JPH11250927A - Fuel cell power generating set - Google Patents

Fuel cell power generating set

Info

Publication number
JPH11250927A
JPH11250927A JP10044723A JP4472398A JPH11250927A JP H11250927 A JPH11250927 A JP H11250927A JP 10044723 A JP10044723 A JP 10044723A JP 4472398 A JP4472398 A JP 4472398A JP H11250927 A JPH11250927 A JP H11250927A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature sensor
reformed gas
heat exchanger
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10044723A
Other languages
Japanese (ja)
Inventor
Toshiya Omura
俊哉 大村
Norihisa Kamiya
規寿 神家
Takuro Hagino
卓朗 萩野
Harumasa Takeda
治正 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10044723A priority Critical patent/JPH11250927A/en
Publication of JPH11250927A publication Critical patent/JPH11250927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To protect a fuel cell so as not to supply a reformed gas containing much of drain water or steam to the fuel cell. SOLUTION: In a fuel cell power generating set generating electric power with reformed gas steam-reformed in fuel reformer 1 and oxygen in air, a first temperature sensor 11 is arranged in a drain separator 6 and a second temperature sensor 12 is arranged in the inlet of a fuel cell 8, when at least one of conditions that the detected value with the temperature sensor 11 is in the specified value or higher, and the detected value with the temperature sensor 12 is in the specified value or lower is satisfied, it shows that the content of drain water or steam in the reformed gas is increased, an on-off valve 10 is closed, and supply of the reformed gas is stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水素リッチなガ
スを燃料として発電を行なう燃料電池発電装置であっ
て、特に発電起動時および発電運転中に改質ガスを燃料
電池へ導入する手段に特徴を有する燃料電池発電装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator for generating power using a hydrogen-rich gas as fuel, and particularly to a means for introducing a reformed gas into a fuel cell at the start of power generation and during power generation operation. The present invention relates to a fuel cell power generation device having:

【0002】[0002]

【従来の技術】燃料電池発電装置は良く知られているよ
うに、空気中の酸素と原燃料(天然ガス)を改質器で水
蒸気改質された水素リッチなガスとを燃料電池に導入し
て電気化学反応により発電するものである。
2. Description of the Related Art As is well known, a fuel cell power generator introduces hydrogen-rich gas obtained by steam reforming oxygen in air and raw fuel (natural gas) in a reformer into a fuel cell. Power is generated by an electrochemical reaction.

【0003】図3は燃料電池発電装置の従来例を示す系
統図で、1は燃料改質器、2は水蒸気分離器、3は水蒸
気の流量調節弁、4は原燃料であるLNG(液化天然ガ
ス),LPG(液化石油ガス)などの原料ガスと水蒸気
とを混合・圧縮して燃料改質器1に供給するエゼクタで
ある。すなわち、水蒸気を駆動気体としてエゼクタ4の
ノズルから噴出させることにより、吸引された天然ガス
は水蒸気と混合,圧縮されたのち燃料改質器1に供給さ
れ、水素リッチなガスに水蒸気改質される。そして、改
質器1で改質された燃料ガスは、改質ガス凝縮用の熱交
換器5,ドレンセパレータ6およびドレントラップ7を
経て燃料電池8に供給される。燃料電池8はアノード極
に供給された前記燃料ガスと、カソード極にブロワ等の
手段により大気から供給された空気との電気化学反応に
より発電し、負荷に給電する。
FIG. 3 is a system diagram showing a conventional example of a fuel cell power generator. 1 is a fuel reformer, 2 is a steam separator, 3 is a steam flow control valve, and 4 is raw fuel LNG (liquefied natural gas). And an ejector that mixes and compresses a raw material gas such as gas (gas), LPG (liquefied petroleum gas) and water vapor, and supplies the mixture to the fuel reformer 1. That is, by injecting the steam as the driving gas from the nozzle of the ejector 4, the sucked natural gas is mixed with the steam and compressed, and then supplied to the fuel reformer 1, where the natural gas is steam-reformed into a hydrogen-rich gas. . Then, the fuel gas reformed in the reformer 1 is supplied to the fuel cell 8 via the heat exchanger 5 for condensing the reformed gas, the drain separator 6 and the drain trap 7. The fuel cell 8 generates power by an electrochemical reaction between the fuel gas supplied to the anode and the air supplied from the atmosphere to the cathode by means of a blower or the like, and supplies power to the load.

