable to obtain a cyanate ester with good yield, and among them, methyl isobutyl ketone and toluene are preferable. Most preferred is methyl isobutyl ketone. As the poor solvent, secondary or tertiary alcohol solvents such as isopropyl alcohol, amyl alcohol and t-butyl alcohol, and aliphatic hydrocarbons such as benzene, toluene, xylene, hexane and petroleum ether are preferable. Alcohols may be mixed with water at any ratio. Further, the above-mentioned plural solvents may be arbitrarily mixed. Primary alcohols such as methanol and ethanol can be used, but are not preferred because the yield of cyanate ester is reduced.

【0017】本発明の製造方法によって得られる高純度
の芳香族シアン酸エステルは、電子部品の封止用、積層
板用、複合材料用、成形材料用および接着材用等の熱硬
化性樹脂として用いられる。以下に本発明の実施例を示
すが、本発明はこれらに限定されるものではない。
The high-purity aromatic cyanate ester obtained by the production method of the present invention can be used as a thermosetting resin for sealing electronic parts, for laminates, for composite materials, for molding materials, and for adhesives. Used. Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0018】[0018]

【実施例】実施例1 2,2−ビス(4−ヒドロキシフェニル)プロパン(三
井東圧化学(株)製)20g(0.0865mol)と
96%苛性ソーダ18.25g(0.438mol)を
水500gに均一に溶解した後、冷却し、フェノラート
水溶液を調製した。温度計、攪拌器、滴下漏斗及び還流
冷却器をつけた反応器に、このフェノラート溶液と、塩
化シアン31.92g(0.519mol)とトリエチ
ルアミン0.15g(0.0015mol)を400g
の水に溶解し、1N塩酸(0.4g)を加えpH3.6
に調整した溶液とを、それぞれ別の滴下漏斗から、同時
に併行して、一定の滴下速度で0〜10℃で滴下し(滴
下時間40分)、滴下終了後、器内を同温度で15分間保
持した。次いで、この中へメチルイソブチルケトン(水
と分液可能な有機溶媒として)を加えて分液した後、有
機層を水洗した。次にこの有機層を減圧濃縮してからイ
ソプロピルアルコールを滴下して冷却し1時間攪拌し
た。得られたスラリーをろ過し、イソプロピルアルコー
ルで洗浄した後、風乾して融点80℃の白色結晶20.
97g(収率86%)を得た。液体クロマト法(LC)
によりこれを分析したところ、未反応の原料ビスフェノ
ール、モノシアネート体は検出されなかった。副反応に
より生じるイミドカーボネートも検出されなかった(純
度99+%)。また硝酸銀を用いた電位差滴定で検出さ
れた塩素イオンは10ppm以下であった。
Example 1 20 g (0.0865 mol) of 2,2-bis (4-hydroxyphenyl) propane (manufactured by Mitsui Toatsu Chemicals, Inc.) and 18.25 g (0.438 mol) of 96% caustic soda in 500 g of water After uniformly dissolving the phenolate, the mixture was cooled to prepare an aqueous phenolate solution. 400 g of this phenolate solution, 31.92 g (0.519 mol) of cyanogen chloride and 0.15 g (0.0015 mol) of triethylamine were placed in a reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser.
In water, and 1N hydrochloric acid (0.4 g) was added to the solution to pH 3.6.
And the solution adjusted to the above at the same time simultaneously from different dropping funnels, was dropped at a constant dropping rate at 0 to 10 ° C (dropping time 40 minutes), and after the dropping was completed, the inside of the vessel was kept at the same temperature for 15 minutes. Held. Next, methyl isobutyl ketone (as an organic solvent capable of liquid separation with water) was added thereto, followed by liquid separation, and the organic layer was washed with water. Next, the organic layer was concentrated under reduced pressure, isopropyl alcohol was added dropwise, cooled, and stirred for 1 hour. The resulting slurry was filtered, washed with isopropyl alcohol, and air-dried to obtain white crystals having a melting point of 80 ° C.
97 g (86% yield) were obtained. Liquid chromatography (LC)
As a result, no unreacted starting bisphenol or monocyanate was detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ions detected by potentiometric titration using silver nitrate were 10 ppm or less.

