JPH11250500A - Optical recording medium and protective film for optical recording medium - Google Patents

Optical recording medium and protective film for optical recording medium

Info

Publication number
JPH11250500A
JPH11250500A JP10049612A JP4961298A JPH11250500A JP H11250500 A JPH11250500 A JP H11250500A JP 10049612 A JP10049612 A JP 10049612A JP 4961298 A JP4961298 A JP 4961298A JP H11250500 A JPH11250500 A JP H11250500A
Authority
JP
Japan
Prior art keywords
atomic
film
recording medium
optical recording
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10049612A
Other languages
Japanese (ja)
Other versions
JP3608934B2 (en
Inventor
Kazuhiro Kaneko
和弘 金子
Tomohiko Onda
智彦 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP04961298A priority Critical patent/JP3608934B2/en
Priority to EP99905332A priority patent/EP1059634A4/en
Priority to PCT/JP1999/000983 priority patent/WO1999045538A1/en
Publication of JPH11250500A publication Critical patent/JPH11250500A/en
Application granted granted Critical
Publication of JP3608934B2 publication Critical patent/JP3608934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve repetitive recording and erasing characteristics of an optical recording medium. SOLUTION: The first protective film 3 of the optical recording medium 1 successively laminated with a substrate 2, the first protective film 3, a recording film 4, a second protective film 5 and a reflection film 6 is formed by incorporating nitrogen into a film mixture composed of ZnS and SiO2 and is so formed that the nitrogen density is higher on the recording film 4 side than on the substrate 2 side. The second protective film 5 is formed of a film mixture composed of ZnS and SiO2 . As a result, the recording medium having the improved repetitive characteristic is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、相変化型記録材料
からなる記録膜を有する光記録媒体及び光記録媒体に好
適な光記録媒体用保護膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium having a recording film made of a phase change type recording material and a protective film for the optical recording medium suitable for the optical recording medium.

【0002】[0002]

【従来の技術】近年、高密度記録が可能で、しかも記録
情報を消去して書き換えることが可能な光記録媒体が注
目されている。書き換え可能型の光記録媒体のうち相変
化型の光記録媒体は、レーザー光を照射することにより
記録膜の結晶状態を変化させ、このような状態変化に伴
う記録膜の反射率変化を検出するものである。
2. Description of the Related Art In recent years, an optical recording medium capable of high-density recording and capable of erasing and rewriting recorded information has attracted attention. Among the rewritable optical recording media, the phase-change optical recording medium changes the crystal state of the recording film by irradiating a laser beam, and detects a change in the reflectance of the recording film due to such a state change. Things.

【0003】相変化型光記録媒体の記録膜の材料として
は、結晶状態と非晶質状態とで反射率の差が大きく、非
晶質状態の安定度が比較的高い、Ge-Te 系材料が用いら
れることが多い。その代表的な材料例として、米国特許
第 3,530,441号に開示されているように、Ge-Te 、Ge-T
e-Sb-S、Ge-Te-S 、Ge-Se-S 、Ge-Se-Sb、Ge-As-Se、In
-Te 、Se-Te 、Se-As 等のいわゆるカルコゲン系合金材
料があげられる。
As a material of a recording film of a phase change type optical recording medium, a Ge-Te type material having a large difference in reflectance between a crystalline state and an amorphous state and a relatively high amorphous state stability. Is often used. Typical examples of the material include Ge-Te and Ge-T as disclosed in U.S. Patent No. 3,530,441.
e-Sb-S, Ge-Te-S, Ge-Se-S, Ge-Se-Sb, Ge-As-Se, In
So-called chalcogen-based alloy materials such as -Te, Se-Te and Se-As.

【0004】また、安定性、高速結晶化等の向上を目的
にGe-Te 系にAu(特開昭61-219692号公報)、Sn及びAu
(特開昭61-270190 号公報)、Pd(特開昭62-19490号公
報)等を添加した材料の提案や、記録/消去の繰り返し
性能向上を目的に Ge-Te-Se-Sbの組成比を特定した材料
(特開昭62-73438号公報)の提案等もなされている。し
かしながら、上述した組成のいずれもが相変化型書き換
え可能光記録媒体の記録膜として要求される諸特性のす
べてを満足し得るものとはいえない。特に、記録感度、
消去感度の向上、オーバーライト時の消し残りによる消
去比低下の防止、並びに繰り返し記録消去特性の長寿命
化が最も重要な課題となっている。
In order to improve the stability and the high-speed crystallization, Au (Japanese Patent Application Laid-Open No. 61-219692), Sn and Au
(JP-A-61-270190), Pd (JP-A-62-19490), etc., and the composition of Ge-Te-Se-Sb for the purpose of improving the recording / erasing repetition performance A material having a specified ratio (JP-A-62-73438) has also been proposed. However, none of the above-mentioned compositions can satisfy all of the various properties required for a recording film of a phase-change rewritable optical recording medium. In particular, recording sensitivity,
Improvements in erasing sensitivity, prevention of erasing ratio reduction due to unerased portions during overwriting, and prolonged life of repeated recording / erasing characteristics are the most important issues.

【0005】これに対し、最近、化学周期律表を用いる
とIb-IIIb-VIb2 やIIb-IVb-Vb2 で表されるカルコパイ
ライトと呼ばれる化合物を記録膜材料に応用することが
提案されている。カルコパイライト型化合物の中でも特
にAgInTe2 は、SbやBiを用いて希釈することにより、光
記録媒体の良好な記録膜材料として使用できることが知
られている(特開平3-240590号公報、特開平3-99884 号
公報、特開平3-82593号公報、特開平3-73384 号公報
等)。更に、この他、特開平4-267192号公報や特開平4-
232779号公報、特開平6-166268号公報には、記録膜が結
晶化する際にAgSbTe2 相が生成する相変化型光記録媒体
が開示されている。
[0005] In contrast, recently, the the use of chemical periodic table Ib-IIIb-VIb 2 or IIb-IVb-Vb compound called chalcopyrite represented by 2 is proposed to be applied to the recording film material I have. It is known that among the chalcopyrite-type compounds, AgInTe 2 can be used as a good recording film material for an optical recording medium by diluting with Sb or Bi (JP-A-3-240590, JP-A-3-240590). JP-A-3-99884, JP-A-3-82593, JP-A-3-73384, etc.). Further, in addition to this, Japanese Patent Application Laid-Open No. 4-267192 and
JP-A-232779 and JP-A-6-166268 disclose a phase-change optical recording medium in which an AgSbTe 2 phase is generated when a recording film is crystallized.

【0006】しかしながら、これらのカルコパイライト
系の記録膜材料を用いた光記録媒体は、確かに優れたC
/N、消去比、変調度、記録感度を有するが、繰り返し
記録消去の寿命が一千回程度しかないという問題点があ
った。この問題点を解決するために、本発明者等は特定
の組成を有するAu-In-Sb-Te記録膜材料を開発し、先に
出願した(特願平9-46225 号、特願平9-210745号、特願
平9-285785号等) 。この記録膜材料は、優れたC/N、
消去比、変調度、記録感度、及び繰り返し記録消去特性
を有する。特に、繰り返し記録消去特性の寿命が、線速
1〜3m/s で1万回、線速5〜7m/s で10万回と、前
記AgSbTe2 相を有する記録膜材料に比べて1桁以上大き
く、相変化型光記録媒体の記録膜材料として極めて優れ
た特性を有している。
However, optical recording media using these chalcopyrite-based recording film materials are certainly excellent in C
/ N, erasing ratio, modulation degree, and recording sensitivity, but there is a problem that the life of repeated recording and erasing is only about 1,000 times. In order to solve this problem, the present inventors have developed an Au-In-Sb-Te recording film material having a specific composition, and filed the same prior application (Japanese Patent Application No. 9-46225, Japanese Patent Application No. -210745, Japanese Patent Application No. 9-285785, etc.). This recording film material has excellent C / N,
It has an erasing ratio, modulation degree, recording sensitivity, and repeated recording / erasing characteristics. In particular, the life of the repetitive recording / erasing characteristics is 10,000 times at a linear velocity of 1 to 3 m / s and 100,000 times at a linear velocity of 5 to 7 m / s, which is at least one order of magnitude compared to the recording film material having the AgSbTe 2 phase. It is large and has extremely excellent characteristics as a recording film material of a phase change type optical recording medium.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
たAu-In-Sb-Te 記録膜材料を用いても、全ての線速にお
いて繰り返し記録消去の寿命が10万回を越えるわけでは
なく、光磁気ディスクの繰り返し記録消去の寿命が100
万回であることに比べると、必ずしも十分ではないとい
う問題点があった。
However, even if the above-mentioned Au-In-Sb-Te recording film material is used, the life of repeated recording and erasing does not exceed 100,000 times at all linear velocities, and the magneto-optical Life of repeated recording and erasing of disc is 100
There was a problem that it was not always enough compared to the number of times.

【0008】本発明はこのような従来の問題点に鑑み、
繰り返し記録消去特性の更に優れた光記録媒体及び光記
録媒体に好適な光記録媒体用保護膜を提供することを目
的とする。
The present invention has been made in view of such conventional problems,
An object of the present invention is to provide an optical recording medium having more excellent repetitive recording / erasing characteristics and a protective film for the optical recording medium suitable for the optical recording medium.

【0009】[0009]

【課題を解決するための手段】このため、請求項1に係
る発明では、使用する光ビームに対して略透明な基板上
に、少なくとも第1保護膜、記録膜、第2保護膜、反射
膜をこの順で積層した光記録媒体において、前記第2保
護膜が、ZnS とSiO2の混合膜からなり、前記第1保護膜
が、ZnS とSiO2の混合膜に窒素を含み、当該窒素の濃度
を前記基板側より前記記録膜側が高くなるよう形成する
ことを特徴とする。
According to the present invention, at least a first protective film, a recording film, a second protective film, and a reflective film are provided on a substrate substantially transparent to a light beam to be used. Are laminated in this order, the second protective film is made of a mixed film of ZnS and SiO 2 , the first protective film contains nitrogen in a mixed film of ZnS and SiO 2 , The recording film is formed so that the concentration is higher on the recording film side than on the substrate side.

【0010】第1保護膜は、具体的には、請求項2に係
る発明のように、前記基板側にZnSとSiO2の混合膜を有
し、前記記録膜側にZnS とSiO2と窒素を含む混合膜を有
する複合膜としてもよく、また、請求項3に係る発明の
ように、ZnS とSiO2と窒素を含む混合膜からなり、膜の
前記基板側の面の窒素濃度が略0原子%で、基板側から
記録膜側に向けて窒素濃度が漸次増加するようにしても
よい。
[0010] The first protective layer, specifically, as in the invention according to claim 2, comprising a mixed film of ZnS and SiO 2 on the substrate side, ZnS and SiO 2 and the nitrogen to the recording layer side And a composite film containing ZnS, SiO 2, and nitrogen, wherein the nitrogen concentration on the substrate side of the film is substantially zero. At atomic%, the nitrogen concentration may be gradually increased from the substrate side to the recording film side.

【0011】かかる構成の光記録媒体では、第1保護膜
が適度な柔軟性を有し、記録消去の際の加熱・冷却の繰
り返しに伴う保護膜の劣化が抑制される。また、記録膜
側の窒素濃度を高くすることで、記録膜に悪影響を与え
る保護膜中の元素(特にイオウ)の拡散が効果的に抑制
でき、光記録媒体の繰り返し記録消去特性を格段に向上
させることができる。
In the optical recording medium having such a configuration, the first protective film has appropriate flexibility, and the deterioration of the protective film due to repeated heating and cooling at the time of recording and erasing is suppressed. Also, by increasing the nitrogen concentration on the recording film side, the diffusion of elements (especially sulfur) in the protective film, which adversely affects the recording film, can be effectively suppressed, and the repetitive recording and erasing characteristics of the optical recording medium are significantly improved. Can be done.

【0012】繰り返し記録消去特性の向上効果は、特
に、請求項4に係る発明のように、記録膜が、Au-In-Sb
-Te 合金、Ag-In-Sb-Te 合金、Ag-In-Sb-Te-V 合金、Cu
-In-Sb-Te 合金、Pd-In-Sb-Te 合金等のカルコパイライ
ト型化合物の場合に極めて顕著である。特に、前記記録
膜が、Au-In-Sb-Te 合金の場合には、請求項5に係る発
明のように、それぞれα、β、γ、及びδで表される、
Au、In、Sb、及びTeの組成比率が、0原子%<α≦25原
子%、3原子%≦β≦18原子%、30原子%≦γ≦67原子
%、24原子%≦δ≦45原子%、ただし、99原子%≦α+
β+γ+δ≦100 原子%、である場合に、良好な繰り返
し記録消去特性を実現できる。
Particularly, the effect of improving the repetitive recording / erasing characteristics is that the recording film is made of Au-In-Sb.
-Te alloy, Ag-In-Sb-Te alloy, Ag-In-Sb-Te-V alloy, Cu
This is extremely remarkable in the case of chalcopyrite type compounds such as -In-Sb-Te alloy and Pd-In-Sb-Te alloy. In particular, when the recording film is made of an Au-In-Sb-Te alloy, they are represented by α, β, γ, and δ, respectively, as in the invention according to claim 5.
The composition ratio of Au, In, Sb, and Te is 0 atomic% <α ≦ 25 atomic%, 3 atomic% ≦ β ≦ 18 atomic%, 30 atomic% ≦ γ ≦ 67 atomic%, 24 atomic% ≦ δ ≦ 45 Atomic%, but 99 atomic% ≦ α +
When β + γ + δ ≦ 100 atomic%, good repetitive recording / erasing characteristics can be realized.