【0004】図4は燃料電池発電装置の別の従来例を示
す系統図である。これは、図3に示すものに対して熱交
換器5と一体型の熱交換器9を付加し、改質器1で改質
された燃料ガスを熱交換器5,ドレンセパレータ6,ド
レントラップ7および熱交換器9を経て燃料電池8に供
給するようにした他は図3と同様なので、説明は省略す
る。
FIG. 4 is a system diagram showing another conventional example of a fuel cell power generator. This is achieved by adding a heat exchanger 5 and an integral heat exchanger 9 to the one shown in FIG. 3 and transferring the fuel gas reformed by the reformer 1 to the heat exchanger 5, the drain separator 6, and the drain trap. 3 is the same as FIG. 3 except that it is supplied to the fuel cell 8 through the heat exchanger 9 and the heat exchanger 9, and the description is omitted.

【0005】[0005]

【発明が解決しようとする課題】ところで、燃料電池に
供給される水素リッチなガスには、改質時の水蒸気が多
く含まれており、したがって図3の場合は熱交換器5で
改質ガス中の水蒸気分を凝縮させることにより、ドライ
な改質ガスを燃料電池8に供給するようにしている。ま
た、図4の場合は熱交換器5で改質ガス中の水蒸気分を
凝縮させるとともに、後段に設けられた第2の熱交換器
9により昇温することで、ドライな改質ガス4燃料電池
8に供給している。
By the way, the hydrogen-rich gas supplied to the fuel cell contains a large amount of steam during reforming. Therefore, in the case of FIG. The dry reformed gas is supplied to the fuel cell 8 by condensing the water vapor therein. In the case of FIG. 4, the steam in the reformed gas is condensed by the heat exchanger 5 and the temperature is raised by the second heat exchanger 9 provided at the subsequent stage, so that the dry reformed gas 4 The battery 8 is supplied.

【0006】図3,図4において、熱交換器5の熱交換
性能が低下したり、または熱交換器5の後段に設けられ
たドレントラップ7に動作不具合が生じると、水蒸気分
を多く含んだ水素リッチな改質ガス、またはドレン水が
燃料電池8に供給されることになる。水蒸気分を多く含
んだ水素リッチな改質ガスが燃料電池8に供給される
と、燃料電池8のセル中のりん酸の体積が膨張してガス
拡散性能がなくなり、燃料電池の特性低下につながる。
また、大量のドレン水が燃料電池8に流入すると、燃料
電池のガス通路の水没によるガス欠運転や、絶縁不良に
よって運転継続不能となり、やがては破損につながる。
したがって、この発明の課題はドレン水や、水蒸気分を
多く含んだ水素リッチな改質ガスを燃料電池に導入しな
いようにすることにある。
In FIGS. 3 and 4, if the heat exchange performance of the heat exchanger 5 is reduced or if a malfunction occurs in the drain trap 7 provided downstream of the heat exchanger 5, a large amount of water vapor is contained. The hydrogen-rich reformed gas or drain water is supplied to the fuel cell 8. When a hydrogen-rich reformed gas containing a large amount of water vapor is supplied to the fuel cell 8, the volume of phosphoric acid in the cells of the fuel cell 8 expands and loses gas diffusion performance, leading to deterioration in the characteristics of the fuel cell. .
Further, when a large amount of drain water flows into the fuel cell 8, the operation cannot be continued due to lack of gas due to submergence of the gas passage of the fuel cell or poor insulation, and eventually leads to breakage.
Therefore, an object of the present invention is to prevent the introduction of drain water or a hydrogen-rich reformed gas containing a large amount of water vapor into a fuel cell.

【0007】[0007]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、LNG,LPGを含む原
燃料を改質器により水蒸気改質し、改質ガス凝縮用熱交
換器とドレンセパレータとによりドレン水および過剰な
水蒸気を分離した改質ガスと、空気中の酸素とにより発
電を行なう燃料電池に対し、 前記ドレンセパレータに
は第1の温度センサを設ける一方、燃料電池入口ガス温
度を検出する第2の温度センサを設け、前記第1の温度
センサによる検出値が所定値以上、前記第2の温度セン
サによる検出値が所定値以下の少なくとも一方の条件が
成立するときは、改質ガスの燃料電池内への供給経路を
遮断するようにしている。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, a raw fuel containing LNG and LPG is steam reformed by a reformer, and a heat exchanger for condensing reformed gas is provided. A fuel cell that generates power using reformed gas, in which drain water and excess water vapor are separated by a drain separator, and oxygen in the air, the drain separator is provided with a first temperature sensor while the fuel cell inlet A second temperature sensor for detecting gas temperature is provided, and when at least one of the following conditions is satisfied: a value detected by the first temperature sensor is equal to or more than a predetermined value, and a value detected by the second temperature sensor is equal to or less than a predetermined value. The supply path of the reformed gas into the fuel cell is shut off.