【0019】実施例2 実施例1で、塩化シアンとトリエチルアミンの混合水溶
液を1N塩酸でpH4.3に調整する以外は、同一条件
で実施し白色結晶20.72g(収率85%)を得た。
LCによりこれを分析したところ、未反応の原料のビス
フェノール、モノシアネート体は検出されなかった。副
反応により生じるイミドカーボネートも検出されなかっ
た(純度99+%)。また硝酸銀を用いた電位差滴定で
検出された塩素イオンは10ppm以下であった。
Example 2 The procedure of Example 1 was repeated, except that a mixed aqueous solution of cyanogen chloride and triethylamine was adjusted to pH 4.3 with 1N hydrochloric acid to obtain 20.72 g (yield: 85%) of white crystals. .
When this was analyzed by LC, unreacted starting materials, bisphenol and monocyanate, were not detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ions detected by potentiometric titration using silver nitrate were 10 ppm or less.

【0020】実施例3 実施例1で、フェノラート水溶液を調製するとき96%
苛性ソーダ21.90g(0.526mol)を用い
る、塩化シアンを29.27g(0.470mol)用
いる以外は、同一条件で実施し白色結晶19.50g
(収率80%)を得た。LCにより製品を分析したとこ
ろ、未反応の原料のビスフェノール、モノシアネート体
は検出されなかった。副反応により生じるイミドカーボ
ネートも検出されなかった(純度99+%)。また硝酸
銀を用いた電位差滴定で検出された塩素イオンは10p
pm以下であった。
Example 3 In Example 1, a 96% aqueous phenolate solution was prepared.
19.50 g of white crystals were obtained under the same conditions except that 21.90 g (0.526 mol) of caustic soda and 29.27 g (0.470 mol) of cyanogen chloride were used.
(80% yield). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ion detected by potentiometric titration using silver nitrate is 10p
pm or less.

【0021】実施例4 実施例1で、3級アミンとしてトリエチルアミン0.1
gを使用する以外は、同一条件で実施し白色結晶19.
50gを得た(収率80.0%)。LCにより製品を分
析したところ、未反応の原料のビスフェノール、モノシ
アネート体は検出されなかった。副反応により生じるイ
ミドカーボネートも検出されなかった(純度99+
%)。また硝酸銀を用いた電位差滴定で検出された塩素
イオンは10ppm以下であった。
Example 4 In Example 1, triethylamine 0.1 was used as the tertiary amine.
g of white crystals, except that g was used.
50 g was obtained (80.0% yield). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imide carbonate generated by a side reaction was detected (purity 99+
%). Chloride ions detected by potentiometric titration using silver nitrate were 10 ppm or less.

【0022】実施例5 実施例1で3級アミンとしてトリメチルアミンを使用す
る以外は、同一条件で実施し白色結晶19.38gを得
た(収率79.5%)。LCにより製品を分析したとこ
ろ、未反応の原料のビスフェノール、モノシアネート体
は検出されなかった。副反応により生じるイミドカーボ
ネートも検出されなかった(純度99+%)。また硝酸
銀を用いた電位差滴定で検出された塩素イオンは10p
pm以下であった。
Example 5 The procedure of Example 1 was repeated, except that trimethylamine was used as the tertiary amine, to obtain 19.38 g of white crystals (yield: 79.5%). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ion detected by potentiometric titration using silver nitrate is 10p
pm or less.

