JPH11251194A - Preparation of thin type gel electrolyte and electric double layer capacitor - Google Patents

Preparation of thin type gel electrolyte and electric double layer capacitor

Info

Publication number
JPH11251194A
JPH11251194A JP10046654A JP4665498A JPH11251194A JP H11251194 A JPH11251194 A JP H11251194A JP 10046654 A JP10046654 A JP 10046654A JP 4665498 A JP4665498 A JP 4665498A JP H11251194 A JPH11251194 A JP H11251194A
Authority
JP
Japan
Prior art keywords
gel electrolyte
electric double
double layer
electrolyte
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10046654A
Other languages
Japanese (ja)
Inventor
Atsushi Sakamoto
敦 坂本
Koji Imai
康志 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10046654A priority Critical patent/JPH11251194A/en
Publication of JPH11251194A publication Critical patent/JPH11251194A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To reduce an inside resistance by thinning the thickness of electrolyte by pouring, holding and cooling dissolved gel electrolyte constituent material between glass plates or between silicone sheets. SOLUTION: Gel electrolyte of an electric double layer capacitor is constituted of polymer, organic solvent and electrolytic salt and polyacrylonitrile is used for polymer, propylene carbonate is used for organic solvent and tetraethyle ammonium borate tetrafluoride is used for electrolytic salt. In the preparation method, a specified amount of a constituent material of gel electrolyte is weighed and is heated and dissolved at 100 deg.C. Then, a 0.2 mm-thick Teflon spacer 2 is put on a glass plate 1a, dissolved gel electrolyte 3 is cast between the Teflon spacers 2 and furthermore, a glass plate 1b is pressed from an upper part thereof and is cooled. As a result, a 0.2 mm-thick thin type gel electrolyte is obtained. The gel electrolyte 3 of an arbitrary thickness can be prepared by changing the thickness of the Teflon spacer 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄型ゲル電解質の作
製方法及び電気二重層キャパシタに関し、特に小型で大
容量の特性が要求されるコンピュータのメモリのバック
アップ用として有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin gel electrolyte and an electric double layer capacitor, and more particularly to a method for backing up a memory of a computer which is required to have a small size and a large capacity.

【0002】[0002]

【従来の技術】現在用いられているコンピュータには、
メモリのバックアップ用として、電気二重層キャパシタ
が利用されている。このキャパシタは、小型で大容量で
あるばかりでなく、繰返し寿命が長いという特徴を有す
る。電気二重層キャパシタは、A1電解コンデンサに代
表される電極間に誘電体を有する場合に比べ、体積あた
りの容量が300〜1000倍高い。この電気二重層キ
ャパシタは、分極性電極に電解質中のアニオン,カチオ
ンをそれぞれ正極,負極表面に物理吸着させて電気を蓄
えるという原理で動作するため、その吸着する電極の表
面積が大きいことが要求される。そこで、現在では、比
表面積が1000〜3000(m2/g)の活性炭がこの
電気二重層キャパシタの電極として利用されている。電
気二重層キャパシタは、この2つの電極の間に電解質が
存在する構造を有している。
2. Description of the Related Art Currently used computers include:
An electric double layer capacitor is used for backing up a memory. This capacitor is characterized in that it is not only compact and has a large capacity but also has a long repetitive life. The electric double layer capacitor has a capacity per volume 300 to 1000 times higher than a case where a dielectric is provided between electrodes typified by an A1 electrolytic capacitor. This electric double layer capacitor operates on the principle of storing electricity by physically adsorbing anions and cations in the electrolyte on the positive electrode and the negative electrode surfaces, respectively, on the polarizable electrode. You. Therefore, at present, activated carbon having a specific surface area of 1000 to 3000 (m 2 / g) is used as an electrode of this electric double layer capacitor. The electric double layer capacitor has a structure in which an electrolyte exists between these two electrodes.

【0003】近年、この種の電気二重層キャパシタは、
様々な機器のバックアップ電源として広く用いられるよ
うになってきた。適用対象の大容量化に伴い、バックア
ップとして用いる電気二重層キャパシタも、大容量化が
望まれている。かかる用途に供する大容量のキャパシタ
においては、使用電圧が高く、また内部抵抗が低く、結
果として大電流を供給できることが望ましい。
In recent years, this type of electric double layer capacitor has
It has been widely used as a backup power source for various devices. With an increase in capacity of an application object, an increase in capacity of an electric double layer capacitor used as a backup is also desired. In a large-capacity capacitor used for such a purpose, it is desirable that the working voltage is high and the internal resistance is low, so that a large current can be supplied.

