JPH11251093A - Plasma generating electrode - Google Patents

Plasma generating electrode

Info

Publication number
JPH11251093A
JPH11251093A JP10048028A JP4802898A JPH11251093A JP H11251093 A JPH11251093 A JP H11251093A JP 10048028 A JP10048028 A JP 10048028A JP 4802898 A JP4802898 A JP 4802898A JP H11251093 A JPH11251093 A JP H11251093A
Authority
JP
Japan
Prior art keywords
plasma
diamond
generating electrode
plasma generating
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10048028A
Other languages
Japanese (ja)
Inventor
Fumio Matsunaga
文夫 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10048028A priority Critical patent/JPH11251093A/en
Publication of JPH11251093A publication Critical patent/JPH11251093A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma generating electrode that is hardly corroded even if it is exposed to plasma under a corrosive halogen gas, and can generate good quality plasma for a long time without giving adverse effect such as particles on a semiconductor wafer or the like. SOLUTION: A plasma generating electrode 2 is composed by covering at least a part that is located on a conductive base body 3 formed from any of silicon(Si, carbon(C) and silicon carbide and is exposed to plasma under a corrosive halogen gas with a hard carbon film 4 formed from a material such as diamond-like carbon having an amorphous structure or a crystalline structure or diamond.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成膜、エッチン
グ、洗浄、アッシングなどの工程で使用されるプラズマ
処理装置に備えるプラズマ発生用電極に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma generating electrode provided in a plasma processing apparatus used in processes such as film formation, etching, cleaning, and ashing.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程には、反応
ガスをプラズマ化して半導体ウエハに各種のプラズマ処
理を施すプラズマ処理装置が用いられている。このよう
な反応ガスのプラズマ化は高温を要せず比較的低温での
処理が可能であるため、成膜、エッチング、洗浄、アッ
シング等の各種加工処理に広く採用されており、例え
ば、この種のプラズマ処理装置として、半導体ウエハが
設置された反応処理室内に2枚のプラズマ発生用電極を
平行に対向させて配置し、低圧ガスのプラズマを発生さ
せて半導体ウエハのプラズマ処理を行う平行平板型のも
のがあった。
2. Description of the Related Art Conventionally, in a semiconductor device manufacturing process, a plasma processing apparatus for converting a reactive gas into plasma and performing various plasma processes on a semiconductor wafer has been used. Such a reaction gas is not required to have a high temperature and can be processed at a relatively low temperature, so that it is widely used in various processing processes such as film formation, etching, cleaning, and ashing. As a plasma processing apparatus, a parallel plate type in which two plasma generating electrodes are arranged in parallel in a reaction processing chamber in which a semiconductor wafer is installed, and a plasma of a low-pressure gas is generated to perform plasma processing of the semiconductor wafer. There was one.

【0003】そして、このプラズマ処理装置において、
プラズマを発生させるプラズマ発生用電極には導電性が
必要であることから、アルミニウム、グラファイト、ガ
ラス状カーボン、シリコンなどにより形成したものがあ
った。
In this plasma processing apparatus,
Since a plasma generating electrode for generating plasma requires conductivity, some electrodes are formed of aluminum, graphite, glassy carbon, silicon, or the like.

【0004】[0004]

【発明が解決しようとする課題】ところが、この種のプ
ラズマ処理装置には、反応ガスとしてHBr、HCl、
Cl2 、SF6 など腐食性の高いハロゲン系腐食性ガス
が使用されており、これらのガス下でプラズマに曝され
ると腐食摩耗し易く、特に、プラズマ密度の高いプラズ
マ発生用電極の表面では腐食摩耗が激しいために、上記
アルミニウム、グラファイト、ガラス状カーボン、シリ
コンなどにより形成したプラズマ発生用電極では、十分
な耐プラズマ性を有していないことから短期間で使用で
きなくなるといった課題があった。そして、この腐食摩
耗が進むと摩耗粉が半導体ウエハにパーティクルとして
付着することから、各種処理精度に悪影響を及ぼしてい
た。
However, in this type of plasma processing apparatus, HBr, HCl,
Highly corrosive halogen-based corrosive gases such as Cl 2 and SF 6 are used, and when exposed to plasma under these gases, they are susceptible to corrosion and wear. In particular, on the surface of a plasma generating electrode having a high plasma density, Due to severe corrosive wear, the plasma generating electrode made of aluminum, graphite, glassy carbon, silicon, or the like has a problem that it cannot be used in a short time because it does not have sufficient plasma resistance. . Then, as the corrosion wear progresses, the wear powder adheres to the semiconductor wafer as particles, which adversely affects various processing accuracy.