【0023】実施例6 実施例1で3級アミンとしてトリブチルアミン0.18
gを使用する以外は、同一条件で実施し白色結晶19.
38gを得た(収率79.5%)。LCにより製品を分
析したところ、未反応の原料のビスフェノール、モノシ
アネート体は検出されなかった。副反応により生じるイ
ミドカーボネートも検出されなかった(純度99+
%)。また硝酸銀を用いた電位差滴定で検出された塩素
イオンは10ppm以下であった。
Example 6 In Example 1, 0.18 of tributylamine was used as a tertiary amine.
g of white crystals, except that g was used.
38 g were obtained (79.5% yield). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imide carbonate generated by a side reaction was detected (purity 99+
%). Chloride ions detected by potentiometric titration using silver nitrate were 10 ppm or less.

【0024】実施例7 実施例1で、反応終了後器内に加えられる、水と分液可
能な溶媒としてトルエンを使用する以外は、同一条件で
実施し白色結晶18.53gを得た(収率76.0
%)。LCにより製品を分析したところ、未反応の原料
のビスフェノール、モノシアネート体は検出されなかっ
た。副反応により生じるイミドカーボネートも検出され
なかった(純度99+%)。また硝酸銀を用いた電位差
滴定で検出された塩素イオンは10ppm以下であっ
た。
Example 7 The procedure of Example 1 was repeated, except that toluene was used as a solvent capable of being separated from water after the completion of the reaction. Rate 76.0
%). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ions detected by potentiometric titration using silver nitrate were 10 ppm or less.

【0025】実施例8 実施例1で、晶析及び洗浄用に用いられる貧溶媒とし
て、86%イソプロピルアルコール水溶液100gを使
用する以外は、同一条件で実施し白色結晶18.53g
を得た(収率76.0%)。LCにより製品を分析した
ところ、未反応の原料のビスフェノール、モノシアネー
ト体は検出されなかった。副反応により生じるイミドカ
ーボネートも検出されなかった(純度99+%)。また
硝酸銀を用いた電位差滴定で検出された塩素イオンは1
0ppm以下であった。
Example 8 The procedure of Example 1 was repeated, except that 100 g of an 86% aqueous solution of isopropyl alcohol was used as a poor solvent for crystallization and washing, and 18.53 g of white crystals were used.
Was obtained (76.0% yield). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ion detected by potentiometric titration using silver nitrate is 1
It was 0 ppm or less.

【0026】実施例9 実施例1で、晶析及び洗浄用に用いられる貧溶媒とし
て、ヘプタン110gを使用する以外は、全く同一条件
で実施し白色結晶18.04gを得た(収率74.0
%)。LCにより製品を分析したところ、未反応の原料
のビスフェノール、モノシアネート体は検出されなかっ
た。副反応により生じるイミドカーボネートも検出され
なかった(純度99+%)。また硝酸銀を用いた電位差
滴定で検出された塩素イオンは10ppm以下であっ
た。
Example 9 The procedure of Example 1 was repeated, except that 110 g of heptane was used as a poor solvent for crystallization and washing, to obtain 18.04 g of white crystals (yield: 74.10 g). 0
%). When the product was analyzed by LC, unreacted raw materials of bisphenol and monocyanate were not detected. No imidocarbonate generated by a side reaction was detected (purity 99 +%). Chloride ions detected by potentiometric titration using silver nitrate were 10 ppm or less.