【0004】電気二重層キャパシタの電解質は、水溶液
系、有機電解液系、有機電解液系にポリマーを混ぜてゲ
ル化したゲル電解質系の3つがある。水溶液系は、電解
液として主に希硫酸が用いられている。希硫酸は電気伝
導度が大きい反面、分解電圧が1.2Vと低い。一方、
有機電解液系では、分解電圧は、水溶液系に比べ高い
(2.5〜3V)が、電気伝導度が小さい。このよう
に、水溶液系と有機溶液系とでお互いに相反する性質を
持っている。またゲル電解質系は、有機電解液系と似た
性質を持っているが、ポリマーが含まれているため電気
伝導度に関しては、有機電解液系にやや劣る。しかし、
ゲル電解質系ではセパレータが不要であり、キャパシタ
を構成するときに、優位な構造を構築できるという利点
がある。
There are three types of electrolytes for electric double layer capacitors: an aqueous solution type, an organic electrolytic solution type, and a gel electrolyte type obtained by mixing a polymer with an organic electrolytic solution to form a gel. In an aqueous solution system, dilute sulfuric acid is mainly used as an electrolytic solution. Dilute sulfuric acid has high electrical conductivity, but has a low decomposition voltage of 1.2 V. on the other hand,
In the organic electrolyte solution, the decomposition voltage is higher (2.5 to 3 V) than in the aqueous solution system, but the electric conductivity is small. Thus, the aqueous solution and the organic solution have mutually contradictory properties. Further, the gel electrolyte system has properties similar to those of the organic electrolyte system, but is slightly inferior to the organic electrolyte system in terms of electric conductivity because it contains a polymer. But,
The gel electrolyte system does not require a separator, and has an advantage that a superior structure can be constructed when forming a capacitor.

【0005】[0005]

【発明が解決しようとする課題】電気二重層キャパシタ
の内部抵抗を低くして大電流を供給し得るようにするた
めのアプローチとして、当該電気二重層キャパシタの構
成材料を薄くすることが挙げられる。具体的には電極材
料の薄型化、電解質材料の薄型化等である。
As an approach for lowering the internal resistance of the electric double layer capacitor so that a large current can be supplied, there is a method of reducing the material of the electric double layer capacitor. Specifically, the thickness of the electrode material, the thickness of the electrolyte material, and the like are reduced.

【0006】電気二重層キャパシタの電解質にゲル電解
質を用いる場合、電解質としての働きとセパレータとし
ての働きを考えなければならない。イオン伝導度が高
く、電解質の分解電圧範囲が広く、また電解質の強度が
高いことが望ましい。また電解質の厚みを薄くすること
は、電解質の抵抗が低くなり、キャパシタ自体の抵抗も
下げることになる。よって、電気二重層キャパシタを構
築する上で、電解質の厚みを薄くすることは重要な問題
と言える。
When a gel electrolyte is used as an electrolyte of an electric double layer capacitor, it is necessary to consider the function as an electrolyte and the function as a separator. It is desirable that the ionic conductivity is high, the decomposition voltage range of the electrolyte is wide, and the strength of the electrolyte is high. Reducing the thickness of the electrolyte also lowers the resistance of the electrolyte and the resistance of the capacitor itself. Therefore, it can be said that reducing the thickness of the electrolyte is an important issue when constructing an electric double layer capacitor.

【0007】本発明は、上記従来技術に鑑み、電解質の
厚みを薄くして内部抵抗を小さくすることができる薄型
ゲル電解質の作製方法及び電気二重層キャパシタを提供
することを目的とする。
In view of the above prior art, an object of the present invention is to provide a method for producing a thin gel electrolyte and an electric double layer capacitor capable of reducing the internal resistance by reducing the thickness of the electrolyte.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の構成は次の点を特徴とする。
The structure of the present invention that achieves the above object has the following features.

【0009】1) ポリマー、有機溶媒、電解質塩を加
熱溶解し、これをガラス板間もしくはシリコーンゴム間
に流し込み放冷することで作製すること。
1) A method in which a polymer, an organic solvent, and an electrolyte salt are heated and dissolved, and the mixture is poured between glass plates or silicone rubber and allowed to cool.

【0010】2) 上記1)に示す方法で作製した薄型
ゲル電解質と活性炭、活性炭繊維等を使用した一組の活
性炭電極で構成したこと。
2) A thin gel electrolyte prepared by the method described in 1) above and a set of activated carbon electrodes using activated carbon, activated carbon fibers and the like.

【0011】3) ポリマー、有機溶媒、電解質塩を加
熱溶解し、これを対向する電極間に流し込む際に、スペ
ーサを挿入することにより所定の電極間距離を確保した
こと。
3) A predetermined distance between the electrodes is ensured by inserting a spacer when the polymer, the organic solvent, and the electrolyte salt are heated and dissolved, and are poured between the opposed electrodes.

【0012】4) 上記3)に示す電気二重層キャパシ
タにおいて、活性炭電極に電解質を含浸させ、加圧しな
がら電解質をゲル化させて作製した薄型含浸電極を用い
たこと。
4) In the electric double layer capacitor described in 3) above, a thin impregnated electrode produced by impregnating the activated carbon electrode with an electrolyte and gelling the electrolyte while applying pressure is used.

【0013】5) 上記4)に示す電気二重層キャパシ
タにおいて、導電性接着剤を用いて活性炭電極と集電極
を接合する場合に、導電性接着剤の加熱硬化時の加圧力
を所定の加圧力で接合することにより、所定の放電容量
を得ることができるようにしたこと。
5) In the electric double layer capacitor described in 4) above, when the activated carbon electrode and the collecting electrode are joined by using a conductive adhesive, the pressing force at the time of heat curing of the conductive adhesive is set to a predetermined pressing force. A predetermined discharge capacity can be obtained by joining at

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】本発明の第1の実施の形態では、電気二重
層キャパシタの電解質に適用している厚みが薄いゲル電
解質を作製する方法及びこれを用いた電気二重層キャパ
シタの一例を提案する。当該ゲル電解質は、ポリマー、
有機溶媒、電解質塩で構成され、ポリマーにポリアクリ
ロニトリル、有機溶媒にプロピレンカーボネート、電解
質塩に四フッ化ホウ酸テトラエチルアンモニウムを用い
て作製した。具体的には次の通りである。
In the first embodiment of the present invention, a method for producing a gel electrolyte having a small thickness applied to an electrolyte of an electric double layer capacitor and an example of an electric double layer capacitor using the same are proposed. The gel electrolyte is a polymer,
It was composed of an organic solvent and an electrolyte salt, and was prepared using polyacrylonitrile as a polymer, propylene carbonate as an organic solvent, and tetraethylammonium tetrafluoroborate as an electrolyte salt. Specifically, it is as follows.

【0016】<実施例1>ゲル電解質の構成材料を所定
量秤量し、100℃で加熱溶解させる。次に、図1に示
すように、ガラス板1a上に厚さ0.2mmのテフロンス
ペーサー2を載せ、このテフロンスペーサー2間に先程
溶解させたゲル電解質3をキャストし、さらにその上部
からガラス板1bを押しつけて放冷する。この結果、厚
さ0.2mmの薄型ゲル電解質を作製する。ここで、テフ
ロンスペーサー2の厚さを変えることにより、任意の厚
さのゲル電解質3を作製することができる。
<Example 1> A predetermined amount of a constituent material of a gel electrolyte is weighed and dissolved by heating at 100 ° C. Next, as shown in FIG. 1, a Teflon spacer 2 having a thickness of 0.2 mm is placed on a glass plate 1a, the gel electrolyte 3 previously dissolved is cast between the Teflon spacers 2, and the glass plate is further Press 1b and allow to cool. As a result, a thin gel electrolyte having a thickness of 0.2 mm is produced. Here, by changing the thickness of the Teflon spacer 2, a gel electrolyte 3 having an arbitrary thickness can be produced.

【0017】<実施例2>実施例1と同様にゲル電解質
の構成材料を所定量秤量し、100℃で加熱溶解させ
る。次に、図2に示すように、ガラス板1a上にテフロ
ンシート4aを貼り付け、その上に厚さ0.2mmのテフ
ロンスペーサー2を載せ、このテフロンスペーサー2間
に先程溶解させたゲル電解質3をキャストし、さらにそ
の上部からテフロンシート4bを貼りつけたガラス板1
bを押しつけて、放冷する。この結果、厚さ0.2mmの
薄型ゲル電解質を作製する。ここで、テフロンスペーサ
ー2の厚さを変えることにより、任意の厚さのゲル電解
質3を作製することができる。ちなみに、ゲル電解質3
の厚さが0.2mmでは内部抵抗が2.3オームであ
り、ゲル電解質3の厚さが1.0mmでは内部抵抗が
6.3オームであった。
<Example 2> As in Example 1, a predetermined amount of the constituent material of the gel electrolyte is weighed and dissolved by heating at 100 ° C. Next, as shown in FIG. 2, a Teflon sheet 4a is attached on a glass plate 1a, a Teflon spacer 2 having a thickness of 0.2 mm is placed thereon, and the gel electrolyte 3 previously dissolved between the Teflon spacers 2 is placed between the Teflon spacers 2. And a glass plate 1 on which a Teflon sheet 4b is adhered from above
Press b and allow to cool. As a result, a thin gel electrolyte having a thickness of 0.2 mm is produced. Here, by changing the thickness of the Teflon spacer 2, a gel electrolyte 3 having an arbitrary thickness can be produced. By the way, gel electrolyte 3
When the thickness of the gel electrolyte 3 was 0.2 mm, the internal resistance was 2.3 ohms, and when the thickness of the gel electrolyte 3 was 1.0 mm, the internal resistance was 6.3 ohms.