【0005】また、この腐食摩耗をできるだけ低減する
ために、上記プラズマ発生用電極のプラズマに曝される
部位の表面粗さを中心線平均粗さ(Ra)で8〜0.0
01μmの平滑面とすることが提案されている(特開平
9−289195号公報参照)が、材料そのものの耐プ
ラズマ性が低いことから限界があり、より腐食摩耗の少
ないプラズマ発生用電極が望まれていた。
In order to reduce the corrosive wear as much as possible, the surface roughness of the portion of the plasma generating electrode exposed to the plasma is set to a center line average roughness (Ra) of 8 to 0.0.
It has been proposed to have a smooth surface of 01 μm (see Japanese Patent Application Laid-Open No. 9-289195), but there is a limit due to the low plasma resistance of the material itself, and a plasma generating electrode with less corrosion and wear is desired. I was

【0006】[0006]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、シリコン(Si)、炭素(C)、炭化珪素
(SiC)のいずれかからなる導電性基体の少なくとも
ハロゲン系腐食性ガス下でプラズマに曝される部位に、
3000kg/mm2 以上のビッカース硬度を有する硬
質炭素膜を被着してプラズマ発生用電極を構成したもの
である。
Accordingly, the present invention has been made in view of the above-mentioned problems, and has been developed in view of at least a halogen-based corrosive gas on a conductive substrate made of any of silicon (Si), carbon (C), and silicon carbide (SiC). In the part exposed to plasma at
A plasma generating electrode is formed by applying a hard carbon film having a Vickers hardness of 3000 kg / mm 2 or more.

【0007】本発明において、上記硬質炭素膜として
は、ダイヤモンドライクカーボンやダイヤモンドが好適
である。
In the present invention, diamond-like carbon or diamond is preferable as the hard carbon film.

【0008】[0008]

【発明の実施の形態】図1は本発明のプラズマ発生用電
極をプラズマ処理装置に用いた状態を示す概略図であ
り、1は半導体ウエハWを収納する反応処理室で、この
反応処理室1内の上下部にはプラズマを発生させるため
のプラズマ発生用電極2,7を対向配置してある。ま
た、下方のプラズマ発生用電極7上にはヒータ電極6a
を埋設したセラミックヒータ6を設置してあり、該セラ
ミックヒータ6の発熱面6bに半導体ウエハWを載置し
た状態でセラミックヒータ6を発熱させることにより、
半導体ウエハWを均一に加熱するようになっている。な
お、半導体ウエハWの周縁部に配置されたリング体は半
導体ウエハWを保持するためのクランプリング10であ
る。
FIG. 1 is a schematic view showing a state in which a plasma generating electrode of the present invention is used in a plasma processing apparatus, and 1 is a reaction processing chamber for accommodating a semiconductor wafer W. Plasma generating electrodes 2 and 7 for generating plasma are arranged opposite to each other in the upper and lower portions of the inside. A heater electrode 6a is provided on the lower plasma generating electrode 7.
Is embedded, and the ceramic heater 6 is heated while the semiconductor wafer W is mounted on the heat generating surface 6b of the ceramic heater 6, whereby the ceramic heater 6 generates heat.
The semiconductor wafer W is heated uniformly. Note that the ring body disposed on the peripheral portion of the semiconductor wafer W is a clamp ring 10 for holding the semiconductor wafer W.