【0013】書き換え型光記録媒体において、保護膜が
ZnS とSiO2と窒素(N) を含む可能性のある技術は、特公
平7-111786号公報、特開平6-4904号公報、特開平6-3425
29号公報、特開平9-198712号公報等に見ることができ
る。しかしながら、特開平6-4904号公報では、ZnS とSi
O2と窒素の他に水素を含むことを必須要件としており、
本願発明とは構成元素が一致しない。また、特開平9-19
8712号公報では、ZnS とSiO2にSi3N4 を含ませることを
必須要件としており、本願発明とは構成物質が一致しな
い。
In the rewritable optical recording medium, the protective film is
Techniques that may contain ZnS, SiO 2 and nitrogen (N) are disclosed in Japanese Patent Publication No. 7-111786, JP-A-6-4904, JP-A-6-3425.
No. 29, JP-A-9-198712 and the like. However, in JP-A-6-4904, ZnS and Si
Including hydrogen in addition to O 2 and nitrogen is an essential requirement,
The constituent elements do not match those of the present invention. Also, JP-A-9-19
In the 8712 publication, it is an essential requirement that ZnS and SiO 2 contain Si 3 N 4 , and the constituent materials do not match those of the present invention.

【0014】 一方、特公平7-111786号公報には、ZnS と
SiO2に窒素を含ませることを構成要件とする光記録媒体
並びに光記録媒体用保護膜が開示されている。しかしな
がら、特公平7-111786号公報では、ZnS とSiO2の混合膜
に窒素を含ませてある保護膜は、膜厚方向に均一な窒素
濃度を有すると認識されており、本願発明のように、窒
素濃度分布を設けたものではない。また、本願発明で
は、窒素濃度分布を有するZnS-SiO2-N混合膜を、Au-In-
Sb-Te 合金、Ag-In-Sb-Te 合金等のカルコパイライト型
化合物からなる記録膜と組み合わせた時に特に書き換え
寿命向上の効果が顕著になるということを示したが、特
公平7-111786号公報にはこのような記述も示唆も見られ
ない。
[0014] On the other hand, in Japanese Patent Publication No. 7-111786, ZnS and
SiOTwoRecording medium comprising nitrogen as a constituent element
In addition, a protective film for an optical recording medium is disclosed. But
In Japanese Patent Publication No. 7-111786, ZnS and SiOTwoMixed film
The protective film that contains nitrogen in the
It has been recognized that it has a concentration,
No elemental concentration distribution is provided. In the present invention,
Is a ZnS-SiO having a nitrogen concentration distributionTwoAu-In-
Chalcopyrite type such as Sb-Te alloy, Ag-In-Sb-Te alloy
Especially rewritten when combined with recording film made of compound
It was shown that the effect of improving the service life was remarkable.
Japanese Patent Publication No. Hei 7-111786 has such descriptions and suggestions.
Absent.

【0015】 また、特開平6-342529号公報には、保護膜
と記録膜の間に窒素を含有する補助膜を備えるという、
広範な構成要件の相変化型光記録媒体が開示されてい
る。同公報では、補助層の挿入は第1保護膜と記録膜と
の間、或いは、第2保護膜と記録膜との間のどちらでも
良いとの認識があり、更に、どちらかというと同公報の
実施例に見られるように第2保護膜と記録膜との間に補
助層を挿入することが主に検討されている。一方、本願
発明では、窒素濃度分布を有するZnS-SiO2-N混合膜を、
特に第1保護膜に用いることを必須要件としており、特
開平6-342529号公報とは異なっている。また、本願発明
では、窒素濃度分布を有するZnS-SiO2-N混合膜を、Au-I
n-Sb-Te 合金、Ag-In-Sb-Te 合金等のカルコパイライト
型化合物からなる記録膜と組み合わせた時に特に書き換
え寿命向上の効果が顕著になるということを示したが、
特開平6-342529号公報にはこのような記述も示唆も見ら
れない。
[0015] Also, JP-A-6-342529 discloses a protective film.
And an auxiliary film containing nitrogen between the recording film and
A phase change optical recording medium having a wide range of components has been disclosed.
You. According to the publication, the insertion of the auxiliary layer is performed between the first protective film and the recording film.
, Or between the second protective film and the recording film.
It is recognized that it is good, and moreover,
As can be seen in the embodiment, a supplement is provided between the second protective film and the recording film.
The insertion of an auxiliary layer is mainly considered. On the other hand, the present application
In the invention, ZnS-SiO having a nitrogen concentration distributionTwo-N mixed film,
In particular, it is essential to use it for the first protective film.
It is different from the publication of Heihei 6-342529. In addition, the present invention
Then, ZnS-SiO with nitrogen concentration distributionTwo-N mixed film, Au-I
Chalcopyrite such as n-Sb-Te alloy, Ag-In-Sb-Te alloy
Rewriting especially when combined with a recording film made of a type compound
It was shown that the effect of improving the life was remarkable,
Japanese Patent Application Laid-Open No. 6-342529 shows no such description or suggestion.
Not.

【0016】光ビームに対する記録膜の記録消去時の相
対速度が1〜3m /sで使用される光記録媒体にあって
は、請求項6に係る発明のように、前記α及びβが、0
原子%<α≦25原子%、7原子%≦β≦18原子%であ
り、前記γ及びδが、30原子%≦γ<45原子%の時には
32原子%≦δ≦45原子%、45原子%≦γ<49原子%の時
には30原子%≦δ≦45原子%、49原子%≦γ≦55原子%
の時には35原子%≦δ≦45原子%、ただし、99原子%≦
α+β+γ+δ≦100 原子%であるAu-In-Sb-Te 合金の
記録膜を用いることが好ましい。
In an optical recording medium used with a relative speed of recording and erasing of the recording film with respect to the light beam of 1 to 3 m / s, the values of α and β are set to 0 as in the invention according to claim 6.
Atomic% <α ≦ 25 atomic%, 7 atomic% ≦ β ≦ 18 atomic%, and when γ and δ satisfy 30 atomic% ≦ γ <45 atomic%
32 atomic% ≦ δ ≦ 45 atomic%, 45 atomic% ≦ γ <49 atomic%, 30 atomic% ≦ δ ≦ 45 atomic%, 49 atomic% ≦ γ ≦ 55 atomic%
In the case of, 35 atomic% ≤ δ ≤ 45 atomic%, provided that 99 atomic% ≤
It is preferable to use a recording film of an Au-In-Sb-Te alloy in which α + β + γ + δ ≦ 100 atomic%.

【0017】また、光ビームに対する記録膜の記録消去
時の相対速度が5〜7m /sで使用される光記録媒体にあ
っては、請求項7に係る発明のように、前記α、β、
γ、及びδが、1原子%≦α≦16原子%、8原子%≦β
≦17原子%、41原子%≦γ<63原子%、24原子%≦δ≦
36原子%、ただし、99原子%≦α+β+γ+δ≦100 原
子%であるAu-In-Sb-Te 合金の記録膜を用いることが好
ましい。或いは、請求項8に係る発明のように、前記
α、β、γ、及びδが、0原子%<α≦17原子%、3原
子%≦β<8原子%、51原子%≦γ≦67原子%、26原子
%≦δ≦33原子%、ただし、99原子%≦α+β+γ+δ
≦100 原子%であるAu-In-Sb-Te 合金の記録膜を用いる
ことが好ましい。
Further, in an optical recording medium used at a relative speed of 5-7 m / s at the time of recording and erasing of the recording film with respect to the light beam, the α, β,
γ and δ are 1 atomic% ≦ α ≦ 16 atomic%, 8 atomic% ≦ β
≦ 17 at%, 41 at% ≦ γ <63 at%, 24 at% ≦ δ ≦
It is preferable to use a recording film of an Au-In-Sb-Te alloy in which 36 at%, 99 at% ≦ α + β + γ + δ ≦ 100 at%. Alternatively, as in the invention according to claim 8, the values of α, β, γ, and δ are 0 atomic% <α ≦ 17 atomic%, 3 atomic% ≦ β <8 atomic%, and 51 atomic% ≦ γ ≦ 67 atomic%. Atomic%, 26 atomic% ≦ δ ≦ 33 atomic%, provided that 99 atomic% ≦ α + β + γ + δ
It is preferable to use a recording film of Au-In-Sb-Te alloy with ≤100 atomic%.

【0018】また、光記録媒体の諸性質に影響を与えな
い範囲で、請求項9に係る発明のように第2保護膜に窒
素を含ませることや、請求項10に係る発明のように、第
1保護膜及び第2保護膜の少なくとも一方に、更に酸素
を含ませることができる。また、請求項11に係る発明の
ように、第1保護膜中に含まれるSiO2のモル数が、当該
第1保護膜中のZnS のモル数の10%〜40%であることが
好ましい。
In addition, as long as the various properties of the optical recording medium are not affected, the second protective film may contain nitrogen as in the ninth aspect of the invention, At least one of the first protective film and the second protective film may further contain oxygen. Further, as in the invention according to claim 11, the mole number of SiO 2 contained in the first protective film is preferably 10% to 40% of the mole number of ZnS in the first protective film.

【0019】請求項12に係る発明の光記録媒体用保護膜
では、ZnS とSiO2の混合膜に窒素を含ませ、当該窒素の
濃度が膜厚方向において、一側が他側より高くなるよう
にしたことを特徴とする。具体的には、光記録媒体用保
護膜は、請求項13に係る発明のように、前記一側が、Zn
S とSiO2と窒素を含む混合膜からなり、前記他側が、Zn
S とSiO2の混合膜からなる複合膜としてもよく、請求項
14に係る発明のように、ZnS とSiO2と窒素を含む混合膜
であって、膜の前記他側の面の窒素濃度が略0原子%
で、前記一側に向けて窒素濃度が漸次増加するようにし
てもよい。
In the protective film for an optical recording medium according to the twelfth aspect, nitrogen is contained in the mixed film of ZnS and SiO 2 so that the concentration of the nitrogen is higher on one side than on the other side in the film thickness direction. It is characterized by having done. Specifically, the one side of the protective film for an optical recording medium is Zn, as in the invention according to claim 13.
It consists of a mixed film containing S, SiO 2 and nitrogen, and the other side is Zn
A composite film composed of a mixed film of S and SiO 2 may be used.
A mixed film containing ZnS, SiO 2 and nitrogen as in the invention according to claim 14, wherein the nitrogen concentration on the other surface of the film is approximately 0 atomic%.
Then, the nitrogen concentration may be gradually increased toward the one side.

【0020】かかる構成の保護膜を用いることで、光記
録媒体の繰り返し記録消去特性を向上させることができ
る。また、本発明の光記録媒体用保護膜では、光記録媒
体の諸性質に影響を与えない範囲で、請求項15に係る発
明のように、酸素を含ませるようにしてもよい。更に、
請求項16に係る発明のように、膜中に含まれるSiO2のモ
ル数が、ZnS のモル数の10%〜40%であることが好まし
い。
By using the protective film having such a configuration, the repetitive recording / erasing characteristics of the optical recording medium can be improved. Further, in the protective film for an optical recording medium of the present invention, oxygen may be contained as in the invention according to claim 15, as long as the properties of the optical recording medium are not affected. Furthermore,
As in the invention according to claim 16, the number of moles of SiO 2 contained in the film is preferably 10% to 40% of the number of moles of ZnS.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1〜図3は、本発明の光記録媒
体の好ましい構成例を示す断面図である。図1に示した
光記録媒体1は、基板2上に、第1保護膜3、記録膜
4、第2保護膜5、反射膜6、及びラッカー層7をこの
順で積膜した構造を有する、片面記録用の光記録媒体で
ある。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are cross-sectional views showing preferred examples of the configuration of the optical recording medium of the present invention. The optical recording medium 1 shown in FIG. 1 has a structure in which a first protective film 3, a recording film 4, a second protective film 5, a reflective film 6, and a lacquer layer 7 are laminated on a substrate 2 in this order. , An optical recording medium for single-sided recording.

【0022】また、図2に示した光記録媒体1は、基板
2上に、第1保護膜3、記録膜4、第2保護膜5、反射
膜6、ラッカー層7、接着層8、及び上部基板9をこの
順で積膜し、機械的強度を高めた片面記録用の光記録媒
体である。また、図3に示した光記録媒体1は、2枚の
基板2の上に、それぞれ第1保護膜3、記録膜4、第2
保護膜5、反射膜6、及びラッカー層7をこの順で積膜
し、この2枚の光記録媒体を、ラッカー層7側を対向さ
せて、接着層8を介して接合した両面記録用の光記録媒
体である。尚、図2及び図3に示した光記録媒体では、
ラッカー層7を省くこともできる。
The optical recording medium 1 shown in FIG. 2 has a first protective film 3, a recording film 4, a second protective film 5, a reflective film 6, a lacquer layer 7, an adhesive layer 8, This is an optical recording medium for single-sided recording in which the upper substrate 9 is laminated in this order to increase the mechanical strength. The optical recording medium 1 shown in FIG. 3 has a first protective film 3, a recording film 4, a second
The protective film 5, the reflective film 6, and the lacquer layer 7 are laminated in this order, and the two optical recording media are bonded together via an adhesive layer 8 with the lacquer layer 7 side facing to each other, for double-sided recording. An optical recording medium. Incidentally, in the optical recording medium shown in FIGS. 2 and 3,
The lacquer layer 7 can be omitted.