【0018】<実施例3>図3に示すように、ゲル電解
質3を含浸させた活性炭繊維で形成した活性炭電極(比
表面積2000m2/g、見かけ面積7.07cm2 )5
a、5b間に実施例1,2で作製した薄型のゲル電解質
(厚さ0.2mm)3を挟み込んで電気二重層キャパシタ
を作製した。このようにして作製した電気二重層キャパ
シタは、内部抵抗(2.8Ω)が低いままで、特性が劣
化することがなく充放電を繰り返すことができることが
確認された。
<Embodiment 3> As shown in FIG. 3, an activated carbon electrode (specific surface area 2000 m 2 / g, apparent area 7.07 cm 2 ) 5 made of activated carbon fiber impregnated with gel electrolyte 3
An electric double layer capacitor was produced by sandwiching the thin gel electrolyte (thickness 0.2 mm) 3 produced in Examples 1 and 2 between a and 5b. It was confirmed that the electric double layer capacitor manufactured in this manner could be repeatedly charged and discharged without deteriorating the characteristics while keeping the internal resistance (2.8Ω) low.

【0019】本発明の他の実施の形態では、電極間距離
を短くした電気二重層キャパシタの他の例を提案する。
当該電気二重層キャパシタのゲル電解質は、ポリマー、
有機溶媒、及び電解質塩で構成される。ポリマーはポリ
アクリロニトリル、有機溶媒はプロピレンカーボネー
ト、電解質塩は四フッ化ホウ酸テトラエチルアンモニウ
ムを用いて作製した。電極は、集電極にアルミ板を、活
性炭電極に活性炭繊維布(日本カイノール製(ACC−
561−25)(厚さ0.4mm))を用いて構成した。
具体的には次の通りである。
In another embodiment of the present invention, another example of an electric double layer capacitor in which the distance between electrodes is shortened is proposed.
The gel electrolyte of the electric double layer capacitor is a polymer,
It is composed of an organic solvent and an electrolyte salt. The polymer was prepared using polyacrylonitrile, the organic solvent was propylene carbonate, and the electrolyte salt was tetraethylammonium tetrafluoroborate. The electrode used was an aluminum plate for the collector and an activated carbon fiber cloth (made by Nippon Kainol (ACC-
561-25) (0.4 mm thick).
Specifically, it is as follows.

【0020】<実施例1>本実施例は、図4に示すよう
に、活性炭電極12a、12bに溶解したゲル電解質を
含浸後、テフロンスペーサ13を介して加圧しながら電
解質をゲル化させて形成したゲル電解質14を有するも
のである。なお、図4はガラス板15a、15bを用い
た当該電気二重キャパシタの成形状態を示す。
<Embodiment 1> In this embodiment, as shown in FIG. 4, after the active carbon electrodes 12a and 12b are impregnated with a dissolved gel electrolyte, the electrolyte is gelled while being pressurized through a Teflon spacer 13. It has a gel electrolyte 14. FIG. 4 shows a molding state of the electric double capacitor using the glass plates 15a and 15b.

【0021】当該電気二重キャパシタの作製に際して
は、まずゲル電解質14の構成材料を所定量秤量し、1
00℃で加熱溶解させる。加熱溶解したゲル電解質14
は、対向させる電気二重層キャパシタの活性炭電極12
a、12bに含浸させる。その後、片側の活性炭電極1
2aに厚さ0.2mmのテフロンスペーサー13を配置す
る。このときのテフロンスペーサ13には、φ40mmの
孔を設けており、この部分にゲル電解質14が存在する
ようにする。さらに活性炭電極12a、12bに溶解さ
せたゲル電解質14をキャストし、その上部から対向す
る集電極11a、11bを配置後、ガラス板15bを介
して0.01Mpaの加圧力で加圧しながら放冷する。こ
の結果、厚さ0.2mmの薄型のゲル電解質14を有する
電気二重層キャパシタを作製した。この方法を用いるこ
とで、集電極11a、11bの曲がり、そりなどから生
ずる対向電極の接触を防ぐことが可能となった。本実施
例によれば電極間距離が0.2mmの電気二重層キャパシ
タが製造でき、このキャパシタの内部抵抗は、1.5Ω
であり、従来の電極間距離1mmの場合の内部抵抗3.5
Ωに比べて減少していることが確認された。
In manufacturing the electric double capacitor, first, a predetermined amount of a constituent material of the gel electrolyte 14 is weighed, and
Heat and dissolve at 00 ° C. Gel electrolyte 14 dissolved by heating
Is the activated carbon electrode 12 of the electric double layer capacitor
a and 12b are impregnated. Then, the activated carbon electrode 1 on one side
A Teflon spacer 13 having a thickness of 0.2 mm is arranged on 2a. At this time, the Teflon spacer 13 is provided with a hole of φ40 mm, and the gel electrolyte 14 is made to exist in this portion. Further, the gel electrolyte 14 dissolved in the activated carbon electrodes 12a and 12b is cast, and after facing the collecting electrodes 11a and 11b from above, the cooling is performed while applying a pressure of 0.01 MPa through the glass plate 15b while cooling. . As a result, an electric double layer capacitor having a thin gel electrolyte 14 having a thickness of 0.2 mm was produced. By using this method, it is possible to prevent the counter electrodes from coming into contact with each other due to bending or warpage of the collecting electrodes 11a and 11b. According to this embodiment, an electric double layer capacitor having a distance between electrodes of 0.2 mm can be manufactured, and the internal resistance of the capacitor is 1.5Ω.
And an internal resistance of 3.5 in the case of the conventional distance between electrodes of 1 mm.
It was confirmed that it decreased compared to Ω.