【0008】また、請求項2の発明では、LNG,LP
Gを含む原燃料を改質器により水蒸気改質し、改質ガス
凝縮用熱交換器,改質ガス予熱用熱交換器とドレンセパ
レータとによりドレン水および過剰な水蒸気を分離した
改質ガスと、空気中の酸素とにより発電を行なう燃料電
池に対し、前記ドレンセパレータには第1の温度センサ
を、前記改質ガス予熱用熱交換器には第2の温度センサ
をそれぞれ設け、前記第1の温度センサによる検出値が
所定値以上、前記第2の温度センサによる検出値が所定
値以下の少なくとも一方の条件が成立するときは、改質
ガスの燃料電池内への供給経路を遮断するようにしてい
る。
In the invention of claim 2, LNG, LP
The raw fuel containing G is reformed by steam using a reformer, and the reformed gas from which drain water and excess steam are separated by a heat exchanger for condensing reformed gas, a heat exchanger for preheating reformed gas, and a drain separator. A fuel cell that generates power using oxygen in the air, a first temperature sensor is provided in the drain separator, and a second temperature sensor is provided in the heat exchanger for preheating reformed gas. When at least one of the conditions that the value detected by the temperature sensor is equal to or more than a predetermined value and the value detected by the second temperature sensor is equal to or less than a predetermined value is satisfied, the supply path of the reformed gas into the fuel cell is shut off. I have to.

【0009】[0009]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す系統図で、図3に示すものに対し、改質ガス凝
縮用の熱交換器5の後段のドレンセパレータ6に温度セ
ンサ11を、燃料電池8の入口に温度センサ12をそれ
ぞれ設け、さらにこれらのセンサで検出された値を入力
し、その入力信号に基づいて予め設定された条件でオン
オフ弁10を制御するような出力信号を発する図示され
ない制御部を設けた点が特徴である。すなわち、発電起
動時には、改質ガス凝縮用の熱交換器5の性能評価に使
用可能な温度センサ11が設定温度以下であること、か
つドレントラップ7の不具合によるドレン水の有無を検
知する温度センサ12が設定温度以上であるという条件
で、その後段に設けられたオンオフ弁10を開くことに
より、初めて燃料電池8に水素リッチな改質ガスを供給
するようにする。このとき、図1のように設置された温
度センサ11,12によって熱交換器5の性能、ドレン
トラップ7の性能を監視し、早期に異常を検出すること
が可能である。
FIG. 1 is a system diagram showing a first embodiment of the present invention, which is different from that shown in FIG. 3 in that a drain separator 6 at a stage subsequent to a heat exchanger 5 for condensing reformed gas is provided. A temperature sensor 11 is provided at the inlet of the fuel cell 8, and a temperature sensor 12 is provided at the inlet of the fuel cell 8. Further, values detected by these sensors are input, and the on / off valve 10 is controlled based on the input signal under predetermined conditions. It is characterized in that a control unit (not shown) for generating an appropriate output signal is provided. That is, at the time of power generation startup, the temperature sensor 11 that can be used to evaluate the performance of the heat exchanger 5 for condensing reformed gas is at or below the set temperature, and a temperature sensor that detects the presence or absence of drain water due to a malfunction of the drain trap 7 The hydrogen-rich reformed gas is supplied to the fuel cell 8 for the first time by opening the on / off valve 10 provided on the subsequent stage under the condition that the temperature of the fuel cell 12 is equal to or higher than the set temperature. At this time, the performance of the heat exchanger 5 and the performance of the drain trap 7 can be monitored by the temperature sensors 11 and 12 installed as shown in FIG. 1 to detect an abnormality at an early stage.

【0010】また、発電運転中においては、熱交換器5
の性能低下が検知可能な温度センサ11が設定温度以上
であること、ドレントラップ7の不具合によるドレン水
の有無を検知する温度センサ12が設定温度以下の少な
くとも一方の条件が成立したら、オンオフ弁10を閉じ
ることにより、改質ガスを燃料電池8に導入しないよう
にする。以上のようにすることで、ドレン水や、水蒸気
分を多く含んだ改質ガスを燃料電池へ導入しないように
することが可能となる。
During the power generation operation, the heat exchanger 5
If the temperature sensor 11 capable of detecting a decrease in the performance is equal to or higher than the set temperature, and the temperature sensor 12 for detecting the presence or absence of drain water due to a malfunction of the drain trap 7 has at least one condition equal to or lower than the set temperature, the on-off valve To prevent the reformed gas from being introduced into the fuel cell 8. By doing as described above, it is possible to prevent the drain water and the reformed gas containing a large amount of water vapor from being introduced into the fuel cell.