【0009】また、5は反応処理室1内に設置された排
気孔5aを有する排気リングであり、該排気リング5の
上面は反応処理室1内に導入された反応ガスの流れを乱
さないようにするためにセラミックヒータ6の発熱面6
bと同一平面上に位置するように配置してある。
Reference numeral 5 denotes an exhaust ring having an exhaust hole 5a provided in the reaction processing chamber 1. The upper surface of the exhaust ring 5 does not disturb the flow of the reaction gas introduced into the reaction processing chamber 1. Heating surface 6 of ceramic heater 6
It is arranged so as to be located on the same plane as b.

【0010】さらに、上方のプラズマ発生用電極2を構
成する基体3には上下面を貫通する微小な貫通孔3aが
多数穿設してあり、この貫通孔3aを介して反応処理室
1内に反応ガスを供給するようになっている。
Further, a large number of minute through holes 3a penetrating the upper and lower surfaces are formed in the base 3 constituting the upper plasma generating electrode 2, and the reaction processing chamber 1 is formed through the through holes 3a. A reaction gas is supplied.

【0011】そして、このプラズマ処理装置を用いて、
例えば半導体ウエハWへのエッチング処理を施すには、
図示していない搬送装置により半導体ウエハWを反応処
理室1内に搬送してセラミックヒータ6の発熱面6bに
載置するとともに、クランプリング4により半導体ウエ
ハWの周縁部を保持する。次に、排気孔5aより反応処
理室1内の空気を排出するとともに、プラズマ発生用電
極2の貫通孔3aより流量調整されたハロゲン系腐食性
ガスを含む反応ガスを反応処理室1内に供給して内圧を
例えば1〜2Torr程度とする。そして、この状態で
対向配置したプラズマ発生用電極2,7間に例えば数百
Wの高周波電力を印加して反応ガスをプラズマ化し、ラ
ジカルイオンを半導体ウエハWに衝突させることで、半
導体ウエハWのレジスト膜が被覆されていない部分をエ
ッチングするようになっている。
Then, using this plasma processing apparatus,
For example, to perform an etching process on the semiconductor wafer W,
The semiconductor wafer W is transferred into the reaction processing chamber 1 by a transfer device (not shown) and placed on the heating surface 6 b of the ceramic heater 6, and the periphery of the semiconductor wafer W is held by the clamp ring 4. Next, the air in the reaction processing chamber 1 is exhausted from the exhaust holes 5a, and a reaction gas containing a halogen-based corrosive gas whose flow rate has been adjusted through the through holes 3a of the plasma generating electrode 2 is supplied into the reaction processing chamber 1. Then, the internal pressure is set to, for example, about 1 to 2 Torr. Then, in this state, a high-frequency power of, for example, several hundred W is applied between the plasma generating electrodes 2 and 7 which are opposed to each other to turn the reaction gas into plasma, and radical ions collide with the semiconductor wafer W, so that the semiconductor wafer W The portion not covered with the resist film is etched.

【0012】ところで、上記プラズマ発生用部材2,7
には導電性が必要であることから、シリコン(Si)、
炭素(C)、炭化珪素(SiC)からなる導電性基体
3,8により形成するとともに、上記プラズマ発生用部
材2のハロゲン系腐食ガス下でプラズマに曝される内壁
側には3000kg/mm2 以上のビッカース硬度を有
する硬質炭素膜4を被着してある。なお、図1のプラズ
マ処理装置において、下方のプラズマ発生用部材7はプ
ラズマに曝されることがないために上記導電性基体8の
みからなるが、プラズマ発生用部材2と同じように硬質
炭素膜を被着しても良い。
By the way, the plasma generating members 2, 7
Requires conductivity, silicon (Si),
It is formed of conductive substrates 3 and 8 made of carbon (C) and silicon carbide (SiC), and the inner wall side of the plasma generating member 2 which is exposed to plasma under a halogen-based corrosive gas is 3000 kg / mm 2 or more. The hard carbon film 4 having the Vickers hardness of 4 is applied. In the plasma processing apparatus shown in FIG. 1, the lower plasma generating member 7 is made of only the conductive substrate 8 because it is not exposed to plasma. May be adhered.