【0023】上記の図1〜図3に示す構成例の他にも、
C/N、消去比、変調度、記録感度、繰り返し記録消去
の寿命等の改善を目的として、図1〜図3に示した光記
録媒体1の基板2と第1保護膜3の間、及び/又は第1
保護膜3と記録膜4の間、及び又は記録膜4と第2保護
膜5の間、及び/又は第2保護膜5と反射膜6の間に、
1層或いは複数層の補助層を挿入した構成の光記録媒体
も可能である。この場合、補助層を構成する物質は誘電
体或いは金属等が好ましい。
In addition to the configuration examples shown in FIGS.
For the purpose of improving C / N, erasing ratio, modulation degree, recording sensitivity, life of repeated recording and erasing, etc., between the substrate 2 and the first protective film 3 of the optical recording medium 1 shown in FIGS. / Or first
Between the protective film 3 and the recording film 4, and / or between the recording film 4 and the second protective film 5, and / or between the second protective film 5 and the reflective film 6,
An optical recording medium having a configuration in which one or more auxiliary layers are inserted is also possible. In this case, the substance forming the auxiliary layer is preferably a dielectric or metal.

【0024】基板2には、用いる光ビームに対して透明
である材質、例えば、樹脂やガラス等から構成すること
が好ましく、特に、取り扱いが容易で安価であることか
ら、樹脂が好ましい。樹脂として具体的には例えば、ポ
リカーボネート樹脂、アクリル樹脂、エポキシ樹脂、A
BS樹脂等を用いることができる。基板の形状及び寸法
は特に限定されないが、通常、ディスク状であり、その
厚さは、通常、0.5 〜3mm程度、直径は40〜360 mm程度
である。また、基板の表面には、トラッキング用やアド
レス用等のために、グルーブ等の所定のパターンが必要
に応じて設けられる。
The substrate 2 is preferably made of a material that is transparent to the light beam to be used, for example, resin or glass, and is particularly preferably resin because it is easy to handle and inexpensive. Specific examples of the resin include polycarbonate resin, acrylic resin, epoxy resin, and A
BS resin or the like can be used. The shape and dimensions of the substrate are not particularly limited, but are usually disk-shaped, and the thickness is usually about 0.5 to 3 mm, and the diameter is about 40 to 360 mm. A predetermined pattern such as a groove is provided on the surface of the substrate for tracking, addressing, and the like as needed.

【0025】第1保護膜3及び第2保護膜5は、記録膜
4の結晶状態の変化に伴う反射率の変化を、第1保護膜
3と第2保護膜5との間での多重反射によって拡大し、
変調度(結晶状態と非晶質状態との反射率の差)を高め
る作用、並びに、記録時に、記録膜4に残った熱を熱伝
導により適度な速度で放出する作用を有する。第1保護
膜3は、ZnS とSiO2の混合膜に窒素(N)を含み、窒素濃
度が基板2側よりも記録膜4側の方が高くなるように形
成する。具体的には、例えば、前記基板側にZnS とSiO2
の混合膜を有し、前記記録膜側にZnS とSiO2と窒素を含
む混合膜を有する複合膜とするようにしたり、或いは、
ZnS とSiO2と窒素を含む混合膜で、当該混合膜の基板2
側の面の窒素濃度を略0原子%とし、基板2側から記録
膜4側に向けて窒素濃度を漸次増加させるようにする。
尚、濃度が漸次増加するとは、濃度が決して減少しない
(一定値に留まることはあってもよい)ことを意味す
る。また、第1保護膜3中に含まれるSiO2のモル数は、
ZnS のモル数の10%〜40%であることが好ましい。SiO2
のモル数が10%未満だと結晶粒径が大きくなり、膜の緻
密性が悪くなる。一方、40%を越えると混合膜の屈折率
が小さくなり、光学特性の観点から好ましくない。
The first protective film 3 and the second protective film 5 use the multiple reflection between the first protective film 3 and the second protective film 5 for the change in the reflectance accompanying the change in the crystal state of the recording film 4. Enlarged by
It has the effect of increasing the degree of modulation (the difference in the reflectance between the crystalline state and the amorphous state) and the effect of releasing the heat remaining in the recording film 4 at an appropriate rate by heat conduction during recording. The first protective film 3 is formed such that a mixed film of ZnS and SiO 2 contains nitrogen (N), and the nitrogen concentration is higher on the recording film 4 side than on the substrate 2 side. Specifically, for example, ZnS and SiO 2 are provided on the substrate side.
Or a composite film having a mixed film containing ZnS, SiO 2 and nitrogen on the recording film side, or
A mixed film containing ZnS, SiO 2 and nitrogen.
The nitrogen concentration on the side surface is set to approximately 0 atomic%, and the nitrogen concentration is gradually increased from the substrate 2 side toward the recording film 4 side.
Incidentally, the gradual increase in the concentration means that the concentration never decreases (it may remain at a constant value). Further, the number of moles of SiO 2 contained in the first protective film 3 is as follows:
It is preferably 10% to 40% of the number of moles of ZnS. SiO 2
If the number of moles is less than 10%, the crystal grain size increases, and the denseness of the film deteriorates. On the other hand, if it exceeds 40%, the refractive index of the mixed film becomes small, which is not preferable from the viewpoint of optical characteristics.

【0026】ZnS とSiO2のモル比が上記範囲で与えられ
るZnS とSiO2の混合膜は、光記録媒体用に通常用いられ
る350nm 〜850nm の波長の光ビームに対して略透明であ
り、記録膜物質よりも高融点で、しかも適度な硬度と柔
軟性を持つ等、光記録媒体用保護膜として優れた性能を
持っている。しかしながら、記録・消去を行う際の加
熱、冷却の繰り返しに伴い保護膜が劣化したり、保護膜
中の元素(特にイオウ)が記録膜中に拡散して記録膜の
性能を劣化させる等のため、光記録媒体の記録消去の繰
り返し回数には限界があった。特に、上記保護膜に関連
する記録消去繰り返し寿命の限界は、Ag-In-Sb-Te 合金
やAu-In-Sb-Te 合金等のカルコパイライト型化合物を記
録膜に用いた時に顕著であり、ZnS とSiO2とからなる保
護膜を、Ge-Sb-Te合金からなる記録膜と組み合わせて用
いた場合には既に10万回程度の記録消去の繰り返しが可
能であるのに対し、カルコパイライト型化合物からなる
記録膜と組み合わせて用いた場合には繰り返し寿命は一
千回〜数万回に留まっていた。加熱、冷却の繰り返しに
伴う保護膜の劣化は記録膜の種類に依らず生じているは
ずであるから、Ge-Sb-Te合金とカルコパイライト型化合
物との繰り返し寿命差は、Ge-Sb-Te合金からなる記録膜
が保護膜中の元素(特にイオウ)との拡散混合によって
あまり劣化しないのに対し、カルコパイライト型化合物
からなる記録膜は大きく劣化するためであると考えられ
る。
A mixed film of ZnS and SiO 2 in which the molar ratio of ZnS and SiO 2 is given in the above range is substantially transparent to a light beam having a wavelength of 350 nm to 850 nm usually used for an optical recording medium. It has an excellent performance as a protective film for optical recording media, such as having a higher melting point than the film material and having a suitable hardness and flexibility. However, the protection film deteriorates due to repeated heating and cooling during recording and erasing, and the elements (especially sulfur) in the protection film diffuse into the recording film to deteriorate the performance of the recording film. However, the number of repetitions of recording and erasing of the optical recording medium is limited. In particular, the limit of the recording and erasing repetition life related to the protective film is remarkable when a chalcopyrite-type compound such as an Ag-In-Sb-Te alloy or an Au-In-Sb-Te alloy is used for the recording film. When a protective film composed of ZnS and SiO 2 is used in combination with a recording film composed of a Ge-Sb-Te alloy, recording and erasing can be repeated about 100,000 times, whereas a chalcopyrite type When used in combination with a recording film made of a compound, the repetition life was limited to 1,000 to tens of thousands of times. Since the deterioration of the protective film due to repeated heating and cooling should have occurred regardless of the type of recording film, the difference in the repeated life between the Ge-Sb-Te alloy and the chalcopyrite-type compound was Ge-Sb-Te It is considered that the recording film made of an alloy does not deteriorate much due to diffusion mixing with the element (especially, sulfur) in the protective film, whereas the recording film made of a chalcopyrite-type compound deteriorates greatly.

【0027】従来、このような問題を解決するために、
ZnS とSiO2の混合膜に窒素を含ませ、欠陥の少ない緻密
な膜とする方法が考えられていた。しかしながら、窒素
を第1保護膜3全体に均一に含ませても、第1保護膜3
中の元素の記録膜への拡散を阻止する効果は低い。しか
も、窒素を第1保護膜3全体に均一に含ませると膜全体
が硬くなり、かえって膜の柔軟性が減少する。このた
め、記録膜4の加熱・冷却に伴う膨張と収縮の繰り返し
に対して第1保護膜3の耐久性が減少する。
Conventionally, in order to solve such a problem,
A method has been considered in which nitrogen is contained in a mixed film of ZnS and SiO 2 to form a dense film with few defects. However, even if nitrogen is uniformly contained in the entire first protective film 3, the first protective film 3
The effect of preventing the diffusion of the elements in the recording film is low. In addition, when nitrogen is uniformly contained in the entire first protective film 3, the entire film becomes hard, and the flexibility of the film is rather reduced. For this reason, the durability of the first protective film 3 is reduced with respect to the repetition of expansion and contraction caused by heating and cooling of the recording film 4.

【0028】従って、本実施形態では第1保護膜3中に
膜厚方向の窒素濃度分布を導入して、第1保護膜3に硬
い部分と柔軟な部分を設け、記録消去時の膨張と収縮に
伴う第1保護膜3の劣化を防止した。しかも、第1保護
膜3中の元素(特にイオウ)の記録膜4への拡散を阻止
するため、記録膜4に近い方の窒素濃度が高くなるよう
にした。このような窒素濃度分布を設けたことにより、
イオウ等の拡散が効果的に防止され、Ag-In-Sb-Te 合金
やAu-In-Sb-Te 合金等のカルコパイライト型化合物から
なる記録膜4を用いた光記録媒体1において、特に顕著
に繰り返し寿命の向上を実現できる。
Therefore, in the present embodiment, a nitrogen concentration distribution in the film thickness direction is introduced into the first protective film 3 so that the first protective film 3 is provided with a hard portion and a flexible portion, so that the first protective film 3 expands and contracts during recording / erasing. The deterioration of the first protective film 3 due to the above is prevented. In addition, in order to prevent diffusion of elements (especially sulfur) in the first protective film 3 into the recording film 4, the nitrogen concentration near the recording film 4 was increased. By providing such a nitrogen concentration distribution,
The diffusion of sulfur and the like is effectively prevented, and is particularly remarkable in the optical recording medium 1 using the recording film 4 made of a chalcopyrite-type compound such as an Ag-In-Sb-Te alloy or an Au-In-Sb-Te alloy. It is possible to realize an improvement of the life expectancy repeatedly.

【0029】このような第1保護膜3は、例えば次のよ
うな2通りの方法で作製することができる。第1の方法
は、まず、ZnS-SiO2ターゲットをArガス雰囲気中でスパ
ッタし、基板2上にZnS とSiO2の混合膜を適当な厚さで
形成する。その後、ArガスにN2ガスを徐々に添加して、
N2ガスの分圧を少しずつ増加させながらスパッタ(反応
性スパッタ)を継続し、ZnS-SiO2-Nの混合膜を形成す
る。このとき、N2ガスの分圧を増加させるやり方は、一
定比率で単調に増加させてもよいし、ステップ的に増加
させてもよい。第1保護膜3中の窒素濃度分布は、N2
ス分圧の増加のさせ方によって決定される。第2の方法
は、第1の方法と同じ方法で基板2上にZnS とSiO2の混
合膜を形成後、基板2を一定濃度のAr+N2ガス雰囲気を
有する別のチャンバーに移し、ZnS-SiO2ターゲットを用
いて反応性スパッタを行いZnS-SiO2-Nの混合膜を形成す
る。更に、必要に応じて、N2ガス濃度のより高いAr+N2
ガス雰囲気を有するチャンバーに、基板2を必要回数移
しかえながら反応性スパッタを続け、多層膜状に窒素の
濃度の増えたZnS-SiO2-Nの混合膜を作製する。上記2つ
の方法共に、雰囲気ガス中のN2ガス分圧は0.01Pa以上0.
7Pa 以下であることが好ましい。これより小さいと、第
1保護膜3への窒素混合の効果が現れない。また、これ
より大きいと成膜効率が低下する。
The first protective film 3 can be manufactured by, for example, the following two methods. In the first method, first, a ZnS—SiO 2 target is sputtered in an Ar gas atmosphere to form a mixed film of ZnS and SiO 2 on the substrate 2 with an appropriate thickness. After that, gradually add N 2 gas to Ar gas,
Sputtering (reactive sputtering) is continued while gradually increasing the partial pressure of the N 2 gas to form a ZnS—SiO 2 —N mixed film. At this time, the method of increasing the partial pressure of the N 2 gas may be a monotonous increase at a fixed ratio or a stepwise increase. The nitrogen concentration distribution in the first protective film 3 is determined by how to increase the partial pressure of N 2 gas. In the second method, after a mixed film of ZnS and SiO 2 is formed on the substrate 2 in the same manner as the first method, the substrate 2 is transferred to another chamber having a constant concentration of Ar + N 2 gas atmosphere, and the ZnS-SiO 2 Reactive sputtering is performed using two targets to form a ZnS—SiO 2 —N mixed film. Further, if necessary, Ar + N 2 having a higher N 2 gas concentration may be used.
Reactive sputtering is continued while the substrate 2 is moved to a chamber having a gas atmosphere a required number of times, and a ZnS—SiO 2 —N mixed film having an increased nitrogen concentration is formed into a multilayer film. In both of the above two methods, the partial pressure of N 2 gas in the atmosphere gas is 0.01 Pa or more.
It is preferably at most 7 Pa. If it is smaller than this, the effect of mixing nitrogen into the first protective film 3 will not be exhibited. On the other hand, if it is larger than this, the film forming efficiency is reduced.