【0027】比較例1 2,2−ビス(4−ヒドロキシフェニル)プロパン(三
井東圧化学(株)製)20.0g(0.0865mo
l)、96%苛性ソーダ7.3g(0.1752mo
l)を水500gに加え、65℃まで攪拌しながら昇温
し、完全に2,2−ビス(4−ヒドロキシフェニル)プ
ロパンが溶解したら5℃以下まで冷却した。一方、攪拌
翼、滴下漏斗、及び還流管を接続した1Lのセパラブル
フラスコにトルエン400gを入れ、窒素雰囲気下にて
5℃まで冷却した。冷却されたトルエンに塩化シアン1
6.9ml(20.0g、0.3252mol)とトリ
エチルアミン0.1g(0.989mmol)を加えた
後、600rpmで攪拌した。次に内温を5℃に維持し
ながら、フェノラート水溶液を滴下した。滴下終了後、
油層をLCによる分析の結果、得られたジシアネート体
のビスフェノールに基づく収率は40%と低く、5%の
未反応モノシアネート体が検出された。またゲル浸透ク
ロマトグラフィー(GPC)の分析により、イミドカー
ボネートと思われる高分子量のピークが面積百分率で5
0%見られた。
Comparative Example 1 20.0 g (0.0865 mol) of 2,2-bis (4-hydroxyphenyl) propane (manufactured by Mitsui Toatsu Chemicals, Inc.)
l), 7.3 g of 96% caustic soda (0.1752 mol)
l) was added to 500 g of water, and the temperature was raised while stirring to 65 ° C. When 2,2-bis (4-hydroxyphenyl) propane was completely dissolved, the mixture was cooled to 5 ° C or lower. On the other hand, 400 g of toluene was placed in a 1 L separable flask connected with a stirring blade, a dropping funnel, and a reflux tube, and cooled to 5 ° C. under a nitrogen atmosphere. Cyanide chloride 1 in cooled toluene
After adding 6.9 ml (20.0 g, 0.3252 mol) and 0.1 g (0.989 mmol) of triethylamine, the mixture was stirred at 600 rpm. Next, an aqueous phenolate solution was added dropwise while maintaining the internal temperature at 5 ° C. After dropping,
The oil layer was analyzed by LC. As a result, the yield of the obtained dicyanate compound based on bisphenol was as low as 40%, and 5% of unreacted monocyanate compound was detected. According to analysis by gel permeation chromatography (GPC), a high molecular weight peak considered to be imidocarbonate was 5% by area percentage.
0% was seen.

【0028】比較例2 塩化シアンとトリエチルアミンを水に溶解した水溶液の
pHを調整しないことの他は、実施例1と同様に行った
結果、融点80℃の白色結晶18.04g(収率74
%)を得た。実施例からも明らかなように、塩化シアン
とトリエチルアミンを含む水溶液を特定のpHに調整
し、フェノラート水溶液(好ましくは苛性ソーダ量をフ
ェノールの水酸基当量よりも過剰に用いる)と接触させ
ることにより、高収率で高純度のジシアネートを得るこ
とができる。比較例1で示したように、従来法の有機溶
媒と水の混合系で反応させる方法ではイミドカーボネー
ト系の化合物が不純物として副生するためその除去が困
難であった。またハロゲン化シアンと3級アミンを溶解
した水溶液をpH調整した後滴下した本発明(実施例
1)の場合、調整しない比較例2の場合に比べて、高収
率でシアン酸エステルを得ることができた。本発明は、
反応に水のみを溶媒として用いるため、ハロゲン化シア
ンの重合による暴走反応の危険性が非常に低く安全で、
かつ工業的な規模で実施可能な優れたプロセスであると
いえる。
Comparative Example 2 The procedure of Example 1 was repeated, except that the pH of an aqueous solution of cyanogen chloride and triethylamine dissolved in water was not adjusted. As a result, 18.04 g of white crystals having a melting point of 80 ° C. (yield 74)
%). As is evident from the examples, by adjusting the aqueous solution containing cyanogen chloride and triethylamine to a specific pH and contacting it with an aqueous phenolate solution (preferably using an amount of caustic soda in excess of the hydroxyl equivalent of phenol), a high yield is obtained. A high purity dicyanate can be obtained at a high rate. As shown in Comparative Example 1, it was difficult to remove the imidocarbonate-based compound as an impurity by-produced in the conventional method in which the reaction was carried out in a mixed system of an organic solvent and water. In addition, in the case of the present invention (Example 1) in which an aqueous solution in which a cyanogen halide and a tertiary amine are dissolved was dropped after adjusting the pH, a cyanate ester was obtained in a higher yield than in Comparative Example 2 in which no adjustment was made. Was completed. The present invention
Since only water is used as a solvent in the reaction, the risk of runaway reaction due to polymerization of cyanogen halide is very low and safe,
It can be said that this is an excellent process that can be carried out on an industrial scale.