【0013】ここで硬質炭素膜4とは、ラマン分光スペ
クトルにおいて、1160±40cm-1、1340±4
0cm-1、及び1500±60cm-1のいずれかにピー
クが存在するものであり、例えば、1340±40cm
-1と1500±60cm-1にピークを有し、1500±
60cm-1をメインピークに持つ非晶質構造のダイヤモ
ンドライクカーボンや、1160±40cm-1、134
0±40cm-1、及び1500±60cm-1にそれぞれ
ピークを有し、かつ1340±40cm-1をメインピー
クに持つ結晶質構造のダイヤモンドライクカーボン、あ
るいは1340±40cm-1にのみピークを持つダイヤ
モンドが挙げられる。
Here, the hard carbon film 4 means 1160 ± 40 cm −1 , 1340 ± 4 in the Raman spectrum.
0 cm −1 and 1500 ± 60 cm −1 , for example, 1340 ± 40 cm
-1 and 1500 ± 60 cm −1 , with 1500 ±
Amorphous diamond-like carbon having a main peak of 60 cm -1 or 1160 ± 40 cm -1 or 134
0 ± 40 cm -1, and 1500 have respective peaks at ± 60cm -1, and 1340 diamond-like carbon crystalline structure having a ± 40 cm -1 to the main peak or 1340 diamond having a peak only ± 40 cm -1, Is mentioned.

【0014】これらの硬質炭素4は原子間の結合力が強
く、緻密であることから、表1にその特性を示すよう
に、ビッカース硬度で3000kg/mm2 以上、結晶
質構造のダイヤモンドライクカーボンやダイヤモンドに
あっては8000kg/mm2以上と高硬度を有するこ
とから、腐食性の強いハロゲン系腐食ガス下でプラズマ
に曝されても大きく腐食摩耗することがない。
Since these hard carbons 4 have strong interatomic bonding force and are dense, as shown in Table 1, their hardness is 3000 kg / mm 2 or more in Vickers hardness and diamond-like carbon having a crystalline structure. Since diamond has a high hardness of 8000 kg / mm 2 or more, even if it is exposed to plasma under a highly corrosive halogen-based corrosive gas, it does not significantly corrode and wear.

【0015】[0015]

【表1】 [Table 1]

【0016】これらの硬質炭素4を導電性基体3に被覆
する方法としては、CVD法、イオン化蒸着法、イオン
ビーム法等の周知の薄膜形状手段を用いることができ
る。ただし、これらの硬質炭素4は成膜時に内部応力が
残留して剥離し易いのであるが、本発明では導電性基体
3に熱膨張係数が非常に近似したシリコン(Si)や炭
化珪素(SiC)、あるいは同種の炭素(C)により形
成してあることから密着性が高く、例えば、CVD装置
などのように加熱されるような条件下で使用しても硬質
炭素膜4が剥離するようなことがない。
As a method for coating the conductive substrate 3 with the hard carbon 4, a known thin film forming means such as a CVD method, an ionization vapor deposition method and an ion beam method can be used. However, these hard carbons 4 are likely to be peeled off due to residual internal stress during film formation, but in the present invention, silicon (Si) or silicon carbide (SiC) whose thermal expansion coefficient is very similar to that of the conductive substrate 3 is used. Or the same kind of carbon (C), so that the hard carbon film 4 is peeled off even when used under heating conditions such as a CVD apparatus. There is no.

【0017】その為、プラズマ発生用部材2のプラズマ
に曝される部位は、耐プラズマ性に優れた硬質炭素膜4
により覆われていることから、良好なプラズマを長期間
にわたって安定して発生させることができる。
Therefore, the portion of the plasma generating member 2 exposed to the plasma is a hard carbon film 4 having excellent plasma resistance.
, It is possible to stably generate good plasma over a long period of time.