【0030】第1保護膜3を形成するには、この他に
も、上述の方法を応用しながら、真空蒸着法、プラズマ
CVD 法、光CVD 法、電子ビーム蒸着法等の気相成長法に
より形成してもよい。尚、第1保護膜3中には、影響の
少ない範囲内で、酸素、水素、炭素、フッ素等の他の元
素を含めることもできる。高い変調度を得るという光学
特性の観点からは、第1保護膜3の厚さは50〜300 nmで
あることが好ましい。更に、第1保護膜3中の窒素を含
まない部分の厚さは少なくとも30nm以上であることが好
ましい。これより薄いと膜の柔軟性が減少し、膨張と収
縮の繰り返しに対する膜の耐久性が低下する。
In order to form the first protective film 3, in addition to the above methods, a vacuum evaporation method, a plasma
It may be formed by a vapor phase growth method such as a CVD method, a photo CVD method, and an electron beam evaporation method. The first protective film 3 may contain other elements such as oxygen, hydrogen, carbon, and fluorine as far as the influence is small. From the viewpoint of the optical characteristics of obtaining a high degree of modulation, the thickness of the first protective film 3 is preferably 50 to 300 nm. Further, the thickness of the portion of the first protective film 3 not containing nitrogen is preferably at least 30 nm or more. If the thickness is smaller than this, the flexibility of the film decreases, and the durability of the film to repeated expansion and contraction decreases.

【0031】第2保護膜5は、ZnS とSiO2とを含む混合
膜である。このとき、第1保護膜3におけるのと同じ理
由から、第2保護膜5中に含まれるSiO2のモル数は、Zn
S のモル数の10%〜40%であることが好ましい。第2保
護膜5は、スパッタ法、真空蒸着法、プラズマCVD 法、
光CVD 法、電子ビーム蒸着法等の気相成長法により形成
できる。この第2保護膜5には、性能の大きな低下をも
たらさない範囲内で、窒素、酸素、水素、炭素、フッ素
等の他の元素を含めることもできる。
The second protective film 5 is a mixed film containing ZnS and SiO 2 . At this time, for the same reason as in the first protective film 3, the number of moles of SiO 2 contained in the second protective film 5 is Zn
Preferably, it is 10% to 40% of the number of moles of S 2. The second protective film 5 is formed by a sputtering method, a vacuum evaporation method, a plasma CVD method,
It can be formed by a vapor phase growth method such as a photo CVD method and an electron beam evaporation method. The second protective film 5 may include other elements such as nitrogen, oxygen, hydrogen, carbon, and fluorine, as long as the performance is not significantly reduced.

【0032】第2保護膜5に、第1保護膜3で用いたよ
うな窒素濃度分布を有するZnS-SiO2-Nの混合膜を用いて
も、繰り返し記録消去特性の大きな向上は期待できな
い。なぜならば、第2保護膜5は高い放熱作用を持つ反
射膜6と接しているため、第1保護膜3に比べてあまり
高温にならず、従って、もともと第2保護膜5から記録
膜4への元素(特にイオウ)の拡散はそれほど頻繁には
生じないためである。勿論、第2保護膜5に第1保護膜
3で用いたZnS-SiO2-Nの混合膜を用いてもディスク特性
が低下することはないが、生産工程が複雑になるためメ
リットは少ない。
Even if a ZnS—SiO 2 —N mixed film having a nitrogen concentration distribution as used in the first protective film 3 is used for the second protective film 5, a large improvement in the repetitive recording / erasing characteristics cannot be expected. Because the second protective film 5 is in contact with the reflective film 6 having a high heat dissipation effect, the temperature does not become much higher than that of the first protective film 3, and therefore, the second protective film 5 originally moves from the second protective film 5 to the recording film 4. This is because diffusion of the element (particularly sulfur) does not occur so frequently. Of course, the disk characteristics using a mixed film of the first protective layer 3 with ZnS-SiO 2 -N used in the second protective film 5 is not reduced, the benefits for the production process becomes complicated less.

【0033】高い変調度を得るという光学特性の観点か
らは、第2保護膜5の厚さは10〜60nm又は100 〜250nm
であることが好ましい。熱的には、第2保護膜5の厚さ
が薄いと、記録膜4と反射膜6の間を断熱する効果が小
さくなり、記録時に記録膜4に蓄熱された熱は高い放熱
作用を持つ反射膜6に速やかに散逸する。従って、10〜
60nm程度の薄い第2保護膜5を持つ光記録媒体1で記録
並びに消去を実現するためには、記録膜材料がレーザー
光による加熱に対し高い感度を持つ必要がある。
From the viewpoint of the optical characteristics of obtaining a high degree of modulation, the thickness of the second protective film 5 is 10 to 60 nm or 100 to 250 nm.
It is preferred that Thermally, when the thickness of the second protective film 5 is small, the effect of insulating the space between the recording film 4 and the reflective film 6 is reduced, and the heat stored in the recording film 4 during recording has a high heat radiation effect. It quickly dissipates in the reflection film 6. Therefore, 10 ~
In order to realize recording and erasing on the optical recording medium 1 having the second protective film 5 as thin as about 60 nm, the recording film material needs to have high sensitivity to heating by laser light.

【0034】従来、Ge-Sb-Te等のカルコゲン系記録材料
を用いた光記録媒体では、記録膜材料が十分な感度をも
っていないために、第2保護膜5の厚さを100 〜250 nm
とした構造をとっていた。一方、Au-In-Sb-Te 系合金並
びにAg-In-Sb-Te 系合金の記録膜材料は、レーザー光に
よる加熱に対し高い感度をもつため、それらを記録膜4
に用いた光記録媒体においては、第2保護膜5の厚さを
10〜60nmとすることができる。この構造では、記録時の
記録膜4の冷却速度が速くなる急冷型となるため、記録
マークのエッジが明瞭となって記録密度の高密度化が可
能であり、しかも、ジッターが低くなるという利点があ
る。更に、膜厚が薄いので第2保護膜5をスパッタ等に
よって作製する時間を短縮でき、生産性の向上につなが
る。
Conventionally, in an optical recording medium using a chalcogen-based recording material such as Ge-Sb-Te, the thickness of the second protective film 5 is set to 100 to 250 nm because the recording film material does not have sufficient sensitivity.
The structure was taken. On the other hand, Au-In-Sb-Te alloy and Ag-In-Sb-Te alloy recording film materials have high sensitivity to heating by laser light.
In the optical recording medium used for the above, the thickness of the second protective film 5 is
It can be 10 to 60 nm. This structure is of a quenching type in which the cooling rate of the recording film 4 at the time of recording is high, so that the edges of the recording marks become clear, the recording density can be increased, and the jitter is reduced. There is. Further, since the film thickness is small, the time for forming the second protective film 5 by sputtering or the like can be reduced, which leads to an improvement in productivity.

【0035】記録膜4には、Ge-Sb-Te合金、Pd-Ge-Sb-T
e 合金等のカルコゲン系化合物を用いることもできる
が、上述したような理由から、Au-In-Sb-Te 合金、Ag-I
n-Sb-Te 合金、Ag-In-Sb-Te-V 合金、Cu-In-Sb-Te 合
金、Pd-In-Sb-Te 合金等のカルコパイライト系化合物を
用いることが好ましい。しかも、第1保護膜をZnS-SiO2
-N複合膜にした効果は、カルコパイライト系化合物を記
録膜に用いた時に顕著に現れ、記録消去の繰り返し性能
の顕著な向上が得られる。記録膜4の厚さは特に限定さ
れないが、高反射率と高変調度(記録状態と未記録状態
との反射率の差が大きいこと)を実現するために、通
常、10〜200 nm、特に15〜150 nmとすることが好まし
い。また、記録膜4の形成方法は特に限定されないが、
スパッタ法や真空蒸着法、プラズマCVD 法、光CVD 法、
電子ビーム蒸着法等の気相成長法により形成することが
好ましい。
The recording film 4 is made of a Ge—Sb—Te alloy, Pd—Ge—Sb—T
e alloys and other chalcogen-based compounds can also be used, but Au-In-Sb-Te alloys and Ag-I
It is preferable to use chalcopyrite-based compounds such as an n-Sb-Te alloy, an Ag-In-Sb-Te-V alloy, a Cu-In-Sb-Te alloy, and a Pd-In-Sb-Te alloy. Moreover, the first protective film is made of ZnS-SiO 2
The effect of the -N composite film is remarkable when the chalcopyrite-based compound is used for the recording film, and a remarkable improvement in the recording / erasing repetition performance can be obtained. Although the thickness of the recording film 4 is not particularly limited, it is usually 10 to 200 nm, in particular, in order to realize a high reflectance and a high degree of modulation (a large difference in reflectance between a recorded state and an unrecorded state). It is preferably 15 to 150 nm. The method for forming the recording film 4 is not particularly limited,
Sputtering method, vacuum evaporation method, plasma CVD method, light CVD method,
It is preferably formed by a vapor phase growth method such as an electron beam evaporation method.

【0036】記録膜4にAu-In-Sb-Te 合金を用いる場合
には、それぞれα、β、γ、及びδで表されるAu、In、
Sb、及びTeの組成比率が、0原子%<α≦25原子%、3
原子%≦β≦18原子%、30原子%≦γ≦67原子%、24原
子%≦δ≦45原子%(ただし、99原子%≦α+β+γ+
δ≦100 原子%)であることが好ましい。特に、光ビー
ムに対する記録膜の記録消去時の相対速度が1〜3m/s
で使用される光記録媒体においては、前記α及びβが、
0原子%<α≦25原子%、7原子%≦β≦18原子%であ
り、前記γ及びδが、30原子%≦γ<45原子%の時には
32原子%≦δ≦45原子%、45原子%≦γ<49原子%の時
には30原子%≦δ≦45原子%、49原子%≦γ≦55原子%
の時には35原子%≦δ≦45原子%、ただし、99原子%≦
α+β+γ+δ≦100 原子%であることが好ましい。ま
た、光ビームに対する記録膜の記録消去時の相対速度が
5〜7m/s で使用される光記録媒体においては、前記
α、β、γ、及びδが、1原子%≦α≦16原子%、8原
子%≦β≦17原子%、41原子%≦γ<63原子%、24原子
%≦δ≦36原子%、ただし、99原子%≦α+β+γ+δ
≦100 原子%であるか、前記α、β、γ、及びδが、0
原子%<α≦17原子%、3原子%≦β<8原子%、51原
子%≦γ≦67原子%、26原子%≦δ≦33原子%、ただ
し、99原子%≦α+β+γ+δ≦100 原子%であること
が好ましい。上記の組成範囲外では、良好な繰り返し記
録消去特性が得られなくなる。
When an Au—In—Sb—Te alloy is used for the recording film 4, Au, In, and α represented by α, β, γ, and δ, respectively.
When the composition ratio of Sb and Te is 0 atomic% <α ≦ 25 atomic%, 3
Atomic% ≦ β ≦ 18 atomic%, 30 atomic% ≦ γ ≦ 67 atomic%, 24 atomic% ≦ δ ≦ 45 atomic% (however, 99 atomic% ≦ α + β + γ +
δ ≦ 100 atomic%). In particular, the relative speed at the time of recording / erasing of the recording film with respect to the light beam is 1-3 m / s
In the optical recording medium used in the above, α and β are:
0 atomic% <α ≦ 25 atomic%, 7 atomic% ≦ β ≦ 18 atomic%, and when γ and δ satisfy 30 atomic% ≦ γ <45 atomic%
32 atomic% ≦ δ ≦ 45 atomic%, 45 atomic% ≦ γ <49 atomic%, 30 atomic% ≦ δ ≦ 45 atomic%, 49 atomic% ≦ γ ≦ 55 atomic%
In the case of, 35 atomic% ≤ δ ≤ 45 atomic%, provided that 99 atomic% ≤
It is preferable that α + β + γ + δ ≦ 100 atomic%. In an optical recording medium used at a relative speed of 5-7 m / s at the time of recording and erasing of the recording film with respect to the light beam, α, β, γ, and δ are such that 1 atomic% ≦ α ≦ 16 atomic% , 8 atomic% ≦ β ≦ 17 atomic%, 41 atomic% ≦ γ <63 atomic%, 24 atomic% ≦ δ ≦ 36 atomic%, provided that 99 atomic% ≦ α + β + γ + δ
≦ 100 at%, or when α, β, γ, and δ are 0
Atomic% <α ≦ 17 atomic%, 3 atomic% ≦ β <8 atomic%, 51 atomic% ≦ γ ≦ 67 atomic%, 26 atomic% ≦ δ ≦ 33 atomic%, provided that 99 atomic% ≦ α + β + γ + δ ≦ 100 atomic% It is preferred that If the composition is out of the above range, good repetitive recording / erasing characteristics cannot be obtained.