【0022】<実施例2>本実施例は活性炭電極12に
ゲル電解質14を含浸後、加圧・放冷により作製した薄
型含浸電極を用いて構成した電気二重層キャパシタであ
る。
<Embodiment 2> This embodiment is an electric double layer capacitor using a thin impregnated electrode produced by impregnating the activated carbon electrode 12 with the gel electrolyte 14 and then pressurizing and cooling.

【0023】当該電気二重キャパシタの作製に際して
は、まず実施例1と同様に、ゲル電解質14の構成材料
を所定量秤量し、100℃で加熱溶解させる。図5は電
解質含浸状態を示す。同図に示すように、当該電気二重
層キャパシタの活性炭電極12上に溶解させたゲル電解
質14をキャストし、さらにその上部からゲルの離型の
ためシリコンシート16を置き、ガラス板15を介し
て、0.01Mpaの加圧力で加圧しながら放冷した。
In manufacturing the electric double capacitor, first, similarly to the first embodiment, a predetermined amount of a constituent material of the gel electrolyte 14 is weighed and heated and melted at 100 ° C. FIG. 5 shows an electrolyte impregnated state. As shown in the figure, the dissolved gel electrolyte 14 is cast on the activated carbon electrode 12 of the electric double layer capacitor, and a silicon sheet 16 is placed on the gel electrolyte 14 from above the gel electrolyte 14 via the glass plate 15. The mixture was allowed to cool while being pressurized at a pressure of 0.01 MPa.

【0024】ゲル電解質14を含浸させた「薄型含浸電
極」の作製は、上記方法により、集電極11及び活性炭
電極12の厚さ(集電極11の厚さ+活性炭電極12の
厚さ)を調整することが可能となる。なお、本実施例に
おいては、集電極厚さ0.5mm、活性炭電極厚さ0.4
mmの電極を用い、集電極11と活性炭電極12の接合の
際に0.1Mpaの加圧力で加圧しながら導電性接着剤を
硬化させた。その後の電極厚さ(集電極11の厚さ+活
性炭電極12の厚さ)は0.7mmとなった。この電極に
ゲル電解質14をキャスト後、加圧しながら電解質をゲ
ル化した。このときの、集電極11+活性炭電極12の
厚さは、0.7mmのまま維持する事が可能となった。一
方、加圧なしで含浸,ゲル化すると、集電極11+活性
炭電極12の厚さは、電解質の含浸及び電解質のゲル化
により活性炭電極12が0.1mm〜0.2mm程度膨張す
る事が確認されている。
To prepare a "thin impregnated electrode" impregnated with the gel electrolyte 14, the thickness of the collector electrode 11 and the activated carbon electrode 12 (thickness of the collector electrode 11 + thickness of the activated carbon electrode 12) is adjusted by the above method. It is possible to do. In this example, the collector electrode thickness was 0.5 mm and the activated carbon electrode thickness was 0.4 mm.
The conductive adhesive was cured while applying a pressure of 0.1 Mpa at the time of joining the collecting electrode 11 and the activated carbon electrode 12 using an electrode of mm. The subsequent electrode thickness (thickness of the collecting electrode 11 + thickness of the activated carbon electrode 12) was 0.7 mm. After casting the gel electrolyte 14 on this electrode, the electrolyte was gelled while applying pressure. At this time, the thickness of the collector electrode 11 + the activated carbon electrode 12 could be maintained at 0.7 mm. On the other hand, when impregnation and gelation are performed without pressurization, it is confirmed that the thickness of the collector electrode 11 + the activated carbon electrode 12 expands by about 0.1 mm to 0.2 mm due to the impregnation of the electrolyte and the gelation of the electrolyte. ing.