【0011】図2はこの発明の第2の実施の形態を示す
系統図で、図4に示すものに対し、改質ガス凝縮用の熱
交換器5の後段のドレンセパレータ6に温度センサ1
1、熱交換器9の後段に温度センサ12を設けた点が特
徴で、その他は図1と同様なので詳細は省略する。な
お、温度センサ12によって熱交換器9の監視が可能と
なる。
FIG. 2 is a system diagram showing a second embodiment of the present invention. In contrast to the system shown in FIG. 4, a temperature sensor 1 is connected to a drain separator 6 at the subsequent stage of a heat exchanger 5 for condensing reformed gas.
1. The feature is that a temperature sensor 12 is provided at the subsequent stage of the heat exchanger 9, and the other parts are the same as those in FIG. The heat sensor 9 can be monitored by the temperature sensor 12.

【0012】[0012]

【発明の効果】この発明によれば、燃料電池に水素リッ
チな改質ガスを導入するにあたり、改質ガス中に含まれ
る可能性のあるドレン水や水蒸気を除去するようにした
ので、水没による破損や出力特性低下の危険性を回避
し、保護効果に優れた燃料電池発電装置を提供し得る利
点が得られる。
According to the present invention, when introducing a hydrogen-rich reformed gas into a fuel cell, drain water and water vapor that may be contained in the reformed gas are removed. The advantage of avoiding the danger of breakage and lowering of output characteristics and providing a fuel cell power generation device having an excellent protection effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示すブロック図
である。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施の形態を示すブロック図
である。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】燃料電池発電装置の従来例を示す系統図であ
る。
FIG. 3 is a system diagram showing a conventional example of a fuel cell power generator.

【図4】燃料電池発電装置の他の従来例を示す系統図で
ある。
FIG. 4 is a system diagram showing another conventional example of a fuel cell power generator.

【符号の説明】[Explanation of symbols]

1…燃料改質器、2…水蒸気分離器、3…流量調節弁、
4…エゼクタ、5,9…熱交換器、6…ドレンセパレー
タ、7…ドレントラップ、8…燃料電池、10…オンオ
フ弁、11,12…温度センサ。
DESCRIPTION OF SYMBOLS 1 ... Fuel reformer, 2 ... Steam separator, 3 ... Flow control valve,
4 ejector, 5, 9 heat exchanger, 6 drain separator, 7 drain trap, 8 fuel cell, 10 on / off valve, 11, 12 temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 俊哉 神奈川県横浜市磯子区汐見台3−3−2 (72)発明者 神家 規寿 大阪府南河内郡美原町青南台二丁目12番5 号 (72)発明者 萩野 卓朗 愛知県名古屋市瑞穂区前田町1−33 (72)発明者 竹田 治正 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshiya Omura 3-3-2 Shiomidai, Isogo-ku, Yokohama-shi, Kanagawa Prefecture 72) Inventor Takuro Hagino 1-33 Maeda-cho, Mizuho-ku, Nagoya, Aichi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 LNG,LPGを含む原燃料を改質器に
より水蒸気改質し、改質ガス凝縮用熱交換器とドレンセ
パレータとによりドレン水および過剰な水蒸気を分離し
た改質ガスと、空気中の酸素とにより発電を行なう燃料
電池発電装置において、 前記ドレンセパレータに設けられた第1の温度センサ
と、燃料電池入口ガス温度を検出する第2の温度センサ
とを有し、かつ前記第1の温度センサによる検出値が所
定値以上、前記第2の温度センサによる検出値が所定値
以下の少なくとも一方の条件が成立するときは、改質ガ
スの燃料電池内への供給経路を遮断する制御手段を備え
てなることを特徴とする燃料電池発電装置。
1. A reformed gas obtained by steam reforming a raw fuel containing LNG and LPG by a reformer and separating drain water and excess steam by a heat exchanger for condensing the reformed gas and a drain separator. A fuel cell power generation device that generates power from oxygen in the fuel cell, comprising: a first temperature sensor provided on the drain separator; a second temperature sensor for detecting a fuel cell inlet gas temperature; When at least one of the conditions in which the value detected by the temperature sensor is equal to or more than a predetermined value and the value detected by the second temperature sensor is equal to or less than a predetermined value is satisfied, the control to cut off the supply path of the reformed gas into the fuel cell is performed. A fuel cell power generator comprising means.
【請求項2】 LNG,LPGを含む原燃料を改質器に
より水蒸気改質し、改質ガス凝縮用熱交換器,改質ガス
予熱用熱交換器とドレンセパレータとによりドレン水お
よび過剰な水蒸気を分離した改質ガスと、空気中の酸素
とにより発電を行なう燃料電池発電装置において、 前記ドレンセパレータには第1の温度センサを、前記改
質ガス予熱用熱交換器には第2の温度センサをそれぞれ
有し、かつ前記第1の温度センサによる検出値が所定値
以上、前記第2の温度センサによる検出値が所定値以下
の少なくとも一方の条件が成立するときは、改質ガスの
燃料電池内への供給経路を遮断する制御手段を備えてな
ることを特徴とする燃料電池発電装置。
2. A raw fuel containing LNG and LPG is steam reformed by a reformer, and drain water and excess steam are formed by a heat exchanger for condensing reformed gas, a heat exchanger for preheating reformed gas, and a drain separator. In the fuel cell power generation device that generates power by using the reformed gas separated from oxygen and oxygen in the air, a first temperature sensor is provided for the drain separator, and a second temperature is provided for the heat exchanger for preheating the reformed gas. A fuel for the reformed gas when at least one of the following conditions is satisfied: a value detected by the first temperature sensor is equal to or more than a predetermined value and a value detected by the second temperature sensor is equal to or less than a predetermined value. A fuel cell power generator comprising: a control unit that cuts off a supply path into a battery.
JP10044723A 1998-02-26 1998-02-26 Fuel cell power generating set Pending JPH11250927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10044723A JPH11250927A (en) 1998-02-26 1998-02-26 Fuel cell power generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10044723A JPH11250927A (en) 1998-02-26 1998-02-26 Fuel cell power generating set