【0037】記録膜4の組成は、X線マイクロアナライ
ザーにより測定するのが簡便であり、本実施形態でもこ
の方法によって組成を決定している。その他にも蛍光X
線、ラザフォード後方散乱、オージェ電子分光、発光分
析等の分析法が考えられるが、それらを用いる場合に
は、X線マイクロアナライザーで得られる値との校正を
する必要がある。
The composition of the recording film 4 is easily measured by an X-ray microanalyzer, and the composition is determined by this method also in the present embodiment. In addition, fluorescent X
Analytical methods such as X-ray, Rutherford backscattering, Auger electron spectroscopy, and emission analysis are conceivable, but when using them, it is necessary to calibrate with a value obtained by an X-ray microanalyzer.

【0038】反射膜6の材質は特に限定されないが、通
常、Al、Au、Ag、Pt、Cu等の単体或いはこれらの1種以
上を含む合金等の高反射率金属、或いは、Si、窒化Si、
炭化Si等の高反射率半導体から構成すればよい。反射膜
6の厚さは、30〜300 nmとすることが好ましい。厚さが
30nm未満であると十分な反射率が得難くなるし、記録時
に、記録膜4に残った熱を放出する効果が低減する。ま
た、300 nmを越えても反射率や熱放出効果の顕著な向上
は見られない。反射膜6はスパッタ法や蒸着法等の気相
成長法により形成することが好ましい。
Although the material of the reflection film 6 is not particularly limited, it is usually a high-reflectivity metal such as Al, Au, Ag, Pt, Cu or the like or an alloy containing at least one of these, or Si, Si nitride. ,
What is necessary is just to comprise from high-reflectivity semiconductors, such as SiC. It is preferable that the thickness of the reflection film 6 be 30 to 300 nm. Thickness
If it is less than 30 nm, it becomes difficult to obtain a sufficient reflectance, and the effect of releasing the heat remaining on the recording film 4 during recording is reduced. Further, even if it exceeds 300 nm, no remarkable improvement in the reflectance and the heat emission effect is observed. The reflective film 6 is preferably formed by a vapor phase growth method such as a sputtering method or a vapor deposition method.

【0039】ラッカー層7は、耐擦傷性や耐腐食性の向
上のために設けられる。このラッカー層7は種々の有機
系の物質から構成されることが好ましいが、特に、放射
線硬化型化合物やその組成物を、電子線、紫外線等の放
射線により硬化させた物質から構成されることが好まし
い。ラッカー層7の厚さは、通常、0.1 〜100 μm 程度
であり、スピンコート、グラビア塗布、スプレーコート
等、通常の方法により形成すればよい。
The lacquer layer 7 is provided for improving scratch resistance and corrosion resistance. The lacquer layer 7 is preferably composed of various organic substances, but is particularly preferably composed of a substance obtained by curing a radiation-curable compound or a composition thereof by radiation such as an electron beam or ultraviolet rays. preferable. The thickness of the lacquer layer 7 is usually about 0.1 to 100 μm, and may be formed by a usual method such as spin coating, gravure coating, spray coating and the like.

【0040】接着層8は、種々の有機系の物質から構成
されることが望ましいが、熱可塑性物質、粘着性物質、
放射線硬化型化合物やその組成物を電子線や放射線によ
り硬化させた物質から構成されることが好ましい。接着
層8の厚さは、通常、0.1 〜100μm 程度であり、接着
層8を構成する物質により選ばれる最適な方法、例え
ば、スピンコート、グラビア塗布、スプレーコート、ロ
ールコート等により形成すればよい。
The adhesive layer 8 is desirably made of various organic materials, but is preferably made of a thermoplastic material, a sticky material,
The radiation-curable compound or the composition thereof is preferably composed of a substance cured by an electron beam or radiation. The thickness of the adhesive layer 8 is usually about 0.1 to 100 μm, and may be formed by an optimum method selected according to the material constituting the adhesive layer 8, for example, spin coating, gravure coating, spray coating, roll coating, or the like. .

【0041】また、上部基板9は、上述した基板2と同
様の樹脂で構成することができる。一般に、相変化型光
記録媒体の作製時には、記録膜4は非晶質状態であり、
オーバーライト可能な光記録媒体とするためには何らか
の方法で記録膜4を結晶化(初期化)する必要が生じ
る。光記録媒体1の初期化方法としては、半導体レーザ
ーによる方法、Arレーザーによる方法、フラッシュラン
プによる方法等種々の方法を用いることができる。 [実施例]次に、本発明の具体的実施例を示し、本発明
をさらに詳細に説明するが、これら実施例は本発明を何
ら制限するものではない。
The upper substrate 9 can be made of the same resin as the substrate 2 described above. Generally, at the time of manufacturing a phase-change optical recording medium, the recording film 4 is in an amorphous state,
In order to obtain an overwritable optical recording medium, it is necessary to crystallize (initialize) the recording film 4 by some method. As a method for initializing the optical recording medium 1, various methods such as a method using a semiconductor laser, a method using an Ar laser, and a method using a flash lamp can be used. [Examples] Next, the present invention will be described in more detail with reference to specific examples of the present invention. However, these examples do not limit the present invention in any way.

【0042】(実施例1〜4)直径120mm 、厚さ1.2mm
のグルーブ付きポリカーボネート基板2の上に、第1保
護膜3、記録膜4、第2保護膜5、反射膜6、及びラッ
カー層7をこの順で形成し、図1の構成を有する光記録
媒体1とした。基板2のグルーブは、トラックピッチ1.
6 μm 、幅0.5 μm 、深さ50nmとした。
(Examples 1 to 4) 120 mm in diameter and 1.2 mm in thickness
An optical recording medium having the configuration of FIG. 1 is formed by forming a first protective film 3, a recording film 4, a second protective film 5, a reflective film 6, and a lacquer layer 7 in this order on a grooved polycarbonate substrate 2. It was set to 1. The groove of the substrate 2 has a track pitch of 1.
6 μm, width 0.5 μm, and depth 50 nm.

【0043】第1保護膜3は、ZnS-SiO2(SiO2:20 mol
%)をターゲットとして用い、スパッタ法により以下の
方法で作製した。まず、Arガス雰囲気中でRFスパッタ
法によりZnS-SiO2膜を形成し、その厚みが約190nm に達
した時点で、ArとN2の混合ガスを雰囲気ガスとして注入
しRFスパッタ(RF反応性スパッタ)を継続し、全厚
み197nm の複合膜を形成した。このとき注入した混合ガ
ス中のArガスとN2ガスの分圧はそれぞれ0.36Pa、0.18Pa
であった。
The first protective film 3 is made of ZnS-SiO 2 (SiO 2 : 20 mol
%) As a target, and was prepared by the following method by a sputtering method. First, a ZnS-SiO 2 film is formed by an RF sputtering method in an Ar gas atmosphere, and when the thickness reaches about 190 nm, a mixed gas of Ar and N 2 is injected as an atmosphere gas to perform RF sputtering (RF reactivity). The sputtering was continued to form a composite film having a total thickness of 197 nm. The partial pressures of the Ar gas and the N 2 gas in the mixed gas injected at this time are 0.36 Pa and 0.18 Pa, respectively.
Met.

【0044】記録膜4は、In-Sb-Teターゲット上にIn、
Sb、Te、Ag、Cu、Pd、V の各チップを載せて組成を変化
させる方法で、DCスパッタ法により作製した。記録膜
4の厚さは20nmとした。記録膜4の組成は、フィリップ
ス社製EDAX装置システムを用い、X線マイクロアナ
ライザーにより測定した。即ち、ポリカーボネート平板
上に膜厚が約50nmの記録膜4をスパッタ法により作製
後、X線マイクロアナライザーにより試料のエネルギー
スペクトルを検出した。検出されたエネルギースペクト
ルからポリカーボネート平板等のバックグラウンドを除
去し、記録膜4のみのエネルギースペクトルを導出し
た。このエネルギースペクトルから記録膜4の構成元素
の定量を行い、記録膜4の組成とした。
The recording film 4 is composed of an In-Sb-Te target on which In,
Each of Sb, Te, Ag, Cu, Pd, and V chips was mounted thereon, and the composition was changed by a DC sputtering method. The thickness of the recording film 4 was 20 nm. The composition of the recording film 4 was measured by an X-ray microanalyzer using an EDAX device system manufactured by Philips. That is, a recording film 4 having a thickness of about 50 nm was formed on a polycarbonate flat plate by a sputtering method, and the energy spectrum of the sample was detected by an X-ray microanalyzer. The background of the polycarbonate flat plate and the like was removed from the detected energy spectrum, and the energy spectrum of only the recording film 4 was derived. The constituent elements of the recording film 4 were quantified from this energy spectrum, and the composition of the recording film 4 was determined.

【0045】第2保護膜5は、ZnS-SiO2(SiO2:20 mol
%)をターゲットとし、Arガス雰囲気中でRFスパッタ
法により作製した。第2保護膜5の厚さは20nmとした。
反射膜6は、Alをターゲットとし、DCスパッタ法によ
り作製した。厚さは75nmとした。ラッカー層7は、紫外
線硬化型樹脂をスピンコート法により塗布した後、紫外
線照射により硬化して形成した。硬化後のラッカー層7
の厚みは10μm であった。
The second protective film 5 is made of ZnS-SiO 2 (SiO 2 : 20 mol
%) As a target by RF sputtering in an Ar gas atmosphere. The thickness of the second protective film 5 was 20 nm.
The reflection film 6 was formed by a DC sputtering method using Al as a target. The thickness was 75 nm. The lacquer layer 7 was formed by applying an ultraviolet curable resin by a spin coating method and then curing the applied resin by irradiation with ultraviolet light. Lacquer layer 7 after curing
Had a thickness of 10 μm.

【0046】光記録媒体1作製後の記録膜4は非晶質で
あった。このため、波長 810 nm の大出力半導体レーザ
ー光により記録膜4を十分に結晶化させ初期化状態とし
た。光記録媒体1の評価は、波長780nm の半導体レーザ
ー光をNA=0.5 の対物レンズを通して基板2側から照射
し、記録膜4の表面で直径約1μm のスポット径に絞り
込むことにより行った。記録時には、照射するレーザー
パルスをマルチパルス化して記録を行った。記録パワー
は13mW、消去パワーは6mW、マルチパルスのボトムパワ
ーは1mW、再生パワーは1mWとした。
The recording film 4 after the production of the optical recording medium 1 was amorphous. For this reason, the recording film 4 was sufficiently crystallized by a high-power semiconductor laser beam having a wavelength of 810 nm to be in an initialized state. The evaluation of the optical recording medium 1 was performed by irradiating a semiconductor laser beam having a wavelength of 780 nm from the substrate 2 side through an objective lens having an NA of 0.5 and narrowing the surface of the recording film 4 to a spot diameter of about 1 μm. At the time of recording, recording was performed by changing the irradiation laser pulse to multi-pulse. The recording power was 13 mW, the erasing power was 6 mW, the bottom power of the multi-pulse was 1 mW, and the reproducing power was 1 mW.

【0047】ディスク特性としては、繰り返し記録消去
の寿命を次のような方法で測定した。即ち、繰り返し記
録消去特性は、線速2.8m/sでEFM変調方式のランダム
信号を繰り返しオーバーライトし、所定回数のオーバー
ライト毎に線速1.4m/sで再生を行い、3T信号のジッタ
ーを測定した。ジッターが35nsを越える回数を繰り返し
記録消去の寿命とし、例えば「1,000 〜10,000」等のよ
うに一定の範囲で示した。これは製造条件や評価条件に
より、表示した範囲内で特性が変わり得ることを示す。
As the disk characteristics, the life of repeated recording and erasing was measured by the following method. That is, the repetitive recording and erasing characteristics are as follows: a random signal of the EFM modulation method is repeatedly overwritten at a linear velocity of 2.8 m / s, reproduced at a linear velocity of 1.4 m / s for each predetermined number of overwrites, and the jitter of the 3T signal is reduced It was measured. The number of times that jitter exceeds 35 ns is defined as the life of repeated recording and erasing, and is shown in a certain range, for example, "1,000 to 10,000". This indicates that the characteristics can be changed within the indicated range depending on manufacturing conditions and evaluation conditions.

【0048】このような方法で作製した実施例1〜4の
光記録媒体の記録膜組成とディスク特性を表1に示す。 (比較例1〜4)第1保護膜3を、途中でArとN2の混合
ガスを注入せずに形成した以外は実施例1〜4と同様に
して光記録媒体を作製した。このとき、第1保護膜3は
厚さ197nm のZnS-SiO2(SiO2:20 mol%)混合膜となっ
た。このような方法で作製した比較例1〜4の光記録媒
体の記録膜組成とディスク特性を表1に示す。
Table 1 shows the composition of the recording film and the disc characteristics of the optical recording media of Examples 1 to 4 produced by such a method. (Comparative Example 1-4) The first protective layer 3, an optical recording medium was prepared the way except for forming without injecting a mixed gas of Ar and N 2 in the same manner as in Example 1-4. At this time, the first protection film 3 was a ZnS-SiO 2 (SiO 2 : 20 mol%) mixed film having a thickness of 197 nm. Table 1 shows the recording film composition and the disc characteristics of the optical recording media of Comparative Examples 1 to 4 manufactured by such a method.