【0018】なお、このような効果を得るためには、上
記硬質炭素膜4の厚み幅tを0.1μm以上とすること
が必要である。ただし、硬質炭素膜4としてダイヤモン
ドライクカーボンを用いる場合、その厚み幅tを2.0
μmより大きくすることは製造上難しく、また、硬質炭
素膜4としてダイヤモンドを用いる場合、その厚み幅t
が10.0μmより大きくなると剥離し易くなる。
In order to obtain such an effect, the thickness t of the hard carbon film 4 needs to be 0.1 μm or more. However, when diamond-like carbon is used as the hard carbon film 4, its thickness width t is set to 2.0.
It is difficult to make it larger than μm in terms of manufacturing, and when diamond is used as the hard carbon film 4, its thickness width t
Is larger than 10.0 μm, it is easy to peel off.

【0019】その為、硬質炭素膜4としてダイヤモンド
ライクカーボンを用いる時にはその厚み幅tは0.1〜
2.0μmの範囲が良く、また、硬質炭素膜4としてダ
イヤモンドを用いる時にはその厚み幅tは0.1〜1
0.0μm、好ましくは、1.0〜10.0μmの範囲
が良い。
Therefore, when diamond-like carbon is used as the hard carbon film 4, the thickness width t is 0.1 to
When diamond is used as the hard carbon film 4, its thickness t is 0.1 to 1 μm.
0.0 μm, preferably in the range of 1.0 to 10.0 μm.

【0020】また、硬質炭素膜4を被着する導電性基体
3の表面は、中心線平均粗さ(Ra)で0.05〜8.
0μmとすることが良い。これは導電性基体3の表面に
大きな凹凸部があると、プラズマエネルギーが凸部や凹
部のエッジに集中して腐食摩耗し易くなるからであり、
中心線平均粗さ(Ra)が8.0μmより大きくなる
と、その表面に硬質炭素膜4を被着してあっても摩耗が
進むからであり、逆に中心線平均粗さ(Ra)が0.0
5μmより小さくなると、導電性基体3の材質に硬質炭
素膜4との密着性の良いシリコン(Si)、炭化珪素
(SiC)、炭素(C)を用いたとしても剥離する恐れ
があるからである。
The surface of the conductive substrate 3 on which the hard carbon film 4 is deposited has a center line average roughness (Ra) of 0.05-8.
The thickness is preferably set to 0 μm. This is because, if there are large irregularities on the surface of the conductive substrate 3, the plasma energy tends to concentrate on the edges of the convexities and the concaves and easily corrode and wear.
If the center line average roughness (Ra) is larger than 8.0 μm, the wear proceeds even if the hard carbon film 4 is adhered to the surface. .0
If the thickness is smaller than 5 μm, even if silicon (Si), silicon carbide (SiC), or carbon (C) having good adhesion to the hard carbon film 4 is used as the material of the conductive substrate 3, the conductive substrate 3 may be peeled off. .

【0021】このように本実施形態では、プラズマに曝
されるプラズマ発生用電極として、反応ガスを反応処理
室1内に供給するための貫通孔3aを備えたものを示し
たが、プラズマ処理装置の構造によっては貫通孔3aの
ないものでも良く、本発明によれば、プラズマ発生用電
極を構成する導電性基体がシリコン(Si)、炭素
(C)、炭化珪素(SiC)のいずれかからなり、少な
くともハロゲン系腐食性ガス下でプラズマに曝される部
位に3000kg/mm2 以上の硬質炭素膜を被着した
ものであれば、どのような形状や構造をしたものであっ
ても構わない。
As described above, in the present embodiment, the plasma generating electrode provided with the through-hole 3a for supplying the reaction gas into the reaction processing chamber 1 is shown as the plasma generating electrode exposed to the plasma. According to the present invention, the conductive substrate constituting the electrode for plasma generation is made of any one of silicon (Si), carbon (C), and silicon carbide (SiC). Any shape or structure may be used as long as a hard carbon film of 3000 kg / mm 2 or more is applied to at least a portion exposed to plasma under a halogen-based corrosive gas.