【0029】[0029]

【発明の効果】本発明の製造方法によれば、プロセス的
に安全かつ簡便で、高純度の芳香族シアン酸エステルを
高収率で得ることができる。
According to the production method of the present invention, a high-purity aromatic cyanate ester can be obtained in a safe and simple process and at a high yield.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】下記の一般式(I) 【化1】 (I)(式中、Aはそれぞれに独立に水素原子または炭
素数1以上6以下のアルキル基、Xは単結合、炭素数1
から20の有機基、カルボニル基、スルホン基、2価の
硫黄原子または酸素原子、Iは0以上4以下の整数値を
示す。)で表されるフェノール類、アルカリ金属水酸化
物および水から調製されるフェノラート水溶液と、ハロ
ゲン化シアンおよび3級アミンを含む水溶液を鉱酸を加
えることによりpHを酸性に調整した水溶液とを、接触
させて反応させることを特徴とする芳香族シアン酸エス
テルを高純度で得るための製造方法。
(1) The following general formula (I): (I) (wherein, A is each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X is a single bond,
To 20, an organic group, a carbonyl group, a sulfone group, a divalent sulfur atom or an oxygen atom, and I represents an integer of 0 or more and 4 or less. A) a phenolate aqueous solution prepared from a phenol, an alkali metal hydroxide and water represented by the formula (1), and an aqueous solution containing a cyanogen halide and a tertiary amine, the pH of which is adjusted to acidic by adding a mineral acid; A method for producing an aromatic cyanate ester with high purity, characterized by contacting and reacting.
【請求項2】フェノール類が、フェノラート水溶液とし
て水に対して1%以上の溶解度を有するものである請求
項1記載の製造方法。
2. The method according to claim 1, wherein the phenol has a solubility of 1% or more in water as an aqueous phenolate solution.
【請求項3】フェノール類が下記式で示されるものであ
る請求項1記載の製造方法。 【化2】
3. The method according to claim 1, wherein the phenol is represented by the following formula. Embedded image
【請求項4】フェノール類のフェノラート水溶液を調製
する際のアルカリ金属の水酸化物として苛性ソーダまた
は苛性カリを用い、その量としてフェノール類の水酸基
に対し1.5〜5当量用いる請求項1記載の製造方法。
4. The process according to claim 1, wherein caustic soda or caustic potash is used as the alkali metal hydroxide when preparing the aqueous phenolate phenolate solution, and the amount thereof is 1.5 to 5 equivalents to the hydroxyl group of the phenol. Method.
【請求項5】ハロゲン化シアンとして塩化シアンを用
い、その量としてフェノール類の水酸基に対し1.5〜
5.5当量用いる請求項1記載の製造方法。
5. A method according to claim 1, wherein cyanogen chloride is used as the cyanogen halide, and the amount of the cyanogen is 1.5 to 1.5 with respect to the hydroxyl group of the phenol.
The method according to claim 1, wherein 5.5 equivalents are used.
【請求項6】反応終了後、シアン酸エステルを含む反応
溶液と、水と分液可能な有機溶媒とを混合し、混合液か
らシアン酸エステルを含む有機溶媒層を分液して回収
し、該有機溶媒層を水洗後、それに2級アルコール類、
3級アルコール類、脂肪族炭化水素の中から任意に選ば
れる貧溶媒を接触させて、晶析または沈殿させる請求項
1記載の製造方法。
6. After completion of the reaction, a reaction solution containing a cyanate ester is mixed with water and an organic solvent capable of being separated from water, and an organic solvent layer containing a cyanate ester is separated from the mixed solution and collected. After washing the organic solvent layer with water, secondary alcohols,
The production method according to claim 1, wherein a poor solvent arbitrarily selected from tertiary alcohols and aliphatic hydrocarbons is brought into contact with the mixture to cause crystallization or precipitation.
【請求項7】水と分液可能な有機溶媒として、メチルイ
ソブチルケトン、トルエンまたはこれらの混合物を用い
る請求項6記載の製造方法。
7. The production method according to claim 6, wherein methyl isobutyl ketone, toluene or a mixture thereof is used as the organic solvent capable of being separated from water.
【請求項8】貧溶媒としてイソプロピルアルコール、イ
ソブチルアルコール、tert−ブチルアルコール、s
ec−ブチルアルコール及びまたはそれらの含水アルコ
ール、ペンタン、ヘキサン、ヘプタン、シクロペンタ
ン、シクロヘキサン、シクロペンタンまたはこれらの混
合物を用いる請求項7記載の製造方法。
8. A poor solvent comprising isopropyl alcohol, isobutyl alcohol, tert-butyl alcohol, s
The method according to claim 7, wherein ec-butyl alcohol and / or a hydroalcohol thereof, pentane, hexane, heptane, cyclopentane, cyclohexane, cyclopentane or a mixture thereof is used.
JP5985398A 1998-03-11 1998-03-11 Manufacture of high purity aromatic cyanate ester Pending JPH11255734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5985398A JPH11255734A (en) 1998-03-11 1998-03-11 Manufacture of high purity aromatic cyanate ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5985398A JPH11255734A (en) 1998-03-11 1998-03-11 Manufacture of high purity aromatic cyanate ester