【0049】[0049]

【表1】 [Table 1]

【0050】実施例1〜4の光記録媒体は、それぞれ、
比較例1〜4の中の対応する記録膜組成の光記録媒体に
比べ、繰り返し記録消去特性が向上していることがわか
る。これにより、第1保護膜3に窒素を含ませること
で、光記録媒体の記録消去特性が格段に向上することが
明白である。 (実施例5)記録膜4を、In-Sb-Teターゲット上にIn、
Sb、Te、Auの各チップを載せてDCスパッタ法により作
製した以外は、実施例1と同様にして光記録媒体を作製
し、実施例5とした。
The optical recording media of Examples 1 to 4
It can be seen that the repetitive recording / erasing characteristics are improved as compared with the optical recording media of the corresponding recording film compositions in Comparative Examples 1 to 4. Thus, it is clear that the recording and erasing characteristics of the optical recording medium are significantly improved by including nitrogen in the first protective film 3. (Embodiment 5) The recording film 4 was formed on an In-Sb-Te target by using In,
An optical recording medium was manufactured in the same manner as in Example 1 except that each chip of Sb, Te, and Au was mounted and manufactured by DC sputtering.

【0051】(比較例5)記録膜4を、In-Sb-Teターゲ
ット上にIn、Sb、Te、Auの各チップを載せてDCスパッ
タ法により作製した以外は、比較例1と同様にして光記
録媒体を作製し、比較例5とした。このような方法で作
製した実施例5と比較例5の光記録媒体の記録膜組成と
ディスク特性を表2に示す。
(Comparative Example 5) A recording film 4 was produced in the same manner as in Comparative Example 1 except that each of In, Sb, Te, and Au chips was mounted on an In-Sb-Te target by DC sputtering. An optical recording medium was manufactured, and Comparative Example 5 was obtained. Table 2 shows the recording film compositions and disc characteristics of the optical recording media of Example 5 and Comparative Example 5 produced by such a method.

【0052】[0052]

【表2】 [Table 2]

【0053】この場合も、実施例5の光記録媒体は、比
較例5の光記録媒体に比べ、繰り返し記録消去特性が向
上していることがわかる。また、実施例5を表1の実施
例1〜4と比較すると、記録膜4にAu-In-Sb-Te 合金を
用いた場合に、特に記録消去特性の向上が顕著であるこ
とがわかる。 (実施例6)第1保護膜3を、以下の方法で作製した以
外は実施例5と同様にして光記録媒体を作製した。
Also in this case, it can be seen that the optical recording medium of Example 5 has improved repetitive recording / erasing characteristics as compared with the optical recording medium of Comparative Example 5. In addition, comparing Example 5 with Examples 1 to 4 in Table 1, it can be seen that when the Au—In—Sb—Te alloy is used for the recording film 4, the recording / erasing characteristics are particularly improved. (Example 6) An optical recording medium was produced in the same manner as in Example 5, except that the first protective film 3 was produced by the following method.

【0054】即ち、ZnS-SiO2(SiO2:20 mol%)をター
ゲットとし、Arガス雰囲気中でRFスパッタ法により18
0nm 厚のZnS-SiO2膜を基板2上に形成する。そのディス
クをArとN2の混合ガスを雰囲気ガスとして流すチャンバ
ーに移し、ZnS-SiO2(SiO2:20 mol%)をターゲットに
用いてRF反応性スパッタを行い、10nm厚のZnS-SiO2-N
膜を形成した。このときのArガスとN2ガスの分圧はそれ
ぞれ0.36Pa、0.18Paであった。
That is, ZnS—SiO 2 (SiO 2 : 20 mol%) was targeted and RF sputtering was performed in an Ar gas atmosphere.
A ZnS—SiO 2 film having a thickness of 0 nm is formed on the substrate 2. The disk was transferred to a chamber in which a mixed gas of Ar and N 2 was flowed as an atmospheric gas, and RF-reactive sputtering was performed using ZnS-SiO 2 (SiO 2 : 20 mol%) as a target to obtain a ZnS-SiO 2 having a thickness of 10 nm. -N
A film was formed. At this time, the partial pressures of the Ar gas and the N 2 gas were 0.36 Pa and 0.18 Pa, respectively.

【0055】(実施例7)第1保護膜3を、以下の方法
で作製した以外は実施例5と同様にして光記録媒体を作
製した。即ち、ZnS-SiO2(SiO2:20 mol%)をターゲッ
トとし、Arガス雰囲気中でRFスパッタ法により150nm
厚のZnS-SiO2膜を基板2上に形成する。そのディスクを
ArとN2の混合ガスを雰囲気ガスとして流すチャンバーに
移し、ZnS-SiO2(SiO2:20 mol%)をターゲットに用い
てRF反応性スパッタを行い、30nm厚のZnS-SiO2-N膜を
形成した。このときのArガスとN2ガスの分圧はそれぞれ
0.45Pa、0.09Paであった。更に、このディスクを異なる
濃度のArとN2の混合ガスを雰囲気ガスとして流すチャン
バーに移し、ZnS-SiO2(SiO2:20 mol%)をターゲット
に用いてRF反応性スパッタを行い、10nm厚のZnS-SiO2
-N膜を形成した。このときのArガスとN2ガスの分圧はそ
れぞれ0.36Pa、0.18Paであった。このようにして全厚19
0nmの複合膜を形成した。
(Example 7) An optical recording medium was produced in the same manner as in Example 5, except that the first protective film 3 was produced by the following method. That is, the target is ZnS-SiO 2 (SiO 2 : 20 mol%), and the target is 150 nm by RF sputtering in an Ar gas atmosphere.
A thick ZnS—SiO 2 film is formed on the substrate 2. That disk
Transfer to a chamber in which a mixed gas of Ar and N 2 flows as an atmospheric gas, perform RF reactive sputtering using ZnS-SiO 2 (SiO 2 : 20 mol%) as a target, and obtain a ZnS-SiO 2 -N film with a thickness of 30 nm. Was formed. At this time, the partial pressures of Ar gas and N 2 gas are respectively
It was 0.45 Pa and 0.09 Pa. Further, the disk was transferred to a chamber in which a mixed gas of Ar and N 2 having different concentrations was flowed as an atmospheric gas, and RF reactive sputtering was performed using ZnS-SiO 2 (SiO 2 : 20 mol%) as a target to obtain a 10 nm thick film. ZnS-SiO 2
An -N film was formed. At this time, the partial pressures of the Ar gas and the N 2 gas were 0.36 Pa and 0.18 Pa, respectively. In this way 19
A 0 nm composite film was formed.

【0056】(実施例8)第2保護膜5を、ZnS-SiO
2(SiO2:20 mol%)をターゲットとし、ArとN2の混合
ガス雰囲気中でRF反応性スパッタ法により作製し、厚
み20nmのZnS-SiO2-N膜とした以外は、実施例5と同様に
して光記録媒体を形成した。このときのArガスとN2ガス
の分圧はそれぞれ0.36Pa、0.18Paであった。
(Embodiment 8) The second protective film 5 is made of ZnS-SiO
Example 5 except that a ZnS—SiO 2 —N film having a thickness of 20 nm was formed by RF reactive sputtering in a mixed gas atmosphere of Ar and N 2 using 2 (SiO 2 : 20 mol%) as a target. An optical recording medium was formed in the same manner as described above. At this time, the partial pressures of the Ar gas and the N 2 gas were 0.36 Pa and 0.18 Pa, respectively.

【0057】(実施例9)第1保護膜3を、ZnS-SiO
2(SiO2:20 mol%)をターゲットとして用い、以下の
方法で作製した以外は実施例5と同様にして光記録媒体
を作製した。まず、Arガス雰囲気中でRFスパッタ法に
よりZnS-SiO2膜を形成し、その厚みが約190nm に達した
時点で、ArとN2とO2の混合ガスを雰囲気ガスとして注入
しRFスパッタ(RF反応性スパッタ)を継続して、全
厚み197nm 厚のZnS-SiO2-N-O複合膜を形成した。このと
き注入した混合ガス中のArガスとN2ガスとO2ガスの分圧
はそれぞれ0.36Pa、0.18Pa、0.05Paであった。
(Embodiment 9) The first protective film 3 is made of ZnS-SiO
Using 2 (SiO 2 : 20 mol%) as a target, an optical recording medium was produced in the same manner as in Example 5, except that the optical recording medium was produced by the following method. First, a ZnS-SiO 2 film was formed by an RF sputtering method in an Ar gas atmosphere, and when the thickness reached about 190 nm, a mixed gas of Ar, N 2 and O 2 was injected as an atmosphere gas to perform RF sputtering ( (RF reactive sputtering) was continued to form a ZnS—SiO 2 —NO composite film having a total thickness of 197 nm. At this time, the partial pressures of the Ar gas, the N 2 gas, and the O 2 gas in the injected mixed gas were 0.36 Pa, 0.18 Pa, and 0.05 Pa, respectively.

【0058】上述したような各方法でそれぞれ作製した
実施例6〜9の各光記録媒体の記録膜組成とディスク特
性を表2に示す。 (比較例6)第2保護膜5を、以下の方法で作製した以
外は比較例5と同様にして光記録媒体を作製した。
Table 2 shows the recording film composition and disk characteristics of each of the optical recording media of Examples 6 to 9 produced by the above-described methods. (Comparative Example 6) An optical recording medium was manufactured in the same manner as in Comparative Example 5, except that the second protective film 5 was manufactured by the following method.

【0059】まず、ArとN2ガスの混合ガス雰囲気中でR
F反応性スパッタ法によりZnS-SiO2-N膜を形成し、その
厚みが約10nmに達した時点で、Arガスのみを雰囲気ガス
としてRFスパッタを継続して、全厚み20nm厚の複合膜
を形成した。このときの混合ガス中のArガスとN2ガスの
分圧はそれぞれ0.36Pa、0.18Paであった。 (比較例7)第1保護膜3全体を、ZnS-SiO2(SiO2:20
mol%)をターゲットと、ArとN2ガスの混合ガス雰囲気
中でRF反応スパッタ法により作製した以外は、実施例
5と同様にして光記録媒体を作製した。この光記録媒体
では、第1保護膜3が、膜厚方向に均一な窒素濃度分布
をもつ、厚み197nm のZnS-SiO2-N膜となっている。
First, in a mixed gas atmosphere of Ar and N 2 gas, R
A ZnS-SiO 2 -N film is formed by the F reactive sputtering method, and when the thickness reaches about 10 nm, RF sputtering is continued using only Ar gas as an atmosphere gas to form a composite film having a total thickness of 20 nm. Formed. At this time, the partial pressures of the Ar gas and the N 2 gas in the mixed gas were 0.36 Pa and 0.18 Pa, respectively. (Comparative Example 7) ZnS-SiO 2 (SiO 2 : 20)
mol%) in a mixed gas atmosphere of Ar and N 2 gas, and an RF recording medium was produced in the same manner as in Example 5. In this optical recording medium, the first protective film 3 is a 197 nm thick ZnS-SiO 2 -N film having a uniform nitrogen concentration distribution in the film thickness direction.

【0060】上述したような各方法でそれぞれ作製した
比較例6、7の各光記録媒体の記録膜組成とディスク特
性を表2に示す。上述の実施例6〜9は、比較例6、7
に比較していずれも良好な繰り返し記録消去特性を示す
ことがわかる。また、第2保護膜5のみに窒素を含ませ
た比較例6では、比較例5と同様な記録消去特性を示
し、第1保護膜3側に窒素を含ませた実施例5〜9に比
較して顕著な繰り返し記録消去特性の向上は見られな
い。これにより、第2保護膜5に窒素を含ませても記録
消去特性の改善効果はあまり得られないことがわかる。
また、第1保護膜3に窒素を均一に含ませた比較例7の
繰り返し記録消去特性は、比較例5よりも向上してはい
るが、実施例5〜9ほどの顕著な向上は見られない。こ
れにより、第1保護膜3に窒素の濃度分布を持たせるこ
とが、記録消去特性の向上に効果的であることがわか
る。
Table 2 shows the recording film composition and disk characteristics of each of the optical recording media of Comparative Examples 6 and 7 produced by the above-described methods. The above Examples 6 to 9 are Comparative Examples 6 and 7
It can be seen that all of them show better repetitive recording and erasing characteristics as compared with. In Comparative Example 6 in which only the second protective film 5 contained nitrogen, the same recording and erasing characteristics as in Comparative Example 5 were exhibited, and in comparison with Examples 5 to 9 in which nitrogen was contained in the first protective film 3 side. No remarkable improvement in the repetitive recording / erasing characteristics is observed. Thus, it is understood that even if nitrogen is contained in the second protective film 5, the effect of improving the recording and erasing characteristics is not so much obtained.
The repetitive recording and erasing characteristics of Comparative Example 7 in which nitrogen was uniformly contained in the first protective film 3 were improved compared to Comparative Example 5, but the remarkable improvements of Examples 5 to 9 were observed. Absent. Thus, it is found that giving the first protective film 3 a nitrogen concentration distribution is effective for improving the recording / erasing characteristics.

【0061】(実施例10、11)記録膜4を、In-Sb-Teタ
ーゲット上にIn、Sb、Te、Auの各チップを載せて組成を
振りながらDCスパッタ法により作製した以外は、実施
例1と同様にして光記録媒体を作製し、実施例10、実施
例11とした。 (比較例8〜10)記録膜4の組成を異ならせた以外は、
実施例10、11と同様にして光記録媒体を作製し、比較例
8〜10とした。
(Examples 10 and 11) The recording film 4 was manufactured by the DC sputtering method while placing the In, Sb, Te, and Au chips on an In-Sb-Te target and varying the composition. An optical recording medium was manufactured in the same manner as in Example 1, and Example 10 and Example 11 were performed. (Comparative Examples 8 to 10) Except that the composition of the recording film 4 was changed,
Optical recording media were produced in the same manner as in Examples 10 and 11, and Comparative Examples 8 to 10 were produced.