【0022】(実施例)ここで、本発明のプラズマ発生
用電極を製作し、その耐久性について調べる実験を行っ
た。
(Example) Here, an electrode for plasma generation of the present invention was manufactured, and an experiment for examining its durability was performed.

【0023】プラズマ発生用電極としては、導電性基体
にシリコン(Si)、炭素(C)、炭化珪素(SiC)
を用い、その表面上に非晶質構造のダイヤモンドライク
カーボン又はダイヤモンドの硬質炭素膜を被着したもの
を用意した。なお、ダイヤモンドライクカーボンの硬質
炭素膜を被着するにあたってはイオン化蒸着法を用い、
反応ガスとしてC6 6 を用いるとともに、ガス圧2×
10-2〜10-1Pa、導電性基体の温度600℃、導電
性基体に加える電圧500〜2000V、アノード電圧
50〜200V、フィラメントに加える電流15〜30
mAの条件にて成膜し、ダイヤモンドの硬質炭素膜を被
覆するにあたってはプラズマCVD法を用い、反応ガス
としてCH4 、H2 Si(CH3 4 を用いるととも
に、反応処理室内の圧力1.3〜67Pa、導電性基体
の温度650℃、高周波出力(周波数2.45GHz、
磁束2.0kガウス)の条件にてそれぞれ0.8μmの
厚み幅tに成膜した。
As the plasma generation electrode, silicon (Si), carbon (C), silicon carbide (SiC)
And a hard carbon film of diamond-like carbon or diamond having an amorphous structure was coated on the surface thereof. In addition, when applying a hard carbon film of diamond-like carbon, using an ionization vapor deposition method,
C 6 H 6 is used as the reaction gas and the gas pressure is 2 ×
10 -2 to 10 -1 Pa, conductive substrate temperature 600 ° C, voltage applied to the conductive substrate 500 to 2000 V, anode voltage 50 to 200 V, current applied to the filament 15 to 30
When forming a film under the conditions of mA and coating the diamond hard carbon film, plasma CVD is used, CH 4 and H 2 Si (CH 3 ) 4 are used as reaction gases, and the pressure in the reaction processing chamber is 1. 3-67 Pa, conductive substrate temperature 650 ° C., high frequency output (frequency 2.45 GHz,
Films were formed with a thickness t of 0.8 μm under the conditions of a magnetic flux of 2.0 kGauss.

【0024】そして、これらのプラズマ発生用電極を図
1に示すプラズマ処理装置に設置し、反応ガスとしてC
4 とO2 の混合ガスを導入するとともに、13.56
MHzのマイクロ波を導入し、さらに2.0kガウス以
上の磁界をかけてプラズマを発生させ、実験前と3時間
プラズマに曝した後の重量差を損耗量として算出し、従
来のグラファイトからなるプラズマ発生用電極の損耗量
を100としたときの相対値として判断した。
Then, these plasma generating electrodes are installed in the plasma processing apparatus shown in FIG.
While introducing a mixed gas of F 4 and O 2 , 13.56
Introducing a microwave of MHz and applying a magnetic field of 2.0 kGauss or more to generate plasma, and calculating the difference in weight between before the experiment and after exposure to the plasma for 3 hours as the amount of wear, the conventional plasma made of graphite It was determined as a relative value when the amount of wear of the generating electrode was set to 100.