【0025】本実施例では上述の如き態様で作製した薄
型含浸電極を用いて、実施例1と同様の方法で電気二重
層キャパシタを構成した。定電流充放電試験により求め
られた当該キャパシタの性能は、充放電電流密度5mA/c
m2において放電容量が0.34F/cm2 、内部抵抗が1.
0Ωである。従って、活性炭電極12にゲル電解質14
を含浸後、加圧しながらゲル化させた薄型含浸電極を用
いた電気二重層キャパシタは、実施例1に比べて電気二
重層キャパシタの内部抵抗をさらに低減することが可能
となった。
In the present embodiment, an electric double layer capacitor was formed in the same manner as in Embodiment 1 using the thin impregnated electrode manufactured in the above-described manner. The performance of the capacitor determined by the constant current charge / discharge test was a charge / discharge current density of 5 mA / c.
m 2 , the discharge capacity was 0.34 F / cm 2 , and the internal resistance was 1.
0Ω. Therefore, the gel electrolyte 14 is applied to the activated carbon electrode 12.
The electric double layer capacitor using the thin impregnated electrode gelled while being pressurized after being impregnated with, can further reduce the internal resistance of the electric double layer capacitor as compared with Example 1.

【0026】<実施例3>本実施例は、集電極11と活
性炭電極12の接合時の加圧力を小さくして電気二重層
キャパシタの放電容量を確保したものである。実施例2
では、電気二重層キャパシタの電極を作製する際、導電
性接着剤を塗布後、加圧しながら接着剤を硬化させて接
合しているが、本実施例では、このときの加圧力を実施
例2に比べて小さい加圧力で接合した電極を用いた。実
施例2における加圧力は、0.10Mpaであるのに対
し、本実施例における加圧力は、この加圧力を0.01
Mpaと減少させて集電極11と活性炭電極12とを接合
した。加圧力を変えた他には電気二重層キャパシタの作
製工程は実施例2と同じにして作製し、定電流充放電測
定からキャパシタの性能を調べた。この結果、充放電電
流密度5mA/cm2において放電容量は0.50F/cm2 であ
り、内部抵抗は1.0Ωという特性が得られた。このよ
うに、集電極形成時の加圧力を調整することにより、放
電容量の高い電気二重層キャパシタを作製することがで
きる。
<Embodiment 3> In this embodiment, the discharge capacity of the electric double layer capacitor is secured by reducing the pressure applied when the collector electrode 11 and the activated carbon electrode 12 are joined. Example 2
In the production of the electrodes of the electric double-layer capacitor, the conductive adhesive is applied, and then the adhesive is cured while applying pressure, and the bonding is performed. An electrode joined with a smaller pressing force than that of the above was used. The pressing force in the second embodiment is 0.10 MPa, while the pressing force in the present embodiment is 0.01
The collector electrode 11 and the activated carbon electrode 12 were joined to each other while reducing the pressure to Mpa. An electric double layer capacitor was produced in the same manner as in Example 2 except that the applied pressure was changed, and the performance of the capacitor was examined from constant current charge / discharge measurement. As a result, at a charge / discharge current density of 5 mA / cm 2 , the discharge capacity was 0.50 F / cm 2 and the internal resistance was 1.0Ω. As described above, by adjusting the pressing force when the collector electrode is formed, an electric double layer capacitor having a high discharge capacity can be manufactured.

【0027】[0027]

【発明の効果】以上実施の形態とともに具体的に説明し
た通り、請求項1の発明によれば、ガラス板間、もしく
はシリコーンシート間に溶解させたゲル電解質構成材料
を流し込み、挟み込んで、放冷することにより、薄型ゲ
ル電解質を作製することが可能である。またガラス板
間、シリコーンゴム間に挟み込むスペーサーの厚さによ
って任意の厚さのゲル電解質を作製することが可能にな
る。
According to the first aspect of the present invention, a gel electrolyte constituent material dissolved between glass plates or silicone sheets is poured, sandwiched, and allowed to cool as described above. By doing so, it is possible to produce a thin gel electrolyte. In addition, it is possible to produce a gel electrolyte having an arbitrary thickness depending on the thickness of the spacer sandwiched between the glass plates and the silicone rubber.

【0028】請求項2の発明によれば、薄型ゲル電解質
と活性炭電極を対向させて挟み込むことにより、電気二
重層キャパシタを作製することが可能になる。また、電
解質の厚さを薄くすることにより、キャパシタの内部抵
抗を下げることができる。
According to the second aspect of the invention, an electric double layer capacitor can be manufactured by sandwiching the thin gel electrolyte and the activated carbon electrode so as to face each other. Further, by reducing the thickness of the electrolyte, the internal resistance of the capacitor can be reduced.

【0029】請求項3の発明によれば、電極上にスペー
サを配置し、加圧しながら放冷してゲル化させることに
より、電極間距離をスペーサと同じ厚さとすることがで
き、低い内部抵抗を有する電気二重層キャパシタを作製
することが可能となる。
According to the third aspect of the present invention, the spacers are arranged on the electrodes and are allowed to cool and gel while being pressurized, so that the distance between the electrodes can be made the same as that of the spacers. Can be manufactured.

【0030】請求項4の発明によれば、活性炭電極にゲ
ル電解質を含浸させる工程において、電解質を放冷し、
ゲル化する際に、加圧しながらゲル化させることで、含
浸後の電極の厚さを均一にすることができ、より内部抵
抗の低い電気二重層キャパシタを作製することが可能と
なる。
According to the invention of claim 4, in the step of impregnating the activated carbon electrode with the gel electrolyte, the electrolyte is allowed to cool,
At the time of gelation, by performing gelation while applying pressure, the thickness of the electrode after impregnation can be made uniform, and an electric double layer capacitor with lower internal resistance can be manufactured.

【0031】請求項5の発明によれば、活性炭電極と集
電極とを接合する際に、導電性接着剤を硬化する工程
で、所定の加圧力を加えながら硬化させることにより得
られる電極を用いることで、請求項4の発明の効果に加
え、電気二重層キャパシタの所定の放電容量を確保する
ことが可能になる。
According to the fifth aspect of the present invention, in joining the activated carbon electrode and the collector electrode, in the step of curing the conductive adhesive, an electrode obtained by curing while applying a predetermined pressure is used. This makes it possible to secure a predetermined discharge capacity of the electric double layer capacitor in addition to the effect of the fourth aspect of the invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の第1の実施の形態における実施例1
を概念的に示す説明図。
FIG. 1 is a first example of the first embodiment of the present invention.
Explanatory drawing which shows notionally.

【図2】本願発明の第1の実施の形態における実施例2
を概念的に示す説明図。
FIG. 2 is a second example according to the first embodiment of the present invention;
Explanatory drawing which shows notionally.

【図3】本願発明の第1の実施の形態における実施例3
を概念的に示す説明図。
FIG. 3 is a third example according to the first embodiment of the present invention;
Explanatory drawing which shows notionally.

【図4】本願発明の第2の実施の形態における実施例1
を概念的に示す説明図。
FIG. 4 is a first example according to the second embodiment of the present invention;
Explanatory drawing which shows notionally.

【図5】本願発明の第2の実施の形態における実施例2
及び実施例3を概念的に示す説明図。
FIG. 5 is a second example according to the second embodiment of the present invention;
FIG. 7 is an explanatory diagram conceptually showing Example 3 and Example 3;

【符号の説明】[Explanation of symbols]

1a、1b ガラス板 2 テフロンスペーサ 3 ゲル電解質 4a、4b テフロンシート 5a、5b 活性炭電極 11、11a、11b 集電極 12、12a、12b 活性炭電極 13 テフロンスペーサ 14 ゲル電解質 15、15a、15b ガラス板 1a, 1b glass plate 2 Teflon spacer 3 gel electrolyte 4a, 4b Teflon sheet 5a, 5b activated carbon electrode 11, 11a, 11b collector electrode 12, 12a, 12b activated carbon electrode 13 Teflon spacer 14 gel electrolyte 15, 15a, 15b glass plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリマー、有機溶媒、電解質塩を加熱溶
解し、これをガラス板間もしくはシリコーンゴム間に流
し込み放冷することで作製することを特徴とする薄型ゲ
ル電解質の作製方法。
1. A method for producing a thin gel electrolyte, comprising heating and dissolving a polymer, an organic solvent, and an electrolyte salt, flowing the mixture between glass plates or silicone rubber, and allowing it to cool.
【請求項2】 請求項1に示す方法で作製した薄型ゲル
電解質と活性炭、活性炭繊維等を使用した一組の活性炭
電極で構成したことを特徴とする電気二重層キャパシ
タ。
2. An electric double layer capacitor comprising a thin gel electrolyte produced by the method according to claim 1 and a set of activated carbon electrodes using activated carbon, activated carbon fiber or the like.
【請求項3】 ポリマー、有機溶媒、電解質塩を加熱溶
解し、これを対向する電極間に流し込む際に、スペーサ
を挿入することにより所定の電極間距離を確保したこと
を特徴とする電気二重層キャパシタ。
3. An electric double layer, wherein a predetermined distance between electrodes is secured by inserting a spacer when a polymer, an organic solvent, and an electrolyte salt are heated and dissolved and poured into the space between opposed electrodes. Capacitors.
【請求項4】 請求項3に示す電気二重層キャパシタに
おいて、活性炭電極に電解質を含浸させ、加圧しながら
電解質をゲル化させて作製した薄型含浸電極を用いたこ
とを特徴とする電気二重層キャパシタ。
4. The electric double layer capacitor according to claim 3, wherein a thin impregnated electrode produced by impregnating the activated carbon electrode with an electrolyte and gelling the electrolyte while applying pressure is used. .
【請求項5】 請求項4に示す電気二重層キャパシタに
おいて、導電性接着剤を用いて活性炭電極と集電極を接
合する場合に、導電性接着剤の加熱硬化時の加圧力を所
定の加圧力で接合することにより、所定の放電容量を得
ることができるようにしたことを特徴とする電気二重層
キャパシタ。
5. The electric double layer capacitor according to claim 4, wherein when the activated carbon electrode and the collector electrode are joined by using a conductive adhesive, the pressure applied during heating and curing of the conductive adhesive is set to a predetermined pressure. An electric double layer capacitor characterized in that a predetermined discharge capacity can be obtained by joining the capacitors.
JP10046654A 1998-02-27 1998-02-27 Preparation of thin type gel electrolyte and electric double layer capacitor Withdrawn JPH11251194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046654A JPH11251194A (en) 1998-02-27 1998-02-27 Preparation of thin type gel electrolyte and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10046654A JPH11251194A (en) 1998-02-27 1998-02-27 Preparation of thin type gel electrolyte and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH11251194A true JPH11251194A (en) 1999-09-17

Family

ID=12753318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046654A Withdrawn JPH11251194A (en) 1998-02-27 1998-02-27 Preparation of thin type gel electrolyte and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH11251194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465278B1 (en) * 2002-04-03 2005-01-13 한국과학기술연구원 Electric double layer capacitor using uv-curing gel polymer electrolyte
WO2005013299A1 (en) * 2003-07-07 2005-02-10 Eamex Corporation Capacitor and method for manufacturing same
EP1802707A1 (en) * 2004-10-12 2007-07-04 Hydro-Quebec Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems
KR101514280B1 (en) * 2014-03-26 2015-04-22 한국전기연구원 Manufacturing method of single electrode integrated ion gel electrolyte
CN107331895A (en) * 2017-06-08 2017-11-07 东莞锂威能源科技有限公司 It is a kind of to improve the method that battery core electrolyte possesses accuracy of measurement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465278B1 (en) * 2002-04-03 2005-01-13 한국과학기술연구원 Electric double layer capacitor using uv-curing gel polymer electrolyte
WO2005013299A1 (en) * 2003-07-07 2005-02-10 Eamex Corporation Capacitor and method for manufacturing same
EP1802707A1 (en) * 2004-10-12 2007-07-04 Hydro-Quebec Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems
EP1802707A4 (en) * 2004-10-12 2013-08-21 Hydro Quebec Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems
US10954351B2 (en) 2004-10-12 2021-03-23 HYDRO-QUéBEC Aprotic polymer-molten salt-solvent ternary composition, method for the preparation and use thereof in electrochemical systems
KR101514280B1 (en) * 2014-03-26 2015-04-22 한국전기연구원 Manufacturing method of single electrode integrated ion gel electrolyte
CN107331895A (en) * 2017-06-08 2017-11-07 东莞锂威能源科技有限公司 It is a kind of to improve the method that battery core electrolyte possesses accuracy of measurement

Similar Documents

Publication Publication Date Title
JP4790880B2 (en) Method for producing porous separator for battery and battery using the separator
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
JP3028056B2 (en) Electric double layer capacitor basic cell and electric double layer capacitor
JP3260319B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
CN110690056B (en) Self-healing gel conductive material, preparation method thereof and application thereof in super capacitor
JPH10275750A (en) Electric double layer capacitor and its manufacturing method
KR20220134609A (en) Insulation pad and manufacturing method thereof, cell group and device
JPH11251194A (en) Preparation of thin type gel electrolyte and electric double layer capacitor
JP2000286165A (en) Electric double-layer capacitor and manufacture thereof
CN100521008C (en) High-capacity super capacitor and method for producing the same
JP4911294B2 (en) Slurry for electrode of electric double layer capacitor enclosing non-aqueous electrolyte and electric double layer capacitor using the slurry
JP3270175B2 (en) Electric double layer capacitor
JPH11260669A (en) Electrodes and electric double-layer capacitor using them
JP2000277394A (en) Electric double-layer capacitor
CN219513175U (en) All-solid-state battery cell and battery comprising same
JPH11274014A (en) Electrical double layer capacitor
JP2001176553A (en) Method of manufacturing electrochemical element
JPH1197295A (en) Electric double layer capacitor, its manufacture, electrode, and separator
JP2000182903A (en) Electric double-layered capacitor and its manufacture
JP2002110473A (en) Electrolyte and electrical double layer capacitor
JP3152990B2 (en) Manufacturing method of polarized electrode
JP3446393B2 (en) Electric double layer capacitor and method of manufacturing the same
JP3785756B2 (en) Electric double layer capacitor and manufacturing apparatus thereof
JP4135198B2 (en) Lithium battery manufacturing method
JP3315807B2 (en) Electric double layer capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510