Publications (1)

Publication Number Publication Date
JPH11255734A true JPH11255734A (en) 1999-09-21

Family

ID=13125177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5985398A Pending JPH11255734A (en) 1998-03-11 1998-03-11 Manufacture of high purity aromatic cyanate ester

Country Status (1)

Country Link
JP (1) JPH11255734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277102A (en) * 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc Manufacturing method of cyanate ester of high purity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277102A (en) * 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc Manufacturing method of cyanate ester of high purity

Similar Documents

Publication Publication Date Title
JP5026727B2 (en) Method for producing high purity cyanate ester
JP2991054B2 (en) Method for producing cyanate compound
JPH11255734A (en) Manufacture of high purity aromatic cyanate ester
JPS5928539B2 (en) Method for producing bisphenol bischlorocarbonate
JP5060700B2 (en) Process for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JPH11255735A (en) Manufacture of aromatic cyanate ester in high yield
JPH11263767A (en) Production of highly purified cyanic ester
JPH11228521A (en) Production of high-purity aromatic cyanic acid esters
JPH11228522A (en) Production of cyanic acid ester using aqueous solution of cyanogen halide
JPH01203342A (en) Production of bisphenol a
JPS6363629A (en) Production of 2,2-bis(4'-hydroxyphenyl)propane
US6875896B2 (en) Method for producing high purity 1,1-bis(4-hydroxyphenyl)cyclohexanes
WO2012172893A1 (en) Method for producing hexafluoroacetone or hydrate thereof
JPWO2002022533A1 (en) Method for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
US7271287B2 (en) Process for producing aromatic hydroxycarboxylic acids
JP3117296B2 (en) Method for selective para-carboxylation of phenols
JP2012162573A (en) Method for producing 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
JP5216748B2 (en) Process for producing 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JPS62267253A (en) Production of alpha-amino acid
JP4262977B2 (en) Process for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JP2001058968A (en) Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene
JPH02255639A (en) Production of 4,4'-(1,6-hexamethylenedioxy)-bis-benzoic acid
JP2000159741A (en) Production of cyanate ester
JPH0920751A (en) Production of disulfides
JP4032825B2 (en) Method for producing 3,4-dihydroxybenzonitrile