Publications (1)

Publication Number Publication Date
JPH11250927A true JPH11250927A (en) 1999-09-17

Family

ID=12699365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10044723A Pending JPH11250927A (en) 1998-02-26 1998-02-26 Fuel cell power generating set

Country Status (1)

Country Link
JP (1) JPH11250927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048851A1 (en) * 1999-12-28 2001-07-05 Matsushita Electric Industrial Co., Ltd. Power generation device and operation method therefor
JP2005093346A (en) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd Fuel cell system
JP2005093345A (en) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048851A1 (en) * 1999-12-28 2001-07-05 Matsushita Electric Industrial Co., Ltd. Power generation device and operation method therefor
US6797420B2 (en) 1999-12-28 2004-09-28 Matsushita Electric Industrial Co., Ltd. Power generation device and operation method therefor
JP2005093346A (en) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd Fuel cell system
JP2005093345A (en) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd Fuel cell system
JP4610875B2 (en) * 2003-09-19 2011-01-12 アイシン精機株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
US8415064B2 (en) Fuel cell system
US7875399B2 (en) Stop method for fuel cell system
KR20210141982A (en) Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anode and integrated shift reactor
EP1276163B1 (en) Solid polymer fuel cell
US9306229B2 (en) Fuel cell system
JP5155734B2 (en) Fuel cell system and operation method thereof
US20050271918A1 (en) Fuel cell system and purging method therefor
CN107004876B (en) Method for disconnecting a fuel cell stack and fuel cell system
KR20200116957A (en) Carbon dioxide manufacturing system
JP3784456B2 (en) Fuel cell power generator and method of operating the same
US6544677B2 (en) Fuel cell system
US20090123796A1 (en) Hydrogen and power generation system and method of activating hydrogen generation mode thereof
JP4596745B2 (en) Method for improving efficiency and reducing exhaust gas in a fuel cell system
JP5057295B2 (en) Fuel cell device
JP2003317771A (en) Fuel cell power generation system and operating method for the system
JP2008177116A (en) Fuel cell system
JP2002124290A (en) Fuel cell system
JPH11250927A (en) Fuel cell power generating set
US20070128484A1 (en) Fuel cell system
JP2002134145A (en) Fuel cell power generation unit
US7588855B2 (en) Fuel cell assembly and fuel cell system
JP2004342389A (en) Fuel cell device
JP2009123588A (en) Fuel cell system
JP5171103B2 (en) Fuel cell cogeneration system
JP3471513B2 (en) Fuel cell power generator and fuel switching test method thereof