【0025】それぞれの結果は表2に示す通りである。The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】この結果、表1より判るように、本発明の
プラズマ発生用電極は従来と比較して大幅に耐プラズマ
性を高められることが判る。
As a result, as can be seen from Table 1, it is understood that the plasma generating electrode of the present invention can greatly improve the plasma resistance as compared with the conventional electrode.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、シリコ
ン(Si)、炭素(C)、炭化珪素(SiC)のいずれ
かからなる導電性基体の少なくともハロゲン系腐食性ガ
ス下でプラズマに曝される部位に、非晶質構造や結晶質
構造のダイヤモンドライクカーボンあるいはダイヤモン
ドなどの硬質炭素膜を被着してプラズマ発生用電極を形
成したことから、耐プラズマ性を大幅に高めることがで
き、半導体ウエハ等にパーティクルなどの悪影響を与え
ることなく、良好なプラズマを長期間にわたって発生さ
せることができる。
As described above, according to the present invention, a conductive substrate made of any of silicon (Si), carbon (C) and silicon carbide (SiC) is exposed to plasma under at least a halogen-based corrosive gas. A plasma-generating electrode was formed by applying a hard carbon film such as diamond-like carbon or diamond with an amorphous or crystalline structure to the exposed area, greatly improving plasma resistance. In addition, good plasma can be generated for a long period of time without adversely affecting particles or the like on a semiconductor wafer or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプラズマ発生用電極をプラズマ処理装
置に用いた状態を示す模式図である。
FIG. 1 is a schematic diagram showing a state in which a plasma generating electrode of the present invention is used in a plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1・・・反応処理室、2・・・上方のプラズマ発生用電
極、3・・・導電性基体、3a・・・貫通孔、4・・・
硬質炭素膜、5・・・排気リング、5a・・・排気孔、
6・・・セラミックヒータ、6a・・・ヒータ電極、6
b・・・発熱面、7・・・下方のプラズマ発生用電極、
8・・・導電性基体、10・・・クランプリング、W・
・・半導体ウエハ
DESCRIPTION OF SYMBOLS 1 ... Reaction processing chamber, 2 ... Upper plasma generation electrode, 3 ... Conductive base, 3a ... Through-hole, 4 ...
Hard carbon film, 5 ... exhaust ring, 5a ... exhaust hole,
6 ceramic heater, 6a heater electrode, 6
b: heating surface, 7: lower electrode for plasma generation,
8 ... conductive base, 10 ... clamp ring, W.
..Semiconductor wafers

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3065 H01L 21/31 C 21/31 21/203 S // H01L 21/203 21/302 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/3065 H01L 21/31 C 21/31 21/203 S // H01L 21/203 21/302 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シリコン(Si)、炭素(C)、炭化珪素
(SiC)のいずれかからなる導電性基体の少なくとも
ハロゲン系腐食性ガス下でプラズマに曝される部位に、
3000kg/mm2 以上のビッカース硬度を有する硬
質炭素膜を被着したことを特徴とするプラズマ発生用電
極。
At least a portion of a conductive substrate made of one of silicon (Si), carbon (C) and silicon carbide (SiC) exposed to plasma under a halogen-based corrosive gas,
An electrode for plasma generation, comprising a hard carbon film having a Vickers hardness of 3000 kg / mm 2 or more.
【請求項2】上記硬質炭素膜がダイヤモンドライクカー
ボン又はダイヤモンドのいずれかであることを特徴とす
る請求項1に記載のプラズマ発生用電極。
2. The plasma generating electrode according to claim 1, wherein said hard carbon film is one of diamond-like carbon and diamond.
JP10048028A 1998-02-27 1998-02-27 Plasma generating electrode Pending JPH11251093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10048028A JPH11251093A (en) 1998-02-27 1998-02-27 Plasma generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10048028A JPH11251093A (en) 1998-02-27 1998-02-27 Plasma generating electrode

Publications (1)

Publication Number Publication Date
JPH11251093A true JPH11251093A (en) 1999-09-17

Family

ID=12791866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10048028A Pending JPH11251093A (en) 1998-02-27 1998-02-27 Plasma generating electrode

Country Status (1)