【0062】このような方法で作製した実施例10、11と
比較例8〜10の光記録媒体の記録膜組成とディスク特性
を表2に示す。表2から、それぞれα、β、γ及びδで
表される、Au、In、Sb、及びTeの組成比率が、0原子%
<α≦25原子%、7原子%≦β≦18原子%、30原子%≦
γ<45原子%の時には32原子%≦δ≦45原子%、45原子
%≦γ<49原子%の時には30原子%≦δ≦45原子%、49
原子%≦γ≦55原子%の時には35原子%≦δ≦45原子
%、ただし、99原子%≦α+β+γ+δ≦100 原子%を
満たす実施例5〜11は、良好な繰り返し記録消去特性を
示すが、組成比率が上記範囲にない比較例8〜10は良好
な繰り返し記録消去特性を示さないことがわかる。
Table 2 shows the composition of the recording films and the disk characteristics of the optical recording media of Examples 10 and 11 and Comparative Examples 8 to 10 produced by such a method. From Table 2, the composition ratio of Au, In, Sb, and Te represented by α, β, γ, and δ is 0 atomic%.
<Α ≦ 25 atomic%, 7 atomic% ≦ β ≦ 18 atomic%, 30 atomic% ≦
32 atomic% ≦ δ ≦ 45 atomic% when γ <45 atomic%, 30 atomic% ≦ δ ≦ 45 atomic% when 45 atomic% ≦ γ <49 atomic%, 49
Examples 5 to 11 satisfying 35 atom% ≦ δ ≦ 45 atom% when atomic% ≦ γ ≦ 55 atom%, and satisfying 99 atom% ≦ α + β + γ + δ ≦ 100 atom%, show good repetitive recording / erasing characteristics. It can be seen that Comparative Examples 8 to 10 in which the composition ratio is not in the above range do not exhibit good repetitive recording / erasing characteristics.

【0063】(実施例12)直径120 mm、厚さ0.6 mmのラ
ンド/グルーブを有する、2枚のポリカーボネート基板
2の上に、それぞれ第1保護膜3、記録膜4、第2保護
膜5、反射膜6、及びラッカー層7をこの順で積層し、
この2枚の光記録媒体を、ラッカー層7側を対向させ
て、接着層8を介して接合し、図3の構成を有する光記
録媒体1とした。基板2のランド/グルーブは、トラッ
クピッチ0.74μm 、深さ70nmとした。
Example 12 A first protective film 3, a recording film 4, a second protective film 5, and a polycarbonate film 2 having lands / grooves having a diameter of 120 mm and a thickness of 0.6 mm were provided on two polycarbonate substrates 2 respectively. A reflective film 6 and a lacquer layer 7 are laminated in this order,
The two optical recording media were joined via an adhesive layer 8 with the lacquer layer 7 facing the other side, and an optical recording medium 1 having the configuration of FIG. 3 was obtained. The land / groove of the substrate 2 had a track pitch of 0.74 μm and a depth of 70 nm.

【0064】第1保護膜3は、ZnS-SiO2(SiO2:20 mol
%)をターゲットとして用い、スパッタ法により以下の
ように作製した。まず、Arガス雰囲気中でRFスパッタ
法によりZnS-SiO2膜を形成し、その厚みが約133nm に達
した時点で、ArとN2の混合ガスを雰囲気ガスとして注入
しRFスパッタ(RF反応性スパッタ)を継続して、全
厚み140nm のZnS-SiO2-N混合膜を形成した。このとき注
入した混合ガス中のArガスとN2ガスの分圧はそれぞれ0.
36Pa、0.18Paであった。
The first protective film 3 is made of ZnS-SiO 2 (SiO 2 : 20 mol
%) As a target, and was prepared as follows by a sputtering method. First, a ZnS-SiO 2 film was formed by an RF sputtering method in an Ar gas atmosphere, and when the thickness reached about 133 nm, a mixed gas of Ar and N 2 was injected as an atmosphere gas to perform RF sputtering (RF reactivity). Sputtering was continued to form a ZnS—SiO 2 —N mixed film having a total thickness of 140 nm. At this time, the partial pressures of the Ar gas and the N 2 gas in the injected mixed gas are each 0.
It was 36 Pa and 0.18 Pa.

【0065】記録膜4は、厚さを22nmとした以外は実施
例5と同様にして作製した。第2保護膜5は、厚さを25
nmとした以外は、実施例1と同様して作製した。反射膜
6は厚さを100nm とした以外は実施例1と同様にして作
製した。ラッカー層7は、実施例1と同様にして作製し
た。接着層8は、紫外線硬化型樹脂をスクリーンコート
法により塗布した後、紫外線照射により硬化して形成し
た。硬化後の接着層8の厚みは30〜50μm であった。
The recording film 4 was produced in the same manner as in Example 5 except that the thickness was set to 22 nm. The second protective film 5 has a thickness of 25
Except for nm, it was produced in the same manner as in Example 1. The reflection film 6 was produced in the same manner as in Example 1 except that the thickness was 100 nm. The lacquer layer 7 was produced in the same manner as in Example 1. The adhesive layer 8 was formed by applying an ultraviolet curable resin by a screen coating method and then curing the applied resin by irradiation with ultraviolet light. The thickness of the adhesive layer 8 after curing was 30 to 50 μm.

【0066】光記録媒体1作製後の記録膜4は非晶質で
あった。このため、波長 810 nm の大出力半導体レーザ
ー光により記録膜4を十分に結晶化させ初期化状態とし
た。光記録媒体1の評価は、波長635nm の半導体レーザ
ー光をNA=0.6 の対物レンズを通して基板2側から照射
し、記録膜4の表面で直径約1μm のスポット径に絞り
込むことにより行った。記録時には、照射するレーザー
パルスをマルチパルス化して記録を行った。記録パワー
は12mW、消去パワーは6mW、マルチパルスのボトムパワ
ーは1mW、再生パワーは1mWとした。
The recording film 4 after the production of the optical recording medium 1 was amorphous. For this reason, the recording film 4 was sufficiently crystallized by a high-power semiconductor laser beam having a wavelength of 810 nm to be in an initialized state. The evaluation of the optical recording medium 1 was performed by irradiating a semiconductor laser beam having a wavelength of 635 nm from the substrate 2 side through an objective lens with NA = 0.6 and narrowing the surface of the recording film 4 to a spot diameter of about 1 μm. At the time of recording, recording was performed by changing the irradiation laser pulse to multi-pulse. The recording power was 12 mW, the erasing power was 6 mW, the bottom power of the multi-pulse was 1 mW, and the reproducing power was 1 mW.

【0067】ディスク特性としては、繰り返し記録消去
の寿命を次のような方法で測定した。即ち、繰り返し記
録消去特性は、線速6.0m/sで8/16変調方式のランダム
信号を繰り返しオーバーライトし、所定回数のオーバー
ライト毎に線速6.0m/sで再生を行い、ランダム信号のジ
ッターを測定した。ジッターが基準クロック(34.27ns)
の15%を越えるまでのオーバーライトの回数を繰り返し
記録消去の寿命とした。
As the disk characteristics, the life of repeated recording and erasing was measured by the following method. That is, the repetitive recording / erasing characteristics are as follows: the random signal of the 8/16 modulation method is repeatedly overwritten at a linear velocity of 6.0 m / s, and the linear signal is reproduced at a linear velocity of 6.0 m / s for each predetermined number of overwrites. Jitter was measured. Jitter is the reference clock (34.27ns)
The number of times of overwriting until exceeding 15% was defined as the life of repeated recording and erasing.

【0068】(比較例11)第1保護膜3を、途中でArと
N2の混合ガスを注入せずに形成した以外は実施例12と同
様にして光記録媒体を作製した。このとき、第1保護膜
3は厚さ140nm のZnS-SiO2(SiO2:20 mol%)混合膜と
なった。上述の方法で作製した実施例12、比較例11の光
記録媒体の記録膜組成とディスク特性を表3に示す。
(Comparative Example 11) The first protective film 3 was
An optical recording medium was produced in the same manner as in Example 12, except that the optical recording medium was formed without injecting the N 2 mixed gas. At this time, the first protective film 3 was a ZnS-SiO 2 (SiO 2 : 20 mol%) mixed film having a thickness of 140 nm. Table 3 shows recording film compositions and disk characteristics of the optical recording media of Example 12 and Comparative Example 11 manufactured by the above-described methods.

【0069】[0069]

【表3】 [Table 3]

【0070】実施例12の光記録媒体は、比較例11の光記
録媒体に比べ、繰り返し記録消去特性が向上しているこ
とがわかる。 (実施例13、14)記録膜4を、In-Sb-Teターゲット上に
In、Sb、Te、Auの各チップを載せて組成を振りながらD
Cスパッタ法により作製した以外は、実施例12と同様に
して光記録媒体を作製し、実施例13、14とした。
It can be seen that the optical recording medium of Example 12 has improved repetitive recording / erasing characteristics as compared with the optical recording medium of Comparative Example 11. (Examples 13 and 14) The recording film 4 was placed on an In-Sb-Te target.
Place the In, Sb, Te, and Au chips and shake the composition while
Optical recording media were produced in the same manner as in Example 12, except that the optical recording medium was produced by the C sputtering method, and Examples 13 and 14 were produced.

【0071】(比較例12〜14)記録膜4の組成を異なら
せた以外は、実施例13、14と同様にして光記録媒体を作
製し、比較例12〜14とした。このような方法で作製した
実施例13、14と比較例12〜14の光記録媒体の記録膜組成
とディスク特性を表3に示す。
(Comparative Examples 12 to 14) Optical recording media were produced in the same manner as in Examples 13 and 14 except that the composition of the recording film 4 was changed, and Comparative Examples 12 and 14 were made. Table 3 shows the recording film compositions and disk characteristics of the optical recording media of Examples 13 and 14 and Comparative Examples 12 to 14 manufactured in such a manner.

【0072】表3から、それぞれα、β、γ及びδで表
される、Au、In、Sb、及びTeの組成比率が、1原子%≦
α≦16原子%、8原子%≦β≦17原子%、41原子%≦γ
≦63原子%、24原子%≦δ≦36原子%、或いは、0原子
%<α≦17原子%、3原子%≦β<8原子%、51原子%
≦γ≦67原子%、26原子%≦δ≦33原子%、ただし、99
原子%≦α+β+γ+δ≦100 原子%を満たす実施例12
〜14は、良好な繰り返し記録消去特性を示すが、組成比
率が上記範囲にない比較例12〜14は良好な繰り返し記録
消去特性を示さない。
From Table 3, the composition ratio of Au, In, Sb, and Te represented by α, β, γ, and δ is 1 atomic% ≦
α ≦ 16 atomic%, 8 atomic% ≦ β ≦ 17 atomic%, 41 atomic% ≦ γ
≦ 63 at%, 24 at% ≦ δ ≦ 36 at%, or 0 at% <α ≦ 17 at%, 3 at% ≦ β <8 at%, 51 at%
≦ γ ≦ 67 at%, 26 at% ≦ δ ≦ 33 at%, but 99
Example 12 where atomic% ≦ α + β + γ + δ ≦ 100 atomic%
Nos. To 14 show good repetitive recording and erasing characteristics, but Comparative Examples 12 to 14 whose composition ratios are not in the above range do not show good repetitive recording and erasing characteristics.

【0073】[0073]

【発明の効果】以上説明したように、請求項1〜3と9
〜11に係る発明によれば、繰り返し記録消去特性の向上
した光記録媒体を得られるという効果がある。また、請
求項4に係る発明によれば、記録膜をカルコパイライト
型化合物とすることで、光記録媒体の記録消去特性をよ
り一層向上できる。
As described above, claims 1 to 3 and 9
According to the inventions of Nos. 1 to 11, there is an effect that an optical recording medium with improved repeated recording / erasing characteristics can be obtained. According to the fourth aspect of the present invention, the recording and erasing characteristics of the optical recording medium can be further improved by using a chalcopyrite-type compound for the recording film.

【0074】また、請求項5〜8に係る発明によれば、
カルコパイライト型化合物のうちAu-In-Sb-Te 合金を記
録膜に用いた場合、組成比率を特定範囲に限定すること
で記録消去特性を格段に向上できるようになる。請求項
12〜16に係る発明によれば、ZnS とSiO2の混合膜に濃度
分布を持たせて窒素を含ませた光記録媒体用保護膜とす
ることで、光記録媒体の繰り返し記録消去特性を向上さ
せることができる。
According to the fifth to eighth aspects of the present invention,
When an Au-In-Sb-Te alloy among chalcopyrite type compounds is used for the recording film, the recording / erasing characteristics can be remarkably improved by limiting the composition ratio to a specific range. Claim
According to the inventions according to the inventions 12 to 16, by improving the repetitive recording and erasing characteristics of the optical recording medium, the mixed film of ZnS and SiO 2 is provided with a concentration distribution to form a protective film for the optical recording medium containing nitrogen. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光記録媒体の膜構成の一例を示す断面
FIG. 1 is a sectional view showing an example of a film configuration of an optical recording medium according to the present invention.

【図2】本発明の光記録媒体の膜構成の他の例を示す断
面図
FIG. 2 is a sectional view showing another example of the film configuration of the optical recording medium of the present invention.

【図3】本発明の光記録媒体の膜構成の更に他の例を示
す断面図
FIG. 3 is a sectional view showing still another example of the film configuration of the optical recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1 光記録媒体 2 基板 3 第1保護膜 4 記録膜 5 第2保護膜 6 反射膜 7 ラッカー層 8 接着層 9 上部基板 DESCRIPTION OF SYMBOLS 1 Optical recording medium 2 Substrate 3 First protective film 4 Recording film 5 Second protective film 6 Reflective film 7 Lacquer layer 8 Adhesive layer 9 Upper substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 14/06 B41M 5/26 X ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 14/06 B41M 5/26 X

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】使用する光ビームに対して略透明な基板上
に、少なくとも第1保護膜、記録膜、第2保護膜、反射
膜をこの順で積膜した光記録媒体において、 前記第2保護膜が、ZnS とSiO2の混合膜からなり、 前記第1保護膜が、ZnS とSiO2の混合膜に窒素を含み、
当該窒素の濃度を前記基板側より前記記録膜側が高くな
るよう形成されてなることを特徴とする光記録媒体。
1. An optical recording medium comprising a substrate substantially transparent to a light beam to be used and at least a first protective film, a recording film, a second protective film, and a reflective film deposited in this order. The protective film is made of a mixed film of ZnS and SiO 2 , the first protective film contains nitrogen in a mixed film of ZnS and SiO 2 ,
An optical recording medium, wherein the nitrogen concentration is higher on the recording film side than on the substrate side.
【請求項2】前記第1保護膜は、前記基板側にZnS とSi
O2の混合膜を有し、前記記録膜側にZnS とSiO2と窒素を
含む混合膜を有する複合膜である請求項1に記載の光記
録媒体。
2. The method according to claim 1, wherein the first protective film is formed of ZnS and Si on the substrate side.
2. The optical recording medium according to claim 1, wherein the optical recording medium is a composite film having a mixed film of O 2 and a mixed film containing ZnS, SiO 2 and nitrogen on the recording film side.
【請求項3】前記第1保護膜は、ZnS とSiO2と窒素を含
む混合膜からなり、当該混合膜の前記基板側の面の窒素
濃度が略0原子%で、基板側から記録膜側に向けて窒素
濃度が漸次増加するようにした請求項1に記載の光記録
媒体。
3. The first protective film comprises a mixed film containing ZnS, SiO 2 and nitrogen, wherein the nitrogen concentration on the surface of the mixed film on the substrate side is approximately 0 atom%, and 2. The optical recording medium according to claim 1, wherein the nitrogen concentration is gradually increased toward.
【請求項4】前記記録膜が、Au-In-Sb-Te 合金、Ag-In-
Sb-Te 合金、Ag-In-Sb-Te-V 合金、Cu-In-Sb-Te 合金及
びPd-In-Sb-Te 合金のいずれかの合金からなる請求項1
〜3のいずれか1つに記載の光記録媒体。
4. The recording film is made of an Au-In-Sb-Te alloy, an Ag-In-
2. The alloy according to claim 1, wherein the alloy comprises one of an Sb-Te alloy, an Ag-In-Sb-Te-V alloy, a Cu-In-Sb-Te alloy, and a Pd-In-Sb-Te alloy.
4. The optical recording medium according to any one of items 3 to 3.
【請求項5】前記記録膜が、Au-In-Sb-Te 合金からな
り、それぞれα、β、γ、及びδで表される、Au、In、
Sb、及びTeの組成比率が、 0原子%<α≦25原子%、 3原子%≦β≦18原子%、 30原子%≦γ≦67原子%、 24原子%≦δ≦45原子%、 ただし、99原子%≦α+β+γ+δ≦100 原子%、 であることを特徴とする請求項4に記載の光記録媒体。
5. The recording film according to claim 1, wherein the recording film is made of an Au—In—Sb—Te alloy, and is represented by α, β, γ, and δ, respectively.
The composition ratio of Sb and Te is 0 atomic% <α ≦ 25 atomic%, 3 atomic% ≦ β ≦ 18 atomic%, 30 atomic% ≦ γ ≦ 67 atomic%, 24 atomic% ≦ δ ≦ 45 atomic%, 5. The optical recording medium according to claim 4, wherein: 99 atomic% ≦ α + β + γ + δ ≦ 100 atomic%.
【請求項6】光ビームに対する記録膜の記録消去時の相
対速度が1〜3m /sで使用される光記録媒体にあって
は、前記α及びβが、 0原子%<α≦25原子%、 7原子%≦β≦18原子%、 であり、前記γ、及びδが、 30原子%≦γ<45原子%の時には、32原子%≦δ≦45原
子%、 45原子%≦γ<49原子%の時には、30原子%≦δ≦45原
子%、 49原子%≦γ≦55原子%の時には、35原子%≦δ≦45原
子%、 ただし、99原子%≦α+β+γ+δ≦100 原子%、 であることを特徴とする請求項5に記載の光記録媒体。
6. An optical recording medium in which the relative speed of recording and erasing of a recording film with respect to a light beam is 1 to 3 m / s, wherein α and β are 0 atomic% <α ≦ 25 atomic%. 7 atomic% ≦ β ≦ 18 atomic%, and when γ and δ are 30 atomic% ≦ γ <45 atomic%, 32 atomic% ≦ δ ≦ 45 atomic% and 45 atomic% ≦ γ <49 Atomic%, 30 atomic% ≦ δ ≦ 45 atomic%, 49 atomic% ≦ γ ≦ 55 atomic%, 35 atomic% ≦ δ ≦ 45 atomic%, but 99 atomic% ≦ α + β + γ + δ ≦ 100 atomic%. 6. The optical recording medium according to claim 5, wherein:
【請求項7】光ビームに対する記録膜の記録消去時の相
対速度が5〜7m /sで使用される光記録媒体にあって
は、前記α、β、γ、及びδが、 1原子%≦α≦16原子%、 8原子%≦β≦17原子%、 41原子%≦γ<63原子%、 24原子%≦δ≦36原子%、 ただし、99原子%≦α+β+γ+δ≦100 原子%、 であることを特徴とする請求項5に記載の光記録媒体。
7. In an optical recording medium used with a relative velocity of 5-7 m / s at the time of recording / erasing of a recording film with respect to a light beam, said α, β, γ, and δ are 1 atomic% ≦ α ≦ 16 atomic%, 8 atomic% ≦ β ≦ 17 atomic%, 41 atomic% ≦ γ <63 atomic%, 24 atomic% ≦ δ ≦ 36 atomic%, where 99 atomic% ≦ α + β + γ + δ ≦ 100 atomic% The optical recording medium according to claim 5, wherein:
【請求項8】光ビームに対する記録膜の記録消去時の相
対速度が5〜7m /sで使用される光記録媒体にあって
は、前記α、β、γ、及びδが、 0原子%<α≦17原子%、 3原子%≦β<8原子%、 51原子%≦γ≦67原子%、 26原子%≦δ≦33原子%、 ただし、99原子%≦α+β+γ+δ≦100 原子%、 であることを特徴とする請求項5に記載の光記録媒体。
8. In an optical recording medium used at a relative speed of 5-7 m / s at the time of recording and erasing of a recording film with respect to a light beam, α, β, γ, and δ are 0 atomic% < α ≦ 17 atomic%, 3 atomic% ≦ β <8 atomic%, 51 atomic% ≦ γ ≦ 67 atomic%, 26 atomic% ≦ δ ≦ 33 atomic%, where 99 atomic% ≦ α + β + γ + δ ≦ 100 atomic% The optical recording medium according to claim 5, wherein:
【請求項9】前記第2保護膜に、窒素を含ませてなる請
求項1〜8のいずれか1つに記載の光記録媒体。
9. The optical recording medium according to claim 1, wherein said second protective film contains nitrogen.
【請求項10】前記第1保護膜及び第2保護膜の少なくと
も一方に、酸素を含ませてなる請求項1〜9のいずれか
1つに記載の光記録媒体。
10. The optical recording medium according to claim 1, wherein at least one of the first protective film and the second protective film contains oxygen.
【請求項11】前記第1保護膜中に含まれるSiO2のモル数
が、当該第1保護膜中のZnS のモル数の10%〜40%であ
る請求項1〜10のいずれか1つに記載の光記録媒体。
11. The method according to claim 1, wherein the number of moles of SiO 2 contained in the first protective film is 10% to 40% of the number of moles of ZnS in the first protective film. An optical recording medium according to claim 1.
【請求項12】ZnS とSiO2の混合膜に窒素を含ませ、当該
窒素の濃度が膜厚方向において、一側が他側より高くな
るようにしたことを特徴とする光記録媒体用保護膜。
12. A protective film for an optical recording medium, wherein a mixed film of ZnS and SiO 2 contains nitrogen, and the concentration of the nitrogen is higher on one side than on the other side in the film thickness direction.
【請求項13】前記一側が、ZnS とSiO2と窒素を含む混合
膜からなり、前記他側が、ZnS とSiO2の混合膜からなる
複合膜である請求項12に記載の光記録媒体用保護膜。
13. The protection for an optical recording medium according to claim 12, wherein the one side is a composite film including ZnS, SiO 2 and nitrogen and the other side is a composite film including ZnS and SiO 2. film.
【請求項14】ZnS とSiO2と窒素を含む混合膜であって、
膜の前記他側の面の窒素濃度が略0原子%で、前記一側
に向けて窒素濃度が漸次増加するようにした請求項12に
記載の光記録媒体用保護膜。
14. A mixed film containing ZnS, SiO 2 and nitrogen, wherein
13. The protective film for an optical recording medium according to claim 12, wherein the nitrogen concentration on the other side of the film is approximately 0 atomic%, and the nitrogen concentration gradually increases toward the one side.
【請求項15】酸素を含んでなる請求項12〜14のいずれか
1つに記載の光記録媒体用保護膜。
15. The protective film for an optical recording medium according to claim 12, comprising oxygen.
【請求項16】膜中に含まれるSiO2のモル数が、ZnS のモ
ル数の10%〜40%である請求項12〜15のいずれか1つに
記載の光記録媒体用保護膜。
16. The protective film for an optical recording medium according to claim 12, wherein the number of moles of SiO 2 contained in the film is 10% to 40% of the number of moles of ZnS.
JP04961298A 1998-03-02 1998-03-02 Optical recording medium and protective film for optical recording medium Expired - Fee Related JP3608934B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04961298A JP3608934B2 (en) 1998-03-02 1998-03-02 Optical recording medium and protective film for optical recording medium
EP99905332A EP1059634A4 (en) 1998-03-02 1999-03-01 Optical recording medium and protective film therefor
PCT/JP1999/000983 WO1999045538A1 (en) 1998-03-02 1999-03-01 Optical recording medium and protective film therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04961298A JP3608934B2 (en) 1998-03-02 1998-03-02 Optical recording medium and protective film for optical recording medium

Publications (2)

Publication Number Publication Date
JPH11250500A true JPH11250500A (en) 1999-09-17
JP3608934B2 JP3608934B2 (en) 2005-01-12

Family

ID=12836069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04961298A Expired - Fee Related JP3608934B2 (en) 1998-03-02 1998-03-02 Optical recording medium and protective film for optical recording medium

Country Status (1)

Country Link
JP (1) JP3608934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032131A1 (en) * 2002-10-02 2004-04-15 Mitsubishi Chemical Corporation Optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032131A1 (en) * 2002-10-02 2004-04-15 Mitsubishi Chemical Corporation Optical recording medium
US7001655B2 (en) 2002-10-02 2006-02-21 Mitsubishi Chemical Corporation Optical recording medium
CN1333399C (en) * 2002-10-02 2007-08-22 三菱化学媒体股份有限公司 Optical recording medium

Also Published As

Publication number Publication date
JP3608934B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
US6115352A (en) Optical information recording medium capable of rewriting data at low reflectance and deterioration condition
EP1398778B1 (en) Optical information recording medium and optical recording method
US6479121B1 (en) Optical recording medium and method of fabricating same
EP1655386B1 (en) Optical recording medium and production method of the same
US5981014A (en) Optical recording medium and method for preparing the same
JP3185890B2 (en) Method for manufacturing optical information recording medium and optical information recording medium manufactured by this method
KR20050009734A (en) Information recording medium and process for producing the same
JP3190274B2 (en) Optical recording medium and manufacturing method thereof
EP1345218A2 (en) Optical information recording medium and manufacturing method and recording/reproducing method for the same
TWI300926B (en)
JP4271051B2 (en) Phase change information recording medium and sputtering target
JPH08190734A (en) Optical recording medium
JP4357144B2 (en) Optical recording medium and sputtering target for optical recording medium
JPH11250500A (en) Optical recording medium and protective film for optical recording medium
EP1059634A1 (en) Optical recording medium and protective film therefor
JP2006095821A (en) Photorecording medium
JPH11250499A (en) Optical recording medium
JP3868738B2 (en) Optical information recording medium, method for producing the same, and sputtering target
JP2004119003A (en) Optical information recording medium
JP3601168B2 (en) Optical information recording medium
JPH11314455A (en) Light recording medium
JP3246350B2 (en) Optical information recording medium
JPH11273141A (en) Optical recording medium
JP2000118135A (en) Phase change optical recording medium
JP2001297481A (en) Phase transition optical recording medium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees