JPH11248516A - Capacitive level measuring apparatus - Google Patents

Capacitive level measuring apparatus

Info

Publication number
JPH11248516A
JPH11248516A JP10060321A JP6032198A JPH11248516A JP H11248516 A JPH11248516 A JP H11248516A JP 10060321 A JP10060321 A JP 10060321A JP 6032198 A JP6032198 A JP 6032198A JP H11248516 A JPH11248516 A JP H11248516A
Authority
JP
Japan
Prior art keywords
electrode
liquid
main electrode
measured
auxiliary electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10060321A
Other languages
Japanese (ja)
Other versions
JP3436117B2 (en
Inventor
Noriyuki Maki
憲幸 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
RKC Instrument Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC Instrument Inc filed Critical RKC Instrument Inc
Priority to JP06032198A priority Critical patent/JP3436117B2/en
Publication of JPH11248516A publication Critical patent/JPH11248516A/en
Application granted granted Critical
Publication of JP3436117B2 publication Critical patent/JP3436117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and linearly measure the liquid level of liquid to be measured, with a simple and small structure, in a capacitive level measuring apparatus. SOLUTION: An auxiliary electrode 5 and a main electrode 7 are arranged in parallel. An equal potential electrode 29 is arranged in the lower tip parts of the electrodes 5 and 7, maintaining intervals from them. A reference electrode 39 is arranged between the electrodes 7 and 29, maintaining intervals from them. The electrodes 7, 29 and 39 are accommodated in a cylindrical insulation layer 19 having a bottom. The layer 19 in which the electrodes are collectively accommodated is inserted in an insulation vessel 3 containing liquid 1 to be measured. An AC signal is applied to the auxiliary electrode 5 from a signal source 9. The main electrode 7, the equal potential electrode 29 and the reference electrode 39 are connected with equal potential forming parts 37, 49 through shielded-conductor cables 31, 41. The equal potential forming parts 37, 49 maintain the main electrode 7, the reference electrode 39 and the equal potential electrode 29 at equal potentials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静電容量形レベル測
定装置に係り、導電性および絶縁性の液面レベル(液
位)を測定する静電容量形レベル測定装置の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance-type level measuring device, and more particularly to an improvement in a capacitance-type level measuring device for measuring a conductive and insulating liquid level (liquid level).

【0002】[0002]

【従来の技術】半導体製造装置の洗浄槽における薬液レ
ベル測定、食料加工装置における液体食品のレベル測
定、一般的な工場における液体レベル測定には、例えば
静電容量形レベル測定装置が用いられる。従来、この種
の静電容量形レベル測定装置は、図9に示すように、被
測定液1の入った絶縁槽3内へ細長い補助電極5および
主電極7を液面上側から挿入し、信号源9から例えば補
助電極5に加えた交流信号を主電極7を介して出力さ
せ、この出力信号から被測定液1の液位を測定する構成
が良く知られている。
2. Description of the Related Art For example, a capacitance type level measuring device is used for measuring a chemical level in a cleaning tank of a semiconductor manufacturing apparatus, measuring a level of a liquid food in a food processing apparatus, and measuring a liquid level in a general factory. Conventionally, as shown in FIG. 9, a capacitance type level measuring device of this type inserts a long and thin auxiliary electrode 5 and a main electrode 7 into an insulating tank 3 containing a liquid to be measured 1 from above the liquid level, and It is well known that a source 9 outputs, for example, an AC signal applied to the auxiliary electrode 5 through the main electrode 7 and the level of the liquid 1 to be measured is measured from the output signal.

【0003】一般に、補助電極5と主電極7間に生じる
静電容量値は、それら補助電極5と主電極7間の距離が
一定であれば、それらの面積および介在物質の誘電率に
比例するから、補助電極5と主電極7間に介在する気体
や被測定液1の誘電率の差の変化、すなわち被測定液1
の液位変化に比例して静電容量値が変化し、この静電容
量値の変化に伴った交流信号が主電極7から出力され
る。そのため、主電極7から出力された交流信号を変換
部11で電圧変換し、これを整流平滑部13で整流平滑
し、調整部15で基準点(零レベル点)と出力勾配(フ
ルスケール)を調整すれば、被測定液1の液位に応じた
測定信号を出力することが可能である。
Generally, the capacitance value generated between the auxiliary electrode 5 and the main electrode 7 is proportional to the area of the auxiliary electrode 5 and the dielectric constant of the intervening substance if the distance between the auxiliary electrode 5 and the main electrode 7 is constant. From the above, the change in the dielectric constant of the gas or the liquid 1 to be measured interposed between the auxiliary electrode 5 and the main electrode 7,
The capacitance value changes in proportion to the change in the liquid level, and an AC signal accompanying the change in the capacitance value is output from the main electrode 7. Therefore, the AC signal output from the main electrode 7 is converted into a voltage by the conversion unit 11, rectified and smoothed by the rectification and smoothing unit 13, and the reference unit (zero level point) and the output gradient (full scale) are adjusted by the adjustment unit 15. If adjusted, it is possible to output a measurement signal corresponding to the liquid level of the liquid 1 to be measured.

【0004】もっとも、被測定液1が導電性である場合
には、補助電極5および主電極7が被測定液1に触れた
瞬間に短絡状態となって液位測定が困難となるので、補
助電極5および主電極7の外周を絶縁層17、19で均
一な厚さに被覆することが行われている。なお、絶縁層
17、19で被覆した補助電極5および主電極7を用い
る静電容量形レベル測定装置は、絶縁性の被測定液1の
液位レベル測定にも使用可能である。そこで、絶縁層1
7、19で被覆した補助電極5および主電極7を用いた
静電容量形レベル測定装置における液位レベル測定の考
え方を、例えば導電性の被測定体を例にして説明する。
However, when the liquid 1 to be measured is conductive, the auxiliary electrode 5 and the main electrode 7 are short-circuited at the moment of touching the liquid 1 to be measured, making it difficult to measure the liquid level. The outer circumferences of the electrode 5 and the main electrode 7 are covered with insulating layers 17 and 19 to a uniform thickness. The capacitance type level measuring device using the auxiliary electrode 5 and the main electrode 7 covered with the insulating layers 17 and 19 can be used for measuring the liquid level of the insulating liquid 1 to be measured. Therefore, the insulating layer 1
The concept of measuring the liquid level in a capacitance-type level measuring device using the auxiliary electrode 5 and the main electrode 7 covered with the electrodes 7 and 19 will be described with reference to, for example, a conductive object to be measured.

【0005】図9において、気体(空気)で囲まれた絶
縁層17、19の静電容量をCe1、Ce2、被測定液
1で囲まれた絶縁層17、19の静電容量をC11、C
l2、補助電極5および主電極7の下方先端の絶縁層1
7、19で形成される静電容量をCs1、Cs2とする
と、補助電極5および主電極7間の等価回路は図10A
のようになる。
In FIG. 9, the capacitances of the insulating layers 17 and 19 surrounded by gas (air) are Ce1 and Ce2, and the capacitances of the insulating layers 17 and 19 surrounded by the liquid 1 to be measured are C11 and C1.
l2, insulating layer 1 at the lower end of auxiliary electrode 5 and main electrode 7
Assuming that the capacitances formed by the electrodes 7 and 19 are Cs1 and Cs2, an equivalent circuit between the auxiliary electrode 5 and the main electrode 7 is shown in FIG.
become that way.

【0006】さらに、補助電極5および主電極7、絶縁
層17、19が互いに同一寸法であれば、 Cl1=Cl2=Cl、 Cs1=Cs2=Cs となり、静電容量Ce1、Ca、Ce2の直列回路をC
Aとすれば、図10Bのように簡略化される。
Further, if the auxiliary electrode 5, the main electrode 7, and the insulating layers 17 and 19 have the same dimensions, Cl1 = Cl2 = Cl, Cs1 = Cs2 = Cs, and a series circuit of capacitances Ce1, Ca and Ce2. To C
If A, it is simplified as shown in FIG. 10B.

【0007】ここで、図9中の絶縁槽3内の被測定液1
が空の場合、補助電極5と主電極7間の気体による静電
容量をCAo、補助電極5および主電極7の長さLoに
対する絶縁層17、19の各静電容量をCloとすれ
ば、 Cl=(L/Lo)Clo CA= 〔(Lo−L)/Lo〕CAo となり、補助電極5と主電極7間の合成静電容量Cは、 C=〔(Cl+Cs)/2〕+CA ={〔(L/2Lo)Clo〕+〔(Lo−L)/Lo)CAo〕 +(Cs/2)〕} ={(L/Lo)〔(Clo/2)−CAo〕}+CAo+(Cs/2) となる。
Here, the liquid to be measured 1 in the insulating tank 3 in FIG.
Is empty, let CAo be the capacitance due to gas between the auxiliary electrode 5 and the main electrode 7, and Clo be the capacitance of each of the insulating layers 17 and 19 with respect to the length Lo of the auxiliary electrode 5 and the main electrode 7. Cl = (L / Lo) Clo CA = [(Lo−L) / Lo] CAo, and the combined capacitance C between the auxiliary electrode 5 and the main electrode 7 is C = [(Cl + Cs) / 2] + CA = { [(L / 2Lo) Clo] + [(Lo-L) / Lo) CAo] + (Cs / 2)]} = {(L / Lo) [(Clo / 2) -CAo]} + CAo + (Cs / 2 ).

【0008】補助電極5や主電極7の位置および寸法が
絶縁層17、19を含めて一定であれば、それら静電容
量CAoとCs/2は定数となるから、図9中の調整部
15により〔CAo+(Cs/2)〕を電気的に差演算
することにより、 C={(L/Lo)〔(Clo/2)−CAo〕}+CAo+(Cs/2)− 〔CAo+(Cs/2)〕 =(L/Lo)〔(Clo/2)−CAo〕 となり、被測定液1の液位レベルに比例した静電容量を
得ることができる。
If the positions and dimensions of the auxiliary electrode 5 and the main electrode 7 are constant including the insulating layers 17 and 19, the capacitances CAo and Cs / 2 become constants. By electrically calculating [CAo + (Cs / 2)], C = {(L / Lo) [(Clo / 2) -CAo]} + CAo + (Cs / 2)-[CAo + (Cs / 2) )] = (L / Lo) [(Clo / 2) −CAo], and an electrostatic capacity proportional to the liquid level of the liquid 1 to be measured can be obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た構成の静電容量形レベル測定装置では、独立した補助
電極5および主電極7を並行な位置関係を保った2軸状
態で別個に絶縁槽3中へ挿入するとともに、適当な保持
手段によって保持する必要があるから、構造が複雑にな
るうえ、小型化も困難となり易い難点がある。さらに、
静電容量形レベル測定装置は、図9に示すように、絶縁
槽3が大地21に絶縁台23を介して配置されるのが一
般的であるから、正確な液位レベルを測定するために
は、絶縁槽3内の補助電極5や主電極7間の静電容量分
布を考慮するだけでは不十分であり、絶縁槽3の側部や
底部と大地21間の各静電容量Cx1、Cx2に加え
て、変換部11と大地21間の静電容量Cgをも考慮す
る必要がある。
However, in the capacitance-type level measuring device having the above-described structure, the independent auxiliary electrode 5 and the main electrode 7 are separately separated in the biaxial state while maintaining the parallel positional relationship. Since it is necessary to insert it inside and hold it by an appropriate holding means, the structure becomes complicated and downsizing tends to be difficult. further,
As shown in FIG. 9, the capacitance-type level measuring device is generally arranged such that the insulating tank 3 is arranged on the ground 21 via the insulating base 23, so that an accurate liquid level can be measured. It is not sufficient to consider only the capacitance distribution between the auxiliary electrode 5 and the main electrode 7 in the insulating tank 3, and the capacitances Cx 1, Cx 2 between the side and bottom of the insulating tank 3 and the ground 21 are not enough. In addition, it is necessary to consider the capacitance Cg between the conversion unit 11 and the ground 21.

【0010】しかも、図11に示すように、絶縁槽3が
高い絶縁台23に配置されるとともに、途中にバルブ2
5を配置したパイプ27が絶縁槽3に連結されている場
合等では、バルブ25前後のパイプ27中の被測定液1
と大地21間の各静電容量Cx3、Cx4も考慮する必
要がある。そして、絶縁槽3と大地21間の各静電容量
Cx1、Cx2、Cx3、Cx4や変換部11と大地2
1間の静電容量Cgを考慮した等価回路は、図12に示
すようになる。
Further, as shown in FIG. 11, the insulating tank 3 is arranged on the high insulating base 23, and the valve 2
5 is connected to the insulating tank 3, the liquid 1 to be measured in the pipe 27 before and after the valve 25 is connected.
It is also necessary to consider the capacitances Cx3 and Cx4 between the ground and the ground 21. Then, each capacitance Cx1, Cx2, Cx3, Cx4 between the insulating tank 3 and the ground 21, the conversion unit 11 and the ground 2
FIG. 12 shows an equivalent circuit in which the capacitance Cg between the two is considered.

【0011】ここで、補助電極5から入力された交流電
流は、静電容量Cx1〜Cx4、Cgを流れる電流ix
として一部が失われるから、液位レベル変動に応じたリ
ニアな測定電流imを主電極7から出力するには、静電
容量Cx1〜Cx4、Cgの直並列回路の両端電圧VM
を一定にする必要がある。
Here, the alternating current input from the auxiliary electrode 5 is the current ix flowing through the capacitances Cx1 to Cx4 and Cg.
In order to output a linear measurement current im corresponding to the liquid level fluctuation from the main electrode 7, the voltage VM across the series-parallel circuit of the capacitances Cx1 to Cx4 and Cg is lost.
Needs to be constant.

【0012】しかも、液位レベルの変動に対し両端電圧
VM を一定にするには、 〔(L/Lo)Clo〕+Cs=α{〔(Cx1+Cx
2+Cx3+Cx4)Cg〕/(Cx1+Cx2+Cx
3+Cx4+Cg)} 〔αは比例定数〕が成立する必要があるが、実際には全
く成立せず、液位変化をリニアな状態で得ることができ
ないのが実情である。もっとも、液位変化をリニアな状
態で測定するため、図13の等価回路図で示すように、
信号源9の出力を接地して測定する手法が提案されてい
る。
Furthermore, to make the voltage VM between both ends constant with respect to the fluctuation of the liquid level, it is necessary to obtain [(L / Lo) Clo] + Cs = α {[(Cx1 + Cx
2 + Cx3 + Cx4) Cg] / (Cx1 + Cx2 + Cx
3 + Cx4 + Cg)} [α is a constant of proportionality], but it is not true at all, and the liquid level change cannot be obtained in a linear state. However, in order to measure the liquid level change in a linear state, as shown in the equivalent circuit diagram of FIG.
A method has been proposed in which the output of the signal source 9 is grounded for measurement.

【0013】このように信号源9の出力を接地した等価
回路では、例えば、(Cl1+Cs1)<<(Cx1+
Cx2+Cx3+Cx4)および(Cl2+Cs2)<
<(Cx1+Cx2+Cx3+Cx4)の場合、図14
に示すような等価回路となり、Cl2+Cs2からみて
Cl1+Cs1+(Cx1〜Cx4)が短絡状態とな
り、被測定液1の液位レベル変化に対してリニアな静電
容量変化が得られると考えられる。
In the equivalent circuit in which the output of the signal source 9 is grounded, for example, (Cl1 + Cs1) << (Cx1 +
Cx2 + Cx3 + Cx4) and (Cl2 + Cs2) <
In the case of <(Cx1 + Cx2 + Cx3 + Cx4), FIG.
It is considered that Cl1 + Cs1 + (Cx1 to Cx4) is in a short-circuit state when viewed from Cl2 + Cs2, and a linear change in capacitance with respect to a change in the liquid level of the test liquid 1 is considered to be obtained.