Country Link
JP (1) JPH11251093A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338915A (en) * 2000-05-30 2001-12-07 Shin Etsu Chem Co Ltd Silicon part
WO2002058125A1 (en) * 2001-01-22 2002-07-25 Tokyo Electron Limited Plasma processing device and plasma processing method
JP2005158675A (en) * 2003-10-30 2005-06-16 Kyocera Corp Plasma processing device
JP2005333091A (en) * 2004-05-21 2005-12-02 Nec Electronics Corp Semiconductor producing system
JP2007039742A (en) * 2005-08-03 2007-02-15 Permelec Electrode Ltd Electrode for electrolysis and its producing method
KR100749092B1 (en) 2005-02-01 2007-08-13 프리시젼다이아몬드 주식회사 Method of manufacturing CVD diamond coated cathode for plasma etching apparatus and cathode manufactured thereby
JP2008010579A (en) * 2006-06-28 2008-01-17 Renesas Technology Corp Semiconductor device manufacturing apparatus
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
KR100916952B1 (en) * 2000-12-29 2009-09-14 램 리써치 코포레이션 Fullerene coated component of semiconductor processing equipment
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
CN110050327A (en) * 2016-12-20 2019-07-23 韩国东海碳素株式会社 The semiconductors manufacture component of the sedimentary of boundary line between tectate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338915A (en) * 2000-05-30 2001-12-07 Shin Etsu Chem Co Ltd Silicon part
KR100916952B1 (en) * 2000-12-29 2009-09-14 램 리써치 코포레이션 Fullerene coated component of semiconductor processing equipment
WO2002058125A1 (en) * 2001-01-22 2002-07-25 Tokyo Electron Limited Plasma processing device and plasma processing method
US8394231B2 (en) 2001-01-22 2013-03-12 Tokyo Electron Limited Plasma process device and plasma process method
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
JP2005158675A (en) * 2003-10-30 2005-06-16 Kyocera Corp Plasma processing device
JP4673578B2 (en) * 2004-05-21 2011-04-20 ルネサスエレクトロニクス株式会社 Semiconductor manufacturing equipment
JP2005333091A (en) * 2004-05-21 2005-12-02 Nec Electronics Corp Semiconductor producing system
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
KR100749092B1 (en) 2005-02-01 2007-08-13 프리시젼다이아몬드 주식회사 Method of manufacturing CVD diamond coated cathode for plasma etching apparatus and cathode manufactured thereby
JP4500745B2 (en) * 2005-08-03 2010-07-14 ペルメレック電極株式会社 Method for producing electrode for electrolysis
JP2007039742A (en) * 2005-08-03 2007-02-15 Permelec Electrode Ltd Electrode for electrolysis and its producing method
JP2008010579A (en) * 2006-06-28 2008-01-17 Renesas Technology Corp Semiconductor device manufacturing apparatus
CN110050327A (en) * 2016-12-20 2019-07-23 韩国东海碳素株式会社 The semiconductors manufacture component of the sedimentary of boundary line between tectate
CN110050327B (en) * 2016-12-20 2023-05-12 韩国东海碳素株式会社 Component for semiconductor manufacture with deposited layer covering boundary line between layers

Similar Documents

Publication Publication Date Title
JP3801730B2 (en) Plasma CVD apparatus and thin film forming method using the same
JPH11251093A (en) Plasma generating electrode
JPH10251849A (en) Sputtering device
JPH0661335A (en) Wafer holding plate for semiconductor manufacturing device
JPH04358074A (en) Hot plate
US5254141A (en) Industrial diamond coating and method of manufacturing the same
JP4456218B2 (en) Plasma processing equipment
JPH01200625A (en) Semiconductor wafer processing equipment
JP2003197607A (en) Method and apparatus for etching pyroelectric and high dielectric material
KR100885690B1 (en) A method of producing a diamond film and a diamond film produced thereby
JPH06124998A (en) Plasma process equipment
JPH0774451B2 (en) Film forming equipment
JPH10107130A (en) Wafer holder
JPH02228035A (en) Method and device for vacuum treatment
JP2807790B2 (en) Photoconductor production method
JP3623938B2 (en) Manufacturing method of electrostatic chuck
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH09232409A (en) Wafer holding apparatus
JP2772643B2 (en) Coating method
JP3683044B2 (en) Electrostatic chuck plate and manufacturing method thereof
JP2000109989A (en) Inner wall protective member of plasma treatment device
JP2891991B1 (en) Plasma CVD equipment
JP2606715B2 (en) Manufacturing method of organic photoreceptor
JP2004207533A (en) Silicon plate for plasma treatment
JP3172384B2 (en) Hard carbon film forming apparatus and film forming method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208