【0014】ところが、静電容量形レベル測定装置にお
いて、図14の等価回路が成立するような場合は、図1
5に示すように、絶縁槽3の底部が薄く、大地21に対
して絶縁槽3の底面積が広く、大地21と絶縁槽3の間
隔が狭いといった条件を満たす必要があり、具体的には
底面積の広い絶縁槽3を大地21に直接置く必要があ
る。しかも、静電容量形レベル測定装置の実際の使用状
況は、例えば図11のように、絶縁槽3を支持柱状の絶
縁台23上に載置し、途中にバルブ25を配置したパイ
プ27を介して被測定液1を絶縁槽3へ流出入させるの
が一般的であるから、静電容量の条件が(Cl1+Cs
1)>>(Cx1+Cx2+Cx3+Cx4)となる。
However, in the case where the equivalent circuit of FIG. 14 is established in the capacitance type level measuring device, FIG.
As shown in FIG. 5, it is necessary to satisfy the conditions that the bottom of the insulating tank 3 is thin, the bottom area of the insulating tank 3 is large with respect to the ground 21, and the interval between the ground 21 and the insulating tank 3 is narrow. It is necessary to place the insulating tank 3 having a large bottom area directly on the ground 21. In addition, the actual use state of the capacitance type level measuring device is, for example, as shown in FIG. 11, through the pipe 27 in which the insulating tank 3 is placed on the supporting columnar insulating stand 23 and the valve 25 is arranged in the middle. In general, the liquid 1 to be measured flows into and out of the insulating tank 3 with the condition that the capacitance is (Cl1 + Cs
1) >> (Cx1 + Cx2 + Cx3 + Cx4)

【0015】そのため、絶縁槽3に人が接近しただけで
も、静電容量Cx1やCx2が急増するとともに不安定
となるし、バルブ25の開閉操作によって絶縁槽3と外
部間で被測定液1を流入出させると、それら静電容量C
x3やCx4が変化して出力が不安定になる。このよう
に、図9の静電容量形レベル測定装置において、図13
のように補助電極5を大地21に接地して測定する構成
では、図15のように底面積の広い絶縁槽3を大地21
に直接置いて測定する場合に限り効果が期待されるが、
これ以外の構成では効果が少なく、実用的でないうえ誤
差も大きい。
Therefore, even if a person approaches the insulating tank 3, the capacitances Cx 1 and Cx 2 increase rapidly and become unstable, and the liquid 1 to be measured is transferred between the insulating tank 3 and the outside by opening and closing the valve 25. When they flow in and out, their capacitance C
x3 and Cx4 change and the output becomes unstable. As described above, in the capacitance type level measuring device of FIG.
In the configuration in which the auxiliary electrode 5 is grounded to the ground 21 as shown in FIG. 15, the insulating tank 3 having a large bottom area is connected to the ground 21 as shown in FIG.
The effect is expected only when measuring directly by placing
Other configurations have little effect, are not practical, and have large errors.

【0016】本発明はそのような従来の欠点を解決する
ためになされたもので、構造が簡単で小型化も容易であ
るうえ、被測定液を貯めた容器の設置形態や形状に拘わ
りなく、被測定液の液位レベルを正確かつリニアに測定
できる静電容量形レベル測定装置の提供を目的とする。
The present invention has been made in order to solve such a conventional drawback, and has a simple structure, easy miniaturization, and irrespective of the installation form and shape of the container storing the liquid to be measured. It is an object of the present invention to provide a capacitance type level measuring device capable of accurately and linearly measuring a liquid level of a liquid to be measured.

【0017】[0017]

【課題を解決するための手段】そのような課題を解決す
るために本発明は、被測定液へ下方に向けて挿入され被
測定液の液位に応じた出力信号を出力する細長い主電極
と、この主電極と間隔を置いて並行な位置関係でその被
測定液へ下方に向けて挿入される細長い補助電極と、そ
れら主電極および補助電極のうち少なくとも主電極の先
端に間隔を置いて配置された同電位電極と、それら主電
極および同電位電極の間に互いに間隔を置き補助電極に
沿って配置されその出力信号を補正する補正信号を出力
する参照電極と、その補助電極に交流信号を印加する信
号源と、それら主電極、同電位電極および参照電極間の
交流的な同電位状態を形成する同電位形成部とを備えた
静電容量形レベル測定装置であり、上記主電極、補助電
極、同電位電極および参照電極が棒状絶縁体内に配置さ
れて構成されている。
In order to solve such a problem, the present invention provides an elongated main electrode which is inserted downward into a liquid to be measured and outputs an output signal corresponding to the level of the liquid to be measured. An elongated auxiliary electrode which is inserted downward into the liquid to be measured in a parallel positional relationship with the main electrode, and is disposed at least at the tip of the main electrode among the main electrode and the auxiliary electrode. The same potential electrode, a reference electrode which is arranged along the auxiliary electrode with a space between the main electrode and the same potential electrode and outputs a correction signal for correcting the output signal, and an AC signal is supplied to the auxiliary electrode. An electrostatic capacitance level measuring device comprising: a signal source to be applied; and an equipotential forming section that forms an ac equipotential state between the main electrode, the equipotential electrode, and the reference electrode. Electrode, same potential electrode Fine reference electrode is formed by arranging the rod-like insulating body.

【0018】また、本発明は、上記主電極および参照電
極と補助電極との間に静電遮蔽部材を配置する構成も可
能である。さらに、本発明は、上記主電極および補助電
極の幅以上の幅を有する棒状体で上記静電遮蔽部材を同
電位電極から延設して形成すると良い。
In the present invention, an electrostatic shielding member may be provided between the main electrode and the reference electrode and the auxiliary electrode. Further, according to the present invention, it is preferable that the electrostatic shielding member is formed to extend from the same potential electrode with a rod having a width equal to or larger than the width of the main electrode and the auxiliary electrode.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。なお、従来例と共通する部分には
同一の符号を付す。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same reference numerals are given to portions common to the conventional example.

【0020】図1は本発明に係る静電容量形レベル測定
装置を示す図であり、図2はその動作を説明する概略
図、図3および図4はその等価回路図である。図1にお
いて、絶縁槽3は公知の絶縁材料から形成された容器で
あり、例えば導電性の被測定液1が入れられており、絶
縁槽3は大地21に絶縁台23を介して載置されてい
る。
FIG. 1 is a diagram showing a capacitance type level measuring device according to the present invention, FIG. 2 is a schematic diagram for explaining the operation, and FIGS. 3 and 4 are equivalent circuit diagrams. In FIG. 1, an insulating tank 3 is a container formed of a known insulating material, for example, contains a conductive liquid 1 to be measured, and the insulating tank 3 is placed on the ground 21 via an insulating table 23. ing.

【0021】棒状の補助電極5および主電極7は、上下
方向に所定の間隔を隔てて並行に配置されており、補助
電極5の下方先端には僅かな間隔を置いて板状の同電位
電極29が配置されている。主電極7の下方先端と同電
位電極29の間には、互いに僅かな間隔を置いて薄く小
さな参照電極39が補助電極5に沿って配置されてお
り、同電位電極29は補助電極5および主電極7の両下
方先端の延長上に位置するような形状で配置されてお
り、主電極7、参照電極39が補助電極5に沿ってこれ
とほぼ等長になっている。
The rod-shaped auxiliary electrode 5 and the main electrode 7 are arranged in parallel at a predetermined interval in the vertical direction, and a plate-shaped equipotential electrode is provided at a lower end of the auxiliary electrode 5 with a small interval. 29 are arranged. Between the lower end of the main electrode 7 and the same potential electrode 29, a thin and small reference electrode 39 is arranged along the auxiliary electrode 5 at a slight distance from each other. The main electrode 7 and the reference electrode 39 are arranged along the auxiliary electrode 5 so as to be substantially equal in length to the extension of both lower ends of the electrode 7.

【0022】それら補助電極5、主電極7、参照電極3
9および同電位電極29は、例えば石英材料から円筒状
にして有底に形成するとともに外周をふっ素樹脂でコー
ティングした耐食性絶縁層19(17)内に、上述した
位置関係で収納支持されて1軸形の複合電極を形成して
おり、絶縁層19は図示しない保持手段にて保持されて
いる。それら補助電極5、主電極7、参照電極39およ
び同電位電極29の形状を具体的に例示すれば、図5
A、Bに示すようになる。
The auxiliary electrode 5, the main electrode 7, and the reference electrode 3
The electrode 9 and the same potential electrode 29 are housed and supported in a corrosion-resistant insulating layer 19 (17), which is formed of, for example, a quartz material and has a cylindrical bottom with an outer periphery coated with a fluororesin, in the above-described positional relationship, and is uniaxial. A composite electrode is formed, and the insulating layer 19 is held by holding means (not shown). If the shapes of the auxiliary electrode 5, the main electrode 7, the reference electrode 39, and the same potential electrode 29 are specifically illustrated, FIG.
A and B are as shown.

【0023】すなわち、図5Aの構成は、円柱棒を軸方
向に沿って半割状に二分割した形状の補助電極5、主電
極7であって主電極7を若干短く形成するとともに、補
助電極5と主電極7の下方先端に円板状の同電位電極2
9を配置し、主電極7と同電位電極29の間に半円板状
の参照電極39を配置したものである。また、図5Bの
構成は、円筒棒を軸方向に沿って半割状に二分割した円
弧形状の補助電極5、主電極7および参照電極39と、
円板状の同電位電極29からなるものである。
That is, the configuration shown in FIG. 5A comprises an auxiliary electrode 5 and a main electrode 7 each having a shape obtained by dividing a cylindrical rod into two in a half along the axial direction. 5 and a disk-shaped equipotential electrode 2 at the lower end of the main electrode 7.
9, and a semi-circular reference electrode 39 is arranged between the main electrode 7 and the same potential electrode 29. The configuration in FIG. 5B includes an arc-shaped auxiliary electrode 5, a main electrode 7, and a reference electrode 39 obtained by dividing a cylindrical rod into two halves along the axial direction.
It is composed of a disc-shaped same potential electrode 29.

【0024】図1に戻って、補助電極5の上側先端に
は、出力レベルの安定した例えば40KHzの交流信号
を発振出力する信号源9が接続されており、信号源9の
発振出力は大地21にも接続されている。もっとも、必
ずしも信号源9を大地21に接続する必要はないが、安
全上から好ましいうえ補正動作範囲が狭くなって使用し
易い利点がある。主電極7の上側先端は、シールドケー
ブル31の芯線31aを介してOP(オペ)アンプ33
の反転入力端子に接続され、このOPアンプ33の非反
転入力端子にはシールドケーブル31のシールド部31
bが接続されている。
Returning to FIG. 1, a signal source 9 for oscillating and outputting an AC signal of, for example, 40 KHz having a stable output level is connected to the upper end of the auxiliary electrode 5, and the oscillation output of the signal source 9 is ground 21. Is also connected. Of course, it is not necessary to connect the signal source 9 to the ground 21, but it is preferable from the viewpoint of safety, and has a merit that the correction operation range is narrow and easy to use. The upper end of the main electrode 7 is connected to an OP (operation) amplifier 33 through a core 31 a of the shielded cable 31.
The inverting input terminal of the OP amplifier 33 has a non-inverting input terminal.
b is connected.

【0025】OPアンプ33の非反転入力端子は0電位
(0V)に固定されており、その出力端子は帰還回路3
5を介して非反転入力端子に接続される一方、整流平滑
部13に接続されている。そのため、OPアンプ33の
出力端子には、反転入力端子に加えられた電圧の逆極性
の電圧が出力され、帰還回路35を適当に選定すること
によって非反転入力端子と反転入力端子が交流的に同一
電位となっている。
The non-inverting input terminal of the OP amplifier 33 is fixed at 0 potential (0 V), and its output terminal is connected to the feedback circuit 3.
5 is connected to the non-inverting input terminal, while being connected to the rectifying / smoothing unit 13. Therefore, a voltage having a polarity opposite to that of the voltage applied to the inverting input terminal is output to the output terminal of the OP amplifier 33. By appropriately selecting the feedback circuit 35, the non-inverting input terminal and the inverting input terminal become It has the same potential.

【0026】従って、OPアンプ33は、帰還回路35
とともに主電極7を交流的に0電位と同一電位状態にす
る同電位形成部37として機能するとともに、主電極7
からの出力電流を電圧に変換する変換部(例えば図10
中の符号11)としての機能を有する。整流平滑部13
はOPアンプ33からの出力信号を整流平滑するもの
で、調整部15に接続されている。これら整流平滑部1
3および調整部15の機能は従来例と同様である。
Therefore, the OP amplifier 33 is provided with a feedback circuit 35
Together with the main electrode 7 to function as an equipotential forming section 37 for alternately bringing the main electrode 7 into the same potential state as the zero potential.
A converter for converting the output current from the converter into a voltage (for example, FIG.
11). Rectifying smoothing unit 13
Is for rectifying and smoothing the output signal from the OP amplifier 33, and is connected to the adjusting unit 15. These rectifying and smoothing units 1
The functions of 3 and the adjusting unit 15 are the same as in the conventional example.

【0027】参照電極39は、主電極7又は補助電極5
の近傍を通したシールドケーブル41の芯線41aを介
してOPアンプ43の反転入力端子に接続され、同電位
電極29はシールドケーブル41のシールド部41bを
介してOPアンプ43の非反転入力端子に接続され、こ
の非反転入力端子が0電位(0V)に固定されている。
OPアンプ43の出力端は帰還回路35と同様な帰還回
路45を介して反転入力端子へ接続されるとともに整流
平滑回路13と同様な整流平滑部47に接続されてお
り、OPアンプ43および帰還回路45によって上述し
た同電位形成部37と同様な同電位形成部49が形成さ
れている。
The reference electrode 39 is the main electrode 7 or the auxiliary electrode 5
Is connected to the inverting input terminal of the OP amplifier 43 via the core wire 41a of the shielded cable 41 passing through the vicinity of the same, and the same potential electrode 29 is connected to the non-inverting input terminal of the OP amplifier 43 via the shield portion 41b of the shielded cable 41. The non-inverting input terminal is fixed at 0 potential (0 V).
The output terminal of the OP amplifier 43 is connected to an inverting input terminal via a feedback circuit 45 similar to the feedback circuit 35 and to a rectifying / smoothing unit 47 similar to the rectifying / smoothing circuit 13. 45 forms the same potential forming part 49 similar to the same potential forming part 37 described above.

【0028】整流平滑部13、47は、演算部51に接
続されるとともに補償部53、55に接続されており、
整流平滑部13、47と演算部51間には各々出力端P
1、P2が形成されている。補償部53、55は、絶縁
槽3内の被測定液1が空状態における補償静電容量に相
当する補償値を記憶させている。
The rectifying / smoothing units 13 and 47 are connected to the calculating unit 51 and to the compensating units 53 and 55, respectively.
Output terminals P are provided between the rectifying and smoothing units 13 and 47 and the arithmetic unit 51, respectively.
1, P2 are formed. The compensation units 53 and 55 store compensation values corresponding to compensation capacitances when the liquid 1 to be measured in the insulating tank 3 is empty.

【0029】次に、このような構成の静電容量形レベル
測定装置の動作を説明する。図1の静電容量形レベル測
定装置において、図2の概略図に示すように、補助電極
5と主電極7間の気体(空気)中の静電容量をCa、補
助電極5周囲の液中の絶縁層19の静電容量をCL1、
主電極7周囲の液中の絶縁層19の静電容量をCL2、
参照電極39周囲の絶縁層19の静電容量をCr、同電
位電極29と参照電極39間の静電容量をCk1、補助
電極5と同電位電極29間の静電容量をCk2、主電極
7と参照電極39間の静電容量をCk3、同電位電極2
9先端の絶縁層19の静電容量をCs、絶縁槽3の側部
と大地21間の静電容量をCx1、絶縁槽3の底部と大
地21間の静電容量をCx2、補助電極5と主電極7間
の電極内の静電容量をCk4、補助電極5と参照電極3
9間の電極内の静電容量をCk5とすれば、被測定液1
が参照電極39を超えた状態の等価回路は図3のように
なる。
Next, the operation of the capacitance type level measuring device having such a configuration will be described. As shown in the schematic diagram of FIG. 2, the capacitance in the gas (air) between the auxiliary electrode 5 and the main electrode 7 is Ca, and the capacitance in the liquid around the auxiliary electrode 5 is as shown in the schematic diagram of FIG. The capacitance of the insulating layer 19 is CL1,
The capacitance of the insulating layer 19 in the liquid around the main electrode 7 is CL2,
The capacitance of the insulating layer 19 around the reference electrode 39 is Cr, the capacitance between the same potential electrode 29 and the reference electrode 39 is Ck1, the capacitance between the auxiliary electrode 5 and the same potential electrode 29 is Ck2, and the main electrode 7 is The capacitance between the reference electrode 39 and Ck3 is the same as that of the potential electrode 2
9, the capacitance of the insulating layer 19 at the tip is Cs, the capacitance between the side of the insulating tank 3 and the ground 21 is Cx1, the capacitance between the bottom of the insulating tank 3 and the ground 21 is Cx2, The capacitance in the electrode between the main electrodes 7 is Ck4, the auxiliary electrode 5 and the reference electrode 3
Assuming that the capacitance in the electrode between electrodes 9 is Ck5,
FIG. 3 shows an equivalent circuit in which the signal exceeds the reference electrode 39.

【0030】静電容量Caには補助電極5や主電極7周
囲の絶縁層19に係る気体中の静電容量を含めて示し、
詳細な図示を省略した。そして、信号源9から補助電極
5および大地21に印加された交流信号Voは、液位測
定用の交流電流imとして静電容量Ca、CL1、CL
2、Cx1、Cx2、Ck4、主電極7およびシールド
ケーブル31の芯線31aを介してOPアンプ33へ出
力される一方、補正用の交流電流irとして静電容量C
L1、Cx1、Cx2、Cr2、Ck5、参照電極39
およびシールドケーブル41の芯線41aを介してOP
アンプ43へ出力される。整流平滑部13、47にて整
流平滑された出力信号S1、S2は、演算部51へ出力
されて除算(S1/S2)され、測定信号として出力さ
れる。
The capacitance Ca includes the capacitance of the auxiliary layer 5 and the insulating layer 19 around the main electrode 7 in the gas including the capacitance.
Detailed illustration is omitted. Then, the AC signal Vo applied from the signal source 9 to the auxiliary electrode 5 and the ground 21 is used as an AC current im for measuring the liquid level as the capacitances Ca, CL1, and CL.
2, Cx1, Cx2, Ck4, the main electrode 7, and the core cable 31a of the shielded cable 31 are output to the OP amplifier 33, while the capacitance C is output as a correction AC current ir.
L1, Cx1, Cx2, Cr2, Ck5, reference electrode 39
And OP via the core wire 41a of the shielded cable 41.
Output to the amplifier 43. The output signals S1 and S2 rectified and smoothed by the rectification smoothing units 13 and 47 are output to the calculation unit 51, divided (S1 / S2), and output as measurement signals.

【0031】ここで、被測定液1がある程度貯留された
図3の等価回路において、主電極7からの交流電流im
および参照電極39からの交流電流irは、次のように
なり、OPアンプ33、43の反転入力端子へ流れる。
なお、符号VM は被測定液1の電位であり、符号ωはそ
の交流電流の角速度である。 im=ωCL2VM +ωCaVo+ωCk4Vo … (1) ir=ωCrVM +ωCk5Vo … (2)
Here, in the equivalent circuit of FIG. 3 in which the liquid 1 to be measured is stored to some extent, the alternating current im from the main electrode 7
The AC current ir from the reference electrode 39 is as follows, and flows to the inverting input terminals of the OP amplifiers 33 and 43.
The symbol VM is the potential of the liquid 1 to be measured, and the symbol ω is the angular velocity of the alternating current. im = ωCL2VM + ωCaVo + ωCk4Vo (1) ir = ωCrVM + ωCk5Vo (2)

【0032】また、被測定液1が参照電極39より低下
して空の状態において、補助電極5と主電極7間の静電
容量をCao、補助電極5と参照電極39間の静電容量
をCar、同電位電極29と大地21間の静電容量をC
saとすれば、その等価回路は図4に示すようになり、
主電極7からの交流電流imoおよび参照電極39から
の交流電流iroは次のようになる。 imo=ωCaoVo +ωCk4Vo … (3) iro=ωCarVo +ωCk5Vo … (4)
When the liquid to be measured 1 is lower than the reference electrode 39 and is empty, the capacitance between the auxiliary electrode 5 and the main electrode 7 is Cao, and the capacitance between the auxiliary electrode 5 and the reference electrode 39 is Car, the capacitance between the same potential electrode 29 and the ground 21 is C
sa, the equivalent circuit is as shown in FIG.
The AC current imo from the main electrode 7 and the AC current iro from the reference electrode 39 are as follows. imo = ωCaoVo + ωCk4Vo (3) iro = ωCarVo + ωCk5Vo (4)

【0033】これら式(3)および(4)の値を空調整
値として予め図1中の補償部53、55に記憶し、これ
ら空調整用の補償値を含めて整流平滑部13、47にて
式(1)や(2)から差演算し、入力電流im、irに
置き換えた結果は、主電極5周囲の絶縁層19の電極長
Loにおける静電容量をCloとした場合、次のように
なる。 im=ωCL2VM+ωCaVo−ωCaoVo+ωCk4Vo−ωCk5Vo ={(ωL/Lo)CloVM}+ω{(Lo−L)/Lo}CaoVo −ωCaoVo =〔ω(L/Lo)〕(CloVM −CaoVo) ir=ωCrVM −ωCarVo+ωCk4Vo−ωCk5Vo =(ωLr/Lo)CloVM−(ωLr/Lo)CaoVo =〔ω(Lr/Lo)〕(CloVM −CaoVo) もっとも、CL2は(L/Lo)Clo、Caは〔(L
o−L/Lo)〕Cao、Crは(Lr/Lo)Cl
o、Carは(Lr/Lo)Caoといった条件の下で
それらの式が成立する。
The values of these equations (3) and (4) are stored in advance in the compensating units 53 and 55 in FIG. 1 as empty adjustment values, and the rectifying / smoothing units 13 and 47 include these empty adjusting compensation values. The result obtained by performing the difference operation from Expressions (1) and (2) and substituting the input currents im and ir is as follows when the capacitance at the electrode length Lo of the insulating layer 19 around the main electrode 5 is Clo. become. im = [omega] CL2VM + [omega] CaVo- [omega] CaoVo + [omega] Ck4Vo- [omega] Ck5Vo = {([omega] L / Lo) CloVM} + [omega] [(Lo-L) / Lo {CaoVo- [omega] CaoVo = [[omega] (L / Lo)] (CloVM-CoVoVoCoVoVoCoVoCoVoCoVoVoCoVoVoCoVoVoCoVoVoCoVoVoCoVoVoCoVoVoCoVoVoVoVoVoCoVoVoCoVoVoCoVoVoCoVoVoCVo. = (ΩLr / Lo) CloVM− (ωLr / Lo) CaoVo = [ω (Lr / Lo)] (CloVM−CaoVo) However, CL2 is (L / Lo) Clo and Ca is [(L
o-L / Lo)] Cao and Cr are (Lr / Lo) Cl
For o and Car, their expressions are satisfied under conditions such as (Lr / Lo) Cao.

【0034】ここで被測定液1に漬浸されている主電極
7の長さをLとし、参照電極39の軸方向長をLrとす
れば、 im/ir=L/Lr となり、交流電流imおよび交流電流irの比から、被
測定液1の液位を測定できる。
If the length of the main electrode 7 immersed in the liquid 1 to be measured is L and the length of the reference electrode 39 in the axial direction is Lr, im / ir = L / Lr, and the alternating current im The liquid level of the liquid 1 to be measured can be measured from the ratio of the AC current ir.

【0035】このような本発明では、補助電極5、主電
極7、参照電極39および同電位電極29が、有底の円
筒状絶縁層19内に被覆するように収納されて1本に一
体化されてなるから、従来のように補助電極5および主
電極7を間隔を置いて別個に2本構成に比べ、電極構造
が簡単となるうえ、小型化も容易となって扱い易くな
る。しかも、OPアンプ33、43、すなわち同電位形
成部37、49によって主電極7、参照電極39および
同電位電極29間が交流的に同電位状態となっているか
ら、補助電極5と同電位電極29間、参照電極39と同
電位電極29間、主電極7と同電位電極29間に形成さ
れる静電容量Ck1、Ck2、Ck3には交流電流が流
れない。
In the present invention, the auxiliary electrode 5, the main electrode 7, the reference electrode 39, and the same potential electrode 29 are housed so as to be covered in the bottomed cylindrical insulating layer 19, and are integrated into one. Therefore, as compared with the conventional configuration in which the auxiliary electrode 5 and the main electrode 7 are separately provided at a distance from each other, the electrode structure is simplified, the size is reduced, and the handling becomes easier. Further, since the main amplifier 7, the reference electrode 39, and the same potential electrode 29 are brought into the same potential in an alternating current state by the OP amplifiers 33, 43, that is, the same potential forming parts 37, 49, the auxiliary electrode 5 and the same potential electrode are used. No alternating current flows through the capacitances Ck1, Ck2, Ck3 formed between the electrodes 29, the reference electrode 39 and the same potential electrode 29, and between the main electrode 7 and the same potential electrode 29.

【0036】また、静電容量CL1、Cx1、Cx2、
Csの変化が主電極7や参照電極39からの出力交流電
流im、irの比に影響を与えず、被測定液1の液位レ
ベルを正確かつリニアに測定できる。さらに、空の状態
において主電極7および参照電極39からの出力信号S
1、S2を出力端P1、P2で測定し、出力信号S1、
S2が「0(ゼロ)」となるような補償部53、55に
記憶された補償値により、出力交流電流im、irを補
償可能となる。
Further, the capacitances CL1, Cx1, Cx2,
The change in Cs does not affect the ratio of the output alternating currents im and ir from the main electrode 7 and the reference electrode 39, and the liquid level of the liquid 1 to be measured can be measured accurately and linearly. Further, the output signal S from the main electrode 7 and the reference electrode 39 in the empty state
1, S2 are measured at the output terminals P1, P2, and the output signals S1,
The output AC currents im and ir can be compensated by the compensation values stored in the compensation units 53 and 55 such that S2 becomes “0 (zero)”.

【0037】そのため、従来では例えば被測定液1が少
なくなって参照電極39が露出したとき、整流平滑部4
7からの出力信号S2が極小化し、測定信号(S1/S
2)が逆に大きくなってゆく出力反転現象を発生させる
おそれがあったが、図4の構成では、被測定液1が空き
状態で出力信号S1をほぼ「0」にして測定信号(S1
/S2)もほぼ「0」にしておけば、参照電極39が露
出した以降、出力反転現象を抑えるとともに測定信号
(S1/S2)を横ばい又は「0」に至るまで減少させ
ることが可能となる。
For this reason, conventionally, for example, when the liquid to be measured 1 is reduced and the reference electrode 39 is exposed,
7 is minimized and the measurement signal (S1 / S
In contrast, in the configuration of FIG. 4, the output signal S1 is almost “0” when the liquid to be measured 1 is empty, and the measurement signal (S1) may be generated.
If / S2) is also set to approximately "0", it is possible to suppress the output inversion phenomenon and reduce the measurement signal (S1 / S2) to the level or to "0" after the reference electrode 39 is exposed. .

【0038】ところで、図1に係る第1の構成におい
て、補助電極5、主電極7、参照電極39および同電位
電極29の寸法は互いに同一の断面形状である必要性は
なく、間隔が一定であれば良い。また、上述した本発明
の実施の形態は、補助電極5および主電極7双方の下方
先端の延長上に同一の同電位電極29を位置させる構成
であったが、本発明では主電極7の下方先端の延長上に
のみ同電位電極29を位置する構成でも本発明の目的達
成が可能である。
By the way, in the first configuration shown in FIG. 1, the dimensions of the auxiliary electrode 5, the main electrode 7, the reference electrode 39 and the same potential electrode 29 do not need to have the same cross-sectional shape, and the intervals are constant. I just want it. In the above-described embodiment of the present invention, the same potential electrode 29 is located on the extension of the lower end of both the auxiliary electrode 5 and the main electrode 7. The object of the present invention can be achieved even with a configuration in which the same potential electrode 29 is located only on the extension of the tip.

【0039】もっとも、補助電極5および主電極7双方
の先端側に同電位電極29を位置すれば、より安定した
液位測定が可能となる。要は、補助電極5および主電極
7のうち少なくとも主電極7の先端に間隔を置いて配置
すれば良い。また、本発明の静電容量形レベル測定装置
では、図6に示すように、補助電極5および主電極7の
上側に僅かな間隔を置いて、図5の同電位電極29と同
様な同電位電極29を配置する構成も可能である。この
ように、補助電極5および主電極7の上側にも同電位電
極29を配置する構成では、補助電極5および主電極7
の上側に物や作業者が接近しても、被測定液1の液位レ
ベルを正確かつリニアに測定できる利点がある。
However, if the same potential electrode 29 is located on the tip side of both the auxiliary electrode 5 and the main electrode 7, more stable liquid level measurement becomes possible. The point is that the auxiliary electrode 5 and the main electrode 7 may be arranged at least at the tip of the main electrode 7 with an interval. In the capacitance type level measuring device of the present invention, as shown in FIG. 6, the same potential as the same potential electrode 29 in FIG. A configuration in which the electrodes 29 are arranged is also possible. As described above, in the configuration in which the same potential electrode 29 is disposed above the auxiliary electrode 5 and the main electrode 7, the auxiliary electrode 5 and the main electrode 7
There is an advantage that the liquid level of the liquid 1 to be measured can be measured accurately and linearly even if an object or an operator approaches the upper side of the liquid.

【0040】図7は本発明に係る静電容量形レベル測定
装置の他の実施の形態を示す概略斜視図である。この構
成は、上述した図5A、Bに示した円板状の同電位電極
29から、この外径幅で一体的に、補助電極5および主
電極7の上端近傍まで主電極7および参照電極39と補
助電極5間の空隙に延設させて遮蔽体57を形成し、補
助電極5、主電極7、同電位電極29および参照電極3
9を絶縁層(図示せず)19で被覆したものであり、他
の構成は図1とほぼ同様である。
FIG. 7 is a schematic perspective view showing another embodiment of the capacitance type level measuring device according to the present invention. 5A and FIG. 5B, the main electrode 7 and the reference electrode 39 extend from the disk-shaped equipotential electrode 29 to the vicinity of the upper ends of the auxiliary electrode 5 and the main electrode 7 integrally with this outer diameter. A shield 57 is formed to extend in a gap between the auxiliary electrode 5, the auxiliary electrode 5, the main electrode 7, the same potential electrode 29, and the reference electrode 3.
9 is covered with an insulating layer (not shown) 19, and other configurations are almost the same as those in FIG.

【0041】このように、主電極7および参照電極39
と補助電極5との間の空隙に遮蔽体57を配置し、主電
極7および参照電極39と、補助電極5との間を遮蔽体
57で分離すると、主電極7および参照電極39と補助
電極5との間に形成される静電容量Ck4、Ck5がほ
ぼ零となり、より安定した液位レベル測定が可能とな
る。しかも、遮蔽体57は、主電極7および参照電極3
9と補助電極5との間に形成される静電容量を遮蔽する
目的で配置するから、その効果を確実にするために、図
8A、Bのように遮蔽体57の幅寸法Sは、主電極7
(参照電極39)や補助電極5の径方向寸法sと同幅、
より好ましくは広く(S>s)選択することが好まし
い。なお、図8A中の破線は、図5Bおよび図7B中の
主電極7や補助電極5を用いた例である。
As described above, the main electrode 7 and the reference electrode 39
When the shield 57 is arranged in the gap between the auxiliary electrode 5 and the main electrode 7 and the reference electrode 39 and the auxiliary electrode 5 is separated by the shield 57, the main electrode 7, the reference electrode 39, and the auxiliary electrode 5 are separated. 5, the capacitances Ck4 and Ck5 formed between them become almost zero, and more stable liquid level measurement can be performed. In addition, the shield 57 includes the main electrode 7 and the reference electrode 3.
8A and 8B, the width dimension S of the shielding body 57 is mainly set as shown in FIGS. 8A and 8B in order to secure the effect. Electrode 7
(Reference electrode 39) and the same width as the radial dimension s of the auxiliary electrode 5,
More preferably, it is preferable to select widely (S> s). The broken line in FIG. 8A is an example using the main electrode 7 and the auxiliary electrode 5 in FIGS. 5B and 7B.

【0042】さらに、上述した実施の形態では、予め円
筒状に形成された有底の絶縁層19内に、補助電極5、
主電極7、参照電極39および同電位電極29を収納す
る例を説明したが、本発明ではこれに限定されず、例え
ば、楕円形、四角形、多角形の形状も実施可能である
し、補助電極5、主電極7、参照電極39および同電位
電極29を細長い柱状の絶縁層19内に埋設するように
配置する構成も可能であり、棒状絶縁体内に収納支持さ
せれば本発明の目的達成が可能である。
Further, in the above-described embodiment, the auxiliary electrode 5 and the auxiliary electrode 5 are formed in the insulating layer 19 having a bottom formed in a cylindrical shape in advance.
Although an example in which the main electrode 7, the reference electrode 39, and the same potential electrode 29 are housed has been described, the present invention is not limited to this. For example, an elliptical shape, a square shape, and a polygonal shape can be implemented. 5, the main electrode 7, the reference electrode 39, and the same potential electrode 29 can be arranged so as to be embedded in the elongated columnar insulating layer 19, and the object of the present invention can be achieved if the main electrode 7, the reference electrode 39 and the same potential electrode 29 are housed and supported in a rod-shaped insulator. It is possible.

【0043】また、主電極7(参照電極39)と補助電
極5との間に配置する遮蔽体57は、図7および図8A
のような細長い板状、帯状又はフィルム状である必要は
なく、図8Bのように横断面円筒状にする等任意である
し、補助電極5、主電極7および遮蔽体57の上側に、
図5のような円板状の同電位電極29を配置する構成も
可能である。さらに、上述した実施の形態では、導電性
の被測定液1の液位レベルを測定する例を説明したが、
本発明では絶縁性の被測定液1の液位レベル測定にも好
適する。
Further, the shield 57 disposed between the main electrode 7 (reference electrode 39) and the auxiliary electrode 5 is shown in FIGS.
It is not necessary to be in the shape of an elongated plate, a band, or a film as in FIG. 8B, and it is optional such as having a cross-sectional cylindrical shape as shown in FIG. 8B, and above the auxiliary electrode 5, the main electrode 7, and the shield 57,
A configuration in which a disk-shaped equipotential electrode 29 is arranged as shown in FIG. 5 is also possible. Further, in the above-described embodiment, the example in which the liquid level of the conductive liquid 1 to be measured is measured has been described.
The present invention is also suitable for measuring the liquid level of the insulating liquid 1 to be measured.

【0044】本発明において、上述した各同電位形成部
37、43は、一例であってOPアンプ33、43と帰
還回路35、41等からなる構成に限定されず、同電位
にする他の電子回路で同様に実施可能である。本発明に
係る静電容量形レベル測定装置は、上述した各形態例の
ように絶縁槽3に被測定液1を溜める構成に限らず、広
く一般的な容器、水処理等の貯水槽、自然界のダムや河
川等々の液面レベル測定に適用可能である。
In the present invention, each of the same potential forming sections 37 and 43 described above is an example, and is not limited to the configuration including the OP amplifiers 33 and 43 and the feedback circuits 35 and 41. It can be implemented in a circuit as well. The capacitance type level measuring apparatus according to the present invention is not limited to the configuration in which the liquid to be measured 1 is stored in the insulating tank 3 as in each of the above-described embodiments, but is a widely used container, a water storage tank for water treatment, etc. It can be applied to liquid level measurement of dams and rivers.

【0045】[0045]

【発明の効果】以上説明したように本発明は、細長い主
電極と細長い補助電極を互いに間隔を置いて並行な位置
関係で配置し、これら主電極および補助電極のうち少な
くとも主電極の先端に同電位電極を間隔を置いて配置
し、これら主電極および同電位電極の間に参照電極を互
いに間隔を置き補助電極に沿って配置し、その補助電極
に信号源から交流信号を印加し、同電位形成部にてそれ
ら主電極、同電位電極および参照電極間の交流的な同電
位状態を形成し、主電極からの出力信号を参照電極から
の補正信号で補正して被測定液の液位を測定する静電容
量形レベル測定装置において、それら主電極、補助電
極、同電位電極および参照電極を棒状絶縁体内に配置し
たから、構造、特に電極構造が簡単で小型化も容易であ
るうえ、被測定液を貯めた容器の設置形態や形状に拘わ
りなく、被測定液の液位レベルを正確かつリニアに測定
できるし、液位に応じた出力信号を補正可能となり、例
えば容器内の被測定液の正確な空調整も可能となる利点
がある。また、上記主電極および参照電極と補助電極と
の間に静電遮蔽部材を配置する構成では、より安定かつ
正確な液位測定が可能となる。さらに、上記主電極およ
び補助電極の幅以上の幅を有し同電位電極から延設する
静電遮蔽部材を設けた構成では、更に一層安定かつ正確
な液位測定が可能となる。
As described above, according to the present invention, an elongated main electrode and an elongated auxiliary electrode are arranged in a parallel positional relationship at intervals from each other, and the main electrode and the auxiliary electrode are arranged at least at the tip of the main electrode. Potential electrodes are arranged at intervals, reference electrodes are arranged between these main electrodes and the same potential electrodes along the auxiliary electrodes, and an AC signal is applied to the auxiliary electrodes from a signal source, and the same potential is applied. The forming section forms an AC equipotential state between the main electrode, the same potential electrode and the reference electrode, and corrects the output signal from the main electrode with a correction signal from the reference electrode to adjust the liquid level of the liquid to be measured. Since the main electrode, auxiliary electrode, same-potential electrode and reference electrode are arranged in the rod-shaped insulator in the capacitance type level measuring device to be measured, the structure, particularly the electrode structure, is simple and easy to miniaturize, and it is easy to use. Stores measurement liquid Regardless of the configuration or shape of the container, the liquid level of the liquid to be measured can be measured accurately and linearly, and the output signal according to the liquid level can be corrected.For example, accurate air conditioning of the liquid to be measured in the container There is an advantage that adjustment is possible. Further, in the configuration in which the electrostatic shielding member is arranged between the main electrode, the reference electrode, and the auxiliary electrode, more stable and accurate liquid level measurement can be performed. Further, in a configuration in which an electrostatic shielding member having a width equal to or larger than the width of the main electrode and the auxiliary electrode and extending from the same potential electrode is provided, more stable and accurate liquid level measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る静電容量形レベル測定装置の実施
の形態を示す図である。
FIG. 1 is a diagram showing an embodiment of a capacitance type level measuring device according to the present invention.

【図2】図1の静電容量形レベル測定装置の動作を説明
するための概略図である。
FIG. 2 is a schematic diagram for explaining the operation of the capacitance type level measuring device of FIG.

【図3】図1の静電容量形レベル測定装置の等価回路図
である。
FIG. 3 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図4】図1の静電容量形レベル測定装置の等価回路図
である。
FIG. 4 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図5】本発明に係る静電容量形レベル測定装置に用い
る補助電極、主電極、参照電極および同電位電極の概略
構成を示す斜視図である。
FIG. 5 is a perspective view showing a schematic configuration of an auxiliary electrode, a main electrode, a reference electrode, and the same potential electrode used in the capacitance type level measuring device according to the present invention.

【図6】本発明に係る静電容量形レベル測定装置に用い
る補助電極、主電極、参照電極および同電位電極の概略
構成を示す図である。
FIG. 6 is a diagram showing a schematic configuration of an auxiliary electrode, a main electrode, a reference electrode, and the same potential electrode used in the capacitance type level measuring device according to the present invention.

【図7】本発明に係る静電容量形レベル測定装置に用い
る補助電極、主電極、参照電極および同電位電極の概略
構成を示す斜視図である。
FIG. 7 is a perspective view showing a schematic configuration of an auxiliary electrode, a main electrode, a reference electrode, and the same potential electrode used in the capacitance type level measuring device according to the present invention.

【図8】本発明に係る静電容量形レベル測定装置に用い
る補助電極、主電極、参照電極および同電位電極の概略
構成を示す図である。
FIG. 8 is a diagram showing a schematic configuration of an auxiliary electrode, a main electrode, a reference electrode, and an equipotential electrode used in the capacitance type level measuring device according to the present invention.

【図9】従来の静電容量形レベル測定装置を示す図であ
る。
FIG. 9 is a diagram showing a conventional capacitance-type level measuring device.

【図10】図9の静電容量形レベル測定装置の等価回路
図である。
FIG. 10 is an equivalent circuit diagram of the capacitance type level measuring device of FIG. 9;

【図11】図9の静電容量形レベル測定装置の使用例を
説明する図である。
FIG. 11 is a diagram illustrating an example of use of the capacitance type level measuring device of FIG. 9;

【図12】図11の静電容量形レベル測定装置の等価回
路図である。
FIG. 12 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図13】図11の静電容量形レベル測定装置の等価回
路図である。
FIG. 13 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図14】図15の静電容量形レベル測定装置の等価回
路図である。
FIG. 14 is an equivalent circuit diagram of the capacitance type level measuring device of FIG.

【図15】図9の静電容量形レベル測定装置の使用例を
説明する図である。
FIG. 15 is a diagram illustrating an example of use of the capacitance type level measuring device of FIG. 9;

【符号の説明】[Explanation of symbols]

1 被測定液 3 絶縁槽 3a 導電槽(金属槽:補助電極) 5 補助電極 7 主電極 9 信号源 11 変換部 13、47 整流平滑部 15 調整部 17、19 絶縁層 21 大地 23 絶縁台 25 バルブ 27 パイプ 29 同電位電極 31、41 シールドケーブル 31a、41a 芯線 31b、41b シールド部 33、43 OPアンプ(オペアンプ) 35、45 帰還回路 37、49 同電位形成部 39 参照電極 51 演算部 53、55 補償部 57 遮蔽部材 DESCRIPTION OF SYMBOLS 1 Measurement liquid 3 Insulation tank 3a Conductive tank (metal tank: auxiliary electrode) 5 Auxiliary electrode 7 Main electrode 9 Signal source 11 Conversion part 13, 47 Rectification smoothing part 15 Adjustment part 17, 19 Insulation layer 21 Ground 23 Insulation stand 25 Valve 27 pipe 29 equipotential electrode 31, 41 shield cable 31a, 41a core wire 31b, 41b shield part 33, 43 OP amplifier (op amp) 35, 45 feedback circuit 37, 49 equipotential forming part 39 reference electrode 51 arithmetic part 53, 55 compensation Part 57 Shielding member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定液へ下方に向けて挿入され前記被
測定液の液位に応じた出力信号を出力する細長い主電極
と、 この主電極と間隔を置いて並行な位置関係で前記被測定
液へ下方に向けて挿入される細長い補助電極と、 前記主電極および補助電極のうち少なくとも前記主電極
の先端に間隔を置いて配置された同電位電極と、 前記主電極および同電位電極の間に互いに間隔を置き前
記補助電極に沿って配置され、前記出力信号を補正する
補正信号を出力する参照電極と、 前記補助電極に交流信号を印加する信号源と、 前記主電極、同電位電極および参照電極間の交流的な同
電位状態を形成する同電位形成部と、 とを備え、前記出力信号を前記補正信号で補正して前記
被測定液の液位が測定される静電容量形レベル測定装置
において、 前記主電極、補助電極、同電位電極および参照電極が、
棒状絶縁体内に配置されてなることを特徴とする静電容
量形レベル測定装置。
1. An elongated main electrode which is inserted downward into a liquid to be measured and outputs an output signal corresponding to the liquid level of the liquid to be measured, and said main electrode is spaced apart from said main electrode in a parallel positional relationship. An elongated auxiliary electrode that is inserted downward into the measurement liquid; and an equipotential electrode that is spaced apart at least at the tip of the main electrode among the main electrode and the auxiliary electrode; A reference electrode that is disposed along the auxiliary electrode with an interval therebetween and outputs a correction signal for correcting the output signal; a signal source that applies an AC signal to the auxiliary electrode; the main electrode and the same potential electrode And an equipotential forming unit that forms an ac equipotential state between the reference electrodes, and a capacitance type in which the output signal is corrected with the correction signal and the liquid level of the liquid to be measured is measured. A level measuring device, Electrode, the auxiliary electrode, the same potential and reference electrodes,
An electrostatic capacitance type level measuring device which is arranged in a rod-shaped insulator.
【請求項2】 前記主電極および参照電極と前記補助電
極との間に静電遮蔽部材が配置されてなる請求項1記載
の静電容量形レベル測定装置。
2. The electrostatic capacitance level measuring device according to claim 1, wherein an electrostatic shielding member is arranged between said main electrode and reference electrode and said auxiliary electrode.
【請求項3】 前記静電遮蔽部材は、前記主電極および
補助電極の幅以上の幅を有し前記同電位電極から延設さ
れてなる請求項2記載の静電容量形レベル測定装置。
3. The capacitance type level measuring device according to claim 2, wherein the electrostatic shielding member has a width equal to or greater than the width of the main electrode and the auxiliary electrode, and extends from the same potential electrode.
JP06032198A 1998-02-26 1998-02-26 Capacitance type level measuring device Expired - Fee Related JP3436117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06032198A JP3436117B2 (en) 1998-02-26 1998-02-26 Capacitance type level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06032198A JP3436117B2 (en) 1998-02-26 1998-02-26 Capacitance type level measuring device

Publications (2)

Publication Number Publication Date
JPH11248516A true JPH11248516A (en) 1999-09-17
JP3436117B2 JP3436117B2 (en) 2003-08-11

Family

ID=13138804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06032198A Expired - Fee Related JP3436117B2 (en) 1998-02-26 1998-02-26 Capacitance type level measuring device

Country Status (1)

Country Link
JP (1) JP3436117B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675542B1 (en) 2003-11-13 2007-01-29 알프스 덴키 가부시키가이샤 Liquid surface level sensor
KR100675543B1 (en) 2003-11-13 2007-01-29 알프스 덴키 가부시키가이샤 Liquid surface level sensor
US7318344B2 (en) * 2001-02-23 2008-01-15 Heger Research Llc Wireless swimming pool water level system
KR100794945B1 (en) 2003-12-22 2008-01-15 알프스 덴키 가부시키가이샤 Liquid surface level sensor
JP2010523962A (en) * 2007-04-02 2010-07-15 ハントリー テクノロジー リミテッド Liquid level sensor
CN109839170A (en) * 2017-11-29 2019-06-04 中国航发商用航空发动机有限责任公司 Liquid level sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677083A1 (en) * 2004-12-22 2006-07-05 Roxer Industries S.A. Flüssigkeitspegelsensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318344B2 (en) * 2001-02-23 2008-01-15 Heger Research Llc Wireless swimming pool water level system
KR100675542B1 (en) 2003-11-13 2007-01-29 알프스 덴키 가부시키가이샤 Liquid surface level sensor
KR100675543B1 (en) 2003-11-13 2007-01-29 알프스 덴키 가부시키가이샤 Liquid surface level sensor
KR100794945B1 (en) 2003-12-22 2008-01-15 알프스 덴키 가부시키가이샤 Liquid surface level sensor
JP2010523962A (en) * 2007-04-02 2010-07-15 ハントリー テクノロジー リミテッド Liquid level sensor
CN109839170A (en) * 2017-11-29 2019-06-04 中国航发商用航空发动机有限责任公司 Liquid level sensor
CN109839170B (en) * 2017-11-29 2021-04-23 中国航发商用航空发动机有限责任公司 Liquid level sensor

Also Published As

Publication number Publication date
JP3436117B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
US5546005A (en) Guarded capacitance probe and related measurement circuit
US6462536B1 (en) Eddy current sensor
KR101285460B1 (en) Capacitive liquid level sensor
JPH04331353A (en) Open cage type density sensor
JP7186787B2 (en) Apparatus for monitoring fluids
JPS631524B2 (en)
JP3436117B2 (en) Capacitance type level measuring device
JPH035863Y2 (en)
US3948102A (en) Trielectrode capacitive pressure transducer
WO2016189864A1 (en) Probe and voltage measuring device using same
JP3422355B2 (en) Capacitance type level measuring device
US2919579A (en) Electrically-conductive liquid level measuring system
US2724798A (en) Apparatus for measuring characteristics of materials
JP3372173B2 (en) Capacitance type level measuring device
JP3591709B2 (en) Capacitance type level measuring device
GB1603793A (en) Apparatus and method for measuring the level of electrically conducting liquids
CN1005169B (en) Capacitive gravity sensor
JP3422358B2 (en) Capacitance type level measuring device
JPH0989740A (en) Crystal sensor
SU1768996A1 (en) Capacity-type level gage
RU2113694C1 (en) Device for measuring the conducting medium level
JP7359497B1 (en) Non-contact voltage measuring device
SU798576A1 (en) Multichannel capacitive through-type sensor
JPH0293327A (en) Electrostatic capacity type level meter
US3228245A (en) Liquid quantity gage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees