JPH11248053A - Expansion bellows type duct - Google Patents
Expansion bellows type ductInfo
- Publication number
- JPH11248053A JPH11248053A JP10067788A JP6778898A JPH11248053A JP H11248053 A JPH11248053 A JP H11248053A JP 10067788 A JP10067788 A JP 10067788A JP 6778898 A JP6778898 A JP 6778898A JP H11248053 A JPH11248053 A JP H11248053A
- Authority
- JP
- Japan
- Prior art keywords
- duct
- coil
- band
- resin
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、樹脂製螺旋状補強
コイルをダクト壁に包み込むことにより、屈曲を繰り返
した場合でも、補強コイルとダクト壁との密着性が優れ
た、かつ収縮時の形態保持性が優れ、また伸長時に垂れ
下がりの少ない、しかも軽量な伸縮蛇腹ダクト、特に空
調ダクトとして有用な伸縮蛇腹ダクトに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a form in which a resin spiral reinforcing coil is wrapped in a duct wall so that even when bending is repeated, the adhesion between the reinforcing coil and the duct wall is excellent and the duct is contracted. The present invention relates to a lightweight telescopic bellows duct which has excellent holding properties and has little sagging during elongation, and which is particularly useful as an air conditioning duct.
【0002】[0002]
【従来の技術】従来、この種のダクトの代表的形態は
(a)、(b)、(c)の3つのタイプに分けられる。 (a):樹脂からなるダクト壁に金属製のコイルを添着
し、ダクト縦断面におけるダクト壁の谷部および山肩部
に溝を設けた伸縮蛇腹ダクト。 (b):樹脂からなるダクト壁のみ(コイルを未使用)
により構成され、隣り合う斜辺を厚肉と薄肉または長辺
と短辺の関係とした伸縮蛇腹ダクト。この種のダクトで
も、未使用時はコンパクトに収縮でき、使用時は長さが
自由に調整でき、さらに曲げた状態でも形態が保持でき
る。 (c):樹脂からなるダクト壁に高結晶化ポリプロピレ
ンなどの樹脂製のコイルを溶融接着または添着し、ダク
ト縦断面におけるダクト壁の谷部および山肩部に溝を設
けた伸縮性蛇腹ダクト。この種のダクトでも未使用時は
コンパクトに収縮でき、使用時は長さが自由に調整で
き、さらに曲げた状態でも形態が保持できる。2. Description of the Related Art Conventionally, typical types of ducts of this kind are classified into three types (a), (b) and (c). (A): A telescopic bellows duct in which a metal coil is attached to a duct wall made of resin, and grooves are provided in a valley portion and a mountain shoulder portion of the duct wall in a vertical section of the duct. (B): Only duct wall made of resin (no coil used)
And a telescopic bellows duct in which the adjacent hypotenuses have a relationship between a thick side and a thin side or a long side and a short side. Even with this type of duct, it can be compactly contracted when not in use, can be freely adjusted in length when in use, and can retain its shape even when bent. (C): An elastic bellows duct in which a resin coil such as highly crystallized polypropylene is melt-bonded or adhered to a duct wall made of resin, and grooves are provided in a valley portion and a shoulder portion of the duct wall in a vertical section of the duct. This type of duct can be compactly contracted when not in use, can be freely adjusted in length when in use, and can maintain its shape even when bent.
【0003】[0003]
【発明が解決しようとする課題】ところが上記(a)、
(b)、(c)タイプには、以下に示す問題点が挙げら
れる。 (a)タイプは、補強材の役割を果たすコイルが金属製
であるために重く、長尺にすると自重により垂れ下が
り、形態が保持できない。またダクト成形時、および配
管工事等での切断が金属であるため容易でない。焼却す
る場合、金属製のコイルは燃えずに残る。さらに衛生面
を要求される分野では、金属による錆が発生する。 (b)タイプは、補強材の役割を果たすコイルがないた
め、ダクトの径方向に対する押し潰しが弱く、また空調
用途として使用してもダクト内に負圧がかかると形状保
持ができなくなるため、実際には使用されていない。 (c)タイプは、(a)、(b)の問題点を解決された
ものである。しかしながら樹脂からなるダクト壁とコイ
ル材は溶融接着または添着可能な樹脂であるため、使用
される樹脂は限られてくる。However, the above (a),
The (b) and (c) types have the following problems. The type (a) is heavy because the coil serving as a reinforcing material is made of metal. If the coil is long, the coil hangs down due to its own weight, and the shape cannot be maintained. Also, it is not easy to cut during duct molding and piping work because it is made of metal. When incinerated, the metal coil remains without burning. Further, in the field where hygiene is required, metal rust is generated. The (b) type does not have a coil that plays the role of a reinforcing material, so the crushing of the duct in the radial direction is weak, and the shape cannot be maintained if a negative pressure is applied to the duct even when used for air conditioning. Not actually used. Type (c) solves the problems of (a) and (b). However, the resin used is limited because the duct wall made of resin and the coil material are resins that can be melt bonded or adhered.
【0004】本発明は、上記の問題点を鑑みてなされた
もので、樹脂製螺旋状補強コイルをダクト壁を構成する
樹脂製帯状体に包み込むことにより、屈曲を繰り返した
場合でも、ダクト壁とコイル材との剥離のない密着性の
優れた伸縮蛇腹ダクトを提供することを目的とする。さ
らには、補強材の役割を果たす螺旋状コイルを金属製か
ら樹脂に替えることで軽量化を図り、ダクトを伸長(長
尺)にしても自重による垂れ下がりがなく、また収縮時
においても形態保持性が優れ、また切断性・廃棄性を容
易にした伸縮蛇腹ダクトを提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a resin spiral reinforcing coil is wrapped in a resin strip constituting a duct wall so that the duct wall can be connected to the duct wall even when bending is repeated. It is an object of the present invention to provide a telescopic bellows duct having excellent adhesion without peeling from a coil material. Furthermore, by replacing the helical coil that plays the role of a reinforcing material with metal instead of resin, weight is reduced. Even if the duct is elongated (long), it does not sag due to its own weight, and it retains its shape even when it contracts. It is an object of the present invention to provide a telescopic bellows duct which is excellent in cutability and disposal property.
【0005】[0005]
【課題を解決するための手段】上記目的は、樹脂製螺旋
状補強コイルと該コイルの螺旋に沿って樹脂製帯状体を
重ね合わて巻回したダクト壁とから構成される伸縮蛇腹
ダクトにおいて、前記帯状体の長手方向に沿った側の一
方の端が前記補強コイルを包み込み、帯状体に密着シー
ルされ、かつ前記帯状体の他方の端が隣接する補強コイ
ルを覆っている伸縮蛇腹ダクトを提供することによって
達成される。SUMMARY OF THE INVENTION The object of the present invention is to provide a telescopic bellows duct comprising a resin spiral reinforcing coil and a duct wall formed by overlapping and winding a resin band along the spiral of the coil. A telescopic bellows duct is provided in which one end on the side along the longitudinal direction of the band wraps the reinforcing coil, is tightly sealed to the band, and the other end of the band covers the adjacent reinforcing coil. Achieved by:
【0006】[0006]
【発明の実施の態様】本発明のダクトは、その縦断面に
おけるダクト壁の谷部および山肩部に溝を設けた態様、
さらにはダクトの縦断面における左右のダクト壁を薄
肉、肉厚にした態様、またダクトの伸長状態において、
下記の(A)〜(F)を満足する態様が好適であり、さ
らにはこれらの態様を組合わせた態様がより好適であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS A duct according to the present invention has a groove in a valley and a shoulder of a duct wall in a longitudinal section thereof.
Furthermore, in the aspect in which the left and right duct walls in the vertical cross section of the duct are thin and thick,
An embodiment satisfying the following (A) to (F) is preferable, and an embodiment combining these embodiments is more preferable.
【0007】(A)ダクト縦断面におけるダクト壁の谷
部の溝を境とするダクト壁がなす左右の斜辺の比が3:
7〜7:3 (B)螺旋ピッチ/波高が1.8〜3.2 (C)波高/ダクト外径が0.02〜0.1 (D)ダクト壁材質の曲げ弾性率が2,500〜10,
000(kgf/cm2) (E)コイル材質の曲げ弾性率が10,000〜40,
000(kgf/cm2) (F)波高/コイル芯径が1.5〜5(A) In the vertical section of the duct, the ratio of the right and left hypotenuses formed by the duct wall with the groove at the valley of the duct wall being 3:
7-7: 3 (B) Spiral pitch / wave height is 1.8-3.2 (C) Wave height / duct outer diameter is 0.02-0.1 (D) Flexural modulus of duct wall material is 2,500 -10,
000 (kgf / cm 2 ) (E) The bending elastic modulus of the coil material is 10,000 to 40,
000 (kgf / cm 2 ) (F) Wave height / coil core diameter is 1.5 to 5
【0008】本発明において、帯状体の長手方向に沿っ
た側の一方の端が補強コイルを包み込み、帯状体に密着
シールされるとは、たとえば図1に示すとおり、補強コ
イル2を帯状体(ダクト壁)5の一方の端26により包
み込み、一方の端26が帯状体5とシール部25におい
て接着してシールされた状態、または図2に示すとお
り、シール部25の長さを長くして同様に接着してシー
ルされた状態を意味する。帯状体の一方の端が補強コイ
ルを包み込まず、単に帯状体の一方の端と隣接する帯状
体の他方の端により補強コイルを挟み込み、シールした
構造のものでは補強コイルを強固に固定することはむず
かしい。シール部25は熱融着、接着剤などにより形成
されるが、熱融着が好適である。帯状体の他方の端(山
部)3は隣接する補強コイル2上を覆っており、またこ
の覆いは熱融着、接着剤などにより下側の帯状体と接着
されていることが好適である。本発明において、帯状体
とはテープ状の長尺物であり、その幅および厚みはダク
トの大きさ、用途、目的に応じ適宜決められる。図3の
ダクトは、圧縮方向の力を加えると溝6、7の部分で折
れ曲がり、図4のように収縮しその形態で保持される。In the present invention, one end on the side along the longitudinal direction of the band encloses the reinforcing coil and is tightly sealed to the band means, for example, as shown in FIG. The duct wall) 5 is wrapped by one end 26, and the one end 26 is adhered and sealed at the sealing member 25 with the strip 5 or, as shown in FIG. Similarly, it refers to a state where it is adhered and sealed. One end of the band does not envelop the reinforcing coil, but simply sandwiches the reinforcing coil between one end of the band and the other end of the adjacent band, and in a sealed structure, it is not possible to firmly fix the reinforcing coil. It is difficult. The seal portion 25 is formed by heat fusion, an adhesive, or the like, but heat fusion is preferable. The other end (mountain) 3 of the strip covers the reinforcing coil 2 adjacent thereto, and this cover is preferably bonded to the lower strip by heat fusion, an adhesive or the like. . In the present invention, the belt-like body is a tape-like long object, and its width and thickness are appropriately determined according to the size, use, and purpose of the duct. The duct of FIG. 3 bends at the grooves 6 and 7 when a force in the compression direction is applied, contracts as shown in FIG. 4, and is held in that form.
【0009】本発明の伸縮蛇腹ダクトの壁を構成する帯
状体の材質としては、高密度ポリエチレン、ポリプロピ
レン、ポリスチレン、メタクリル樹脂、アクリロニトリ
ル−ブタジエン−スチレン共重合樹脂、アクリロニトリ
ル−スチレン共重合樹脂、ポリカーボネート、ポリエス
テル樹脂、ポリアミド等の熱可塑性樹脂があげられる
が、ダクト壁の材質を比較的比重が小さい熱可塑性樹脂
を主成分とすることが好ましく、例えばポリプロピレン
をベースとしたものがよい。熱可塑性樹脂の種類によっ
ても多少異なるが、上記主成分にエラストマー成分を共
重合または混合して用いたほうが好ましい。なお曲げ弾
性率は、2,500〜10,000(kgf/cm2)
が好ましい。ダクト壁材質の曲げ弾性率を2,500
(kgf/cm2)未満にした場合、収縮過程において
屈曲部がゴム状弾性が大きいため、伸長状態に戻ろうと
する。したがって収縮状態で保持できないものになりや
すい。一方、ダクト壁材質の曲げ弾性率(JIS K7
203)が10,000(kgf/cm2)を越えた場
合、屈曲部に白化を生じ、耐屈曲疲労性に弱いものとな
る。The material of the strip constituting the wall of the telescopic bellows duct of the present invention includes high-density polyethylene, polypropylene, polystyrene, methacrylic resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polycarbonate, A thermoplastic resin such as a polyester resin and a polyamide may be used. The duct wall is preferably made of a thermoplastic resin having a relatively small specific gravity as a main component, for example, a polypropylene-based resin. Although it differs somewhat depending on the type of the thermoplastic resin, it is preferable to use an elastomer component as a copolymer or a mixture with the above main component. The flexural modulus is 2,500 to 10,000 (kgf / cm 2 )
Is preferred. 2,500 flexural modulus of duct wall material
If it is less than (kgf / cm 2 ), the bent portion tends to have a large rubber-like elasticity during the contraction process, so that it tries to return to the expanded state. Therefore, it cannot be easily held in a contracted state. On the other hand, the flexural modulus of the duct wall material (JIS K7
When (203) exceeds 10,000 (kgf / cm 2 ), whitening occurs in the bent portion, resulting in poor bending fatigue resistance.
【0010】コイルを構成する材質としては、曲げ弾性
率の高いものが必要であり、10,000〜40,00
0(kgf/cm2)が好ましい。コイル芯径によって
も左右されるが、コイル材質の曲げ弾性率を10,00
0(kgf/cm2)未満にした場合、芯材として剛性
が弱く収縮過程において、たわみを生じ収縮状態の安定
したダクト長を保持できなくなる恐れがある。一方、コ
イル材質の曲げ弾性率が40,000(kgf/c
m2)を越えた樹脂にした場合、芯材の剛性は上がる
が、衝撃強度は下がるため、芯材が折れやすくなる。コ
イル材質としては、高密度ポリエチレン、ポリプロピレ
ン、ポリスチレン、メタクリル樹脂、アクリロニトリル
−ブタジエン−スチレン共重合樹脂、アクリロニトリル
−スチレン共重合樹脂、ポリカーボネート、ポリエステ
ル樹脂、ポリアミド等の熱可塑性樹脂が挙げられる。好
ましくは、ダクト壁とコイル材質を共にポリプロピレン
にした場合、耐屈曲疲労性も向上し、軽量化に有効であ
る。[0010] As a material constituting the coil, a material having a high flexural modulus is required, and is 10,000 to 40,000.
0 (kgf / cm 2 ) is preferable. Depending on the coil core diameter, the bending elastic modulus of the coil material is 10,000
If it is less than 0 (kgf / cm 2 ), the rigidity of the core material is weak, and in the shrinking process, the core may bend and may not be able to maintain a stable duct length in a shrunk state. On the other hand, the bending elastic modulus of the coil material is 40,000 (kgf / c
When the resin exceeds m 2 ), the rigidity of the core is increased, but the impact strength is reduced, so that the core is easily broken. Examples of the coil material include high-density polyethylene, polypropylene, polystyrene, methacrylic resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polycarbonate, polyester resin, and thermoplastic resin such as polyamide. Preferably, when both the duct wall and the coil are made of polypropylene, the bending fatigue resistance is also improved, which is effective in reducing the weight.
【0011】補強コイルと帯状体の密度は1.3g/cm3
以下、とくに1.2g/cm3補以下であることが好適であ
る。また補強コイルと帯状体の材質を同材質とする場
合、伸長時にも収縮時にも安定した蛇腹ダクトを得るこ
とができる。また補強コイルと帯状体の材質として透明
性樹脂を使用する場合、ダクト内の様子が容易に観察で
きるダクトを得ることができ、各種用途が期待できる。
また補強コイルと帯状体とは熱融着することが好適であ
るが、本発明によれば、補強コイルと帯状体とが相互に
熱融着しない場合でも、充分目的とする伸縮蛇腹ダクト
を得ることができる。The density of the reinforcing coil and the band is 1.3 g / cm 3.
Hereinafter, it is particularly preferable that the content be 1.2 g / cm 3 or less. Further, when the material of the reinforcing coil and that of the band are made of the same material, a bellows duct that is stable during expansion and contraction can be obtained. Further, when a transparent resin is used as the material of the reinforcing coil and the belt-like body, it is possible to obtain a duct in which the inside of the duct can be easily observed, and various applications can be expected.
Further, it is preferable that the reinforcing coil and the strip are heat-fused. However, according to the present invention, even if the reinforcing coil and the strip are not heat-fused to each other, a sufficiently intended telescopic bellows duct can be obtained. be able to.
【0012】つぎに、図面により本発明をさらに説明す
る。図3は、本発明のダクトの伸長状態を示す一部切欠
正面例図である。尚、伸長状態とは、外部からの力を受
けない状態で安定したダクト長および形態を保持するも
のをいう。図4は、その収縮状態の部分断面例図であ
り、1はダクト本体、2は補強コイル、3は蛇腹の山部
(帯状体の他方の端)、4は蛇腹の谷部、5は帯状体
(ダクト壁)、6は谷部の溝、7は山肩部の溝、8は厚
肉部(2重層部)、9は段落ち部を示す。また、図3に
おける10は螺旋ピッチ(p)、11は波高(山部と谷
部間の距離:h))、12はダクトの外径(d)、13は
ダクト壁の山肩部に溝を有しない側の斜辺部、14はダ
クト壁の山肩部に溝を有する側の斜辺部を表す。図3の
ダクトは、圧縮方向の力を加えると溝6、7の部分で折
れ曲がり、図2のように収縮しその形態で保持される。Next, the present invention will be further described with reference to the drawings. FIG. 3 is a partially cutaway front view showing an extended state of the duct of the present invention. The extended state refers to a state in which the duct maintains a stable length and shape without receiving any external force. FIG. 4 is a partial cross-sectional view of the contracted state, wherein 1 is a duct main body, 2 is a reinforcing coil, 3 is a bellows crest (the other end of the band), 4 is a bellows trough, and 5 is a band. A body (duct wall), 6 is a groove at a valley, 7 is a groove at a shoulder, 8 is a thick portion (double layer portion), and 9 is a step-down portion. In FIG. 3, reference numeral 10 denotes a helical pitch (p), 11 denotes a wave height (distance between peaks and valleys: h)), 12 denotes an outer diameter of the duct (d), and 13 denotes a groove at a shoulder of the duct wall. The hypotenuse portion on the side having no groove, and the hypotenuse portion 14 on the side having a groove at the mountain shoulder of the duct wall. The duct of FIG. 3 is bent at the grooves 6 and 7 when a force in the compression direction is applied, contracts as shown in FIG. 2, and is held in that form.
【0013】本発明においては、ダクト縦断面における
ダクトの谷部および山肩部に溝を設けることにより、ま
たダクト縦断面における左右のダクト壁をそれぞれ薄
肉、肉厚にすることにより、より安定した形態を保持す
る構造にすることができる。In the present invention, by providing grooves in the valleys and shoulders of the duct in the vertical section of the duct, and by making the left and right duct walls in the vertical section of the duct thin and thick, respectively, more stable operation is achieved. A structure that retains the form can be provided.
【0014】また本発明においては、ダクト谷部を形成
するダクト壁の縦断面において、山肩部に溝を設けた斜
辺と、もう一方の斜辺の比を3:7〜7:3とすること
により、好ましくは4:6〜6:4とすることにより、
収縮状態のピッチを小さくすることができ、また未使用
時のダクト長を短くすることができる。尚、斜辺の比に
ついては、図3に記載されている通り、山部3から隣の
山部3までのピッチ10を、谷部4で分けた場合、山肩
部に溝のない斜辺13と山肩部に溝を設けた斜辺14の
軸線方向の長さの比をいう。In the present invention, in a vertical section of a duct wall forming a duct trough, a ratio of a hypotenuse having a groove at a mountain shoulder to another hypotenuse is 3: 7 to 7: 3. And preferably from 4: 6 to 6: 4,
The pitch in the contracted state can be reduced, and the duct length when not in use can be reduced. As shown in FIG. 3, when the pitch 10 from the peak 3 to the adjacent peak 3 is divided by the valley 4, as shown in FIG. It refers to the ratio of the length in the axial direction of the hypotenuse 14 provided with a groove in the shoulder portion.
【0015】また、ピッチ/波高を1.8〜3.2に形
成することにより、伸長状態の垂れ下がりを少なくで
き、また収縮状態の固定を容易にすることができる。さ
らに、波高/ダクト外径を0.02〜0.1とすること
により、収縮状態でのダクト形態を容易に保持すること
ができ、また垂れ下がりも少ない。Further, by forming the pitch / wave height in the range of 1.8 to 3.2, it is possible to reduce the sag in the extended state and to easily fix the contracted state. Further, by setting the wave height / duct outer diameter to 0.02 to 0.1, the duct form in the contracted state can be easily maintained, and drooping is small.
【0016】また、波高/コイル芯径が1.5〜5とす
ることにより、伸縮率を大きくすることができ、また収
縮時に保持性も良好である。コイル芯径としてはダクト
のサイズにもよるが、1〜6mm、さらには1〜4mm
から選ぶのが好ましい。このようなダクトは螺旋状をな
しており、連続成形が可能であり、長尺物の成形も可能
である。Further, by setting the wave height / coil core diameter to 1.5 to 5, the expansion ratio can be increased, and the holding property at the time of contraction is also good. The coil core diameter depends on the size of the duct, but 1-6 mm, and even 1-4 mm
It is preferable to choose from. Such a duct has a spiral shape, and can be continuously formed, and can be formed into a long object.
【0017】また、本発明のダクトにおいては、図3の
ように山肩部の溝7に隣接した山肩部を厚肉部8とし
て、ダクト外面に段落ち部9を形成した場合、収縮過程
および伸長過程で溝と段落ちした部分にのみ応力集中を
受けやすく、谷部とその部分のみが屈曲点となり得る。
よって、溝と段落ちした部分以外に応力が分散しないの
で、ダクト伸長時および収縮時において安定した長さお
よび形態を保持することができる。また芯材に隣接した
山肩部を厚肉にしているため、コイルの補強的役割を果
たすことができる。さらに、上述した理由により溝を浅
く構成しても屈曲点は定まりやすいので、屈曲疲労に強
いものとなる。In the duct of the present invention, as shown in FIG. 3, when the shoulder portion adjacent to the groove 7 of the shoulder portion is formed as a thick portion 8 and a stepped portion 9 is formed on the outer surface of the duct, the shrinking process is performed. In addition, stress concentration is likely to occur only in the portion where the groove and the step have fallen during the elongation process, and only the valley portion and that portion can be bent points.
Therefore, since the stress is not dispersed except the groove and the stepped portion, a stable length and shape can be maintained when the duct is extended and contracted. Further, the thickness of the shoulder portion adjacent to the core material is increased, so that the coil can play a reinforcing role. Furthermore, even if the groove is formed shallow for the reasons described above, the bending point is easy to be determined, so that it is resistant to bending fatigue.
【0018】次に、図面を参照してダクトの収縮過程に
おける各構成と作用の関係を説明する。まず従来の金属
製コイルを有する剛性の強いダクトの伸縮時の断面形状
に注目すると、図5のように伸長状態の断面形状は、溝
を屈曲点として、1ピッチ内に点15ー16ー17の3
点リンク機構を構成し、ダクト軸線方向に圧縮力Pを加
えると、このリンク機構は点17を軸とした斜辺18の
クランク運動によって点16が点16→点161→点1
62の軌跡を示し、それに伴って点161では斜辺18
が斜辺181と変形し、ダクト壁を構成する樹脂内部
(斜辺181)に張力歪を生じさせ、その反発力として
図7の圧縮応力図で見られるような最大圧縮応力を発生
させる。また点161を越え点162に至る過程では、
前過程とは逆に樹脂内部の張力歪は解消する方向に作用
するので負の圧縮応力が作用してダクトは必然的に収縮
状態に長さ、および形態が保持されるような応力関係と
なる。Next, with reference to the drawings, a description will be given of the relationship between each component and the action in the process of contracting the duct. First, paying attention to the cross-sectional shape of a conventional highly rigid duct having a metal coil at the time of expansion and contraction, as shown in FIG. 3
When a point link mechanism is configured to apply a compressive force P in the duct axis direction, the link mechanism changes the point 16 from the point 16 to the point 161 to the point 1 by the crank motion of the hypotenuse 18 around the point 17.
62, and the point 161 is associated with the hypotenuse 18
Is deformed to the oblique side 181, causing tension strain inside the resin (oblique side 181) constituting the duct wall, and generating a maximum compressive stress as seen in the compressive stress diagram of FIG. 7 as a repulsive force. In the process from point 161 to point 162,
Contrary to the previous process, the tension strain inside the resin acts in the direction to be eliminated, so a negative compressive stress acts and the duct will necessarily have a contracted state length and a stress relationship that maintains the shape .
【0019】したがって金属のような剛性の高いコイル
で垂れ下がりを減少しようとする場合、自重で曲がろう
とする力より図7の圧縮応力の最大値が大きければ保持
できる。最大値を大きくするためには、ある程度斜辺1
81の張力歪が高くなる、即ちダクトの谷部を形成する
ダクト壁の縦断面における斜辺18と斜辺19をできる
限り等配分に近づけ、ピッチに対して波高を低くするこ
とが好ましいことが分かった。Therefore, when the sag is to be reduced by a coil having high rigidity such as a metal, it can be maintained if the maximum value of the compressive stress shown in FIG. To increase the maximum value, the hypotenuse 1
It has been found that it is preferable to increase the tensile strain of 81, that is, to make the hypotenuse 18 and the hypotenuse 19 in the longitudinal section of the duct wall forming the valley of the duct as close as possible to the distribution, and to lower the wave height with respect to the pitch. .
【0020】しかし樹脂のような金属と比べて剛性の低
いコイルの場合、斜辺181の張力歪が高くなると、図
6の圧縮応力の最大値が大きくなり芯材となるコイル
(点15から点151に至る圧縮過程)がその最大圧縮
応力に負け、さらに圧縮力Pを増すとコイルは、たわみ
を生じ収縮できなくなる。However, in the case of a coil having a lower rigidity than a metal such as a resin, if the tensile strain of the hypotenuse 181 increases, the maximum value of the compressive stress in FIG. When the compressive force P is further increased, the coil becomes bent and cannot be contracted.
【0021】そこで本発明は樹脂芯材のような剛性の低
いものに対して、図7の圧縮応力の最大値を少し低くす
る。つまり図6の斜辺231の張力歪を低くする、即ち
ダクトの谷部を形成するダクト壁の縦断面における斜辺
23と斜辺24のピッチに対して波高を高くして、コイ
ルが最大圧縮応力に負けないようにすることが好まし
い。垂れ下がりの問題については、軽量化により解決す
ることができる。また上記の構造にすることにより、ダ
クト径方向に対する押し潰しの強いダクトが得られる。
なお、図6中の20、21は、それぞれ図5中の15、
16に相当するものであり、図6中の201、202、
211、212、231は、それぞれ図5中の151、
152、161、162、181に相当するものであ
る。Therefore, the present invention slightly lowers the maximum value of the compressive stress in FIG. 7 for a low rigidity material such as a resin core material. That is, the tension distortion of the hypotenuse 231 in FIG. 6 is reduced, that is, the wave height is increased with respect to the pitch between the hypotenuse 23 and the hypotenuse 24 in the vertical section of the duct wall forming the valley of the duct, and the coil loses the maximum compressive stress. It is preferable not to do so. The problem of sag can be solved by reducing the weight. In addition, with the above structure, a duct that is strongly crushed in the radial direction of the duct can be obtained.
In addition, 20 and 21 in FIG. 6 are respectively 15 and 21 in FIG.
16, 201, 202, and 202 in FIG.
211, 212 and 231 are respectively 151, FIG.
152, 161, 162, and 181.
【0022】[0022]
【実施例】本発明の実施例および比較例を示す。 実施例1〜2および比較例1 ダクト壁材(帯状体)として、曲げ弾性率6,500
(kgf/cm2)のポリプロピレン(PP)(密度
0.91g/cm3)製帯状体、硬質補強コイル材とし
て、曲げ弾性率21,000(kgf/cm2)の高結
晶PP(密度0.90g/cm3)(実施例1)および曲
げ弾性率16,000(kgf/cm2)の高密度ポリ
エチレン(密度0.95g/cm3)(実施例2)を使用
し、コイル(コイル芯径1.8mm)を帯状体の長手方
向に沿った側の一方の端により包み込み、帯状体同士を
熱融着してシールし、共押出ししながら旋回し、帯状体
の他方の端により隣接するコイル上を覆い、その重ね合
わせ部分を溶融接着することにより図1に示すようなダ
クトを得た。なおダクトの谷部および山肩部には溝を有
し、さらにダクト外面には山肩部の溝に隣接した山肩部
を厚肉とする段落ち部を有している。Examples Examples of the present invention and comparative examples will be described. Examples 1 and 2 and Comparative Example 1 As a duct wall material (band-shaped body), a flexural modulus of elasticity of 6,500 was used.
(Kgf / cm 2) Polypropylene (PP) (Density 0.91 g / cm 3) made strip of, as constraining the coil material, bend highly crystalline PP of the modulus 21,000 (kgf / cm 2) (Density 0. 90 g / cm 3) (Example 1) and a coil (coil core diameter) using high-density polyethylene (density 0.95 g / cm 3) having a flexural modulus of 16,000 (kgf / cm 2 ) (density 0.95 g / cm 3) 1.8 mm) is wrapped by one end on the side along the longitudinal direction of the band, and the bands are sealed by heat sealing, and co-extrusion is turned, and the coil is adjacent to the other end of the band. A duct as shown in FIG. 1 was obtained by covering the upper part and fusing the overlapped portion. The duct has a groove at a valley and a mountain shoulder, and further has a stepped portion on the outer surface of the duct where the thickness of the mountain shoulder adjacent to the groove at the mountain shoulder is increased.
【0023】比較例品(比較例1)については、炭素組
成率0.4重量%の炭素鋼線をPPで被覆したコイルを
使用し、コイルを帯状体の片端により完全に包み込むこ
となく、溶融接着してダクトを得た。得られた伸縮蛇腹
ダクトについて、コイルと帯状体との密着性、伸長時の
垂れ下がり、収縮時の形態保持性(収縮したままの状態
で形態保持できるかどうか)について測定した。その結
果を表1に示す。For the comparative example (Comparative Example 1), a coil in which a carbon steel wire having a carbon composition of 0.4% by weight was coated with PP was used, and the coil was melted without being completely wrapped by one end of the strip. The duct was obtained by bonding. With respect to the obtained elastic bellows duct, the adhesion between the coil and the band-shaped body, the sagging during elongation, and the shape retention during shrinkage (whether or not the shape can be maintained in a contracted state) were measured. Table 1 shows the results.
【0024】垂れ下がり試験は、図8に示すように伸長
状態で50cmを試験長として、ダクト先端部の垂れ下
がり距離を測定した。なお温度条件は、室温を25℃と
してダクト内に送風せずに測定した。密着性の評価は、
伸長状態で、60cmの試験ダクトを用い、屈曲繰り返
し試験(180度屈曲、25℃、20回/min)によ
り、屈曲繰り返しを5000回行い、ダクト壁材(帯状
体)と包み込まれた補強コイルとの密着性を目視で評価
した。In the hanging test, as shown in FIG. 8, the hanging distance at the tip of the duct was measured with a test length of 50 cm in an extended state. In addition, the temperature condition was measured without blowing air into the duct at room temperature of 25 ° C. The evaluation of adhesion is
In a stretched state, using a 60 cm test duct, a bending repetition test (180 ° bending, 25 ° C., 20 times / min) was repeated 5,000 times to form a duct wall material (band) and a wrapped reinforcing coil. Was visually evaluated for adhesion.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【発明の効果】本発明の伸縮蛇腹ダクトは、補強コイル
と帯状体との密着性が優れ、また収縮時の形態保持性が
良好で、また伸長時の垂れ下がりも少なく、また軽量
で、切断性、廃棄性も優れている。The telescopic bellows duct of the present invention has excellent adhesion between the reinforcing coil and the band, has good shape retention during shrinkage, has little droop during elongation, is light in weight, and has good cutability. Also, the disposability is excellent.
【図1】本発明のダクトの補強コイルおよび帯状体の一
部断面図である。FIG. 1 is a partial sectional view of a reinforcing coil and a strip of a duct according to the present invention.
【図2】本発明のダクトの他の実施例を示す補強コイル
および帯状体の一部断面図である。FIG. 2 is a partial cross-sectional view of a reinforcing coil and a strip showing another embodiment of the duct of the present invention.
【図3】本発明のダクト伸長状態を示す一部切欠正面図
である。FIG. 3 is a partially cutaway front view showing a duct extension state of the present invention.
【図4】本発明のダクト収縮状態を示す部分断面図であ
る。FIG. 4 is a partial cross-sectional view illustrating a contracted state of the duct according to the present invention.
【図5】作用を説明する比較例の部分簡略断面図であ
る。FIG. 5 is a partial simplified cross-sectional view of a comparative example illustrating an operation.
【図6】作用を説明する実施例の部分簡略断面図であ
る。FIG. 6 is a partial simplified cross-sectional view of the embodiment explaining the operation.
【図7】収縮過程での圧縮応力図である。FIG. 7 is a compressive stress diagram in a shrinking process.
【図8】垂れ下がり試験方法を説明する図である。FIG. 8 is a diagram illustrating a sag test method.
1 ダクト 2 補強コイル 3 山部(帯状体の長手方向に沿った側の他方の端) 4 谷部 5 ダクト壁(帯状体) 6 谷部の溝 7 山肩部の溝 8 厚肉部 9 段落ち部 10 ピッチ(p) 11 波高(h) 12 外径(d) 13 山肩部に溝のない斜辺 14 山肩部に溝を設けた斜辺 15、16、17 屈曲点 18 山肩部に溝を設けた斜辺 19 山肩部に溝のない斜辺 20 、21、22 屈曲点 23 山肩部に溝を設けた斜辺 24 山肩部に溝のない斜辺 25 シール部 26 帯状体の長手方向に沿った側の一方の端 DESCRIPTION OF SYMBOLS 1 Duct 2 Reinforcement coil 3 Crest (the other end on the side along the longitudinal direction of the strip) 4 Trough 5 Duct wall (strip) 6 Trench groove 7 Groove at shoulder 8 Thick section 9 steps Falling part 10 Pitch (p) 11 Wave height (h) 12 Outer diameter (d) 13 Slope with no groove on mountain shoulder 14 Slope with groove on mountain shoulder 15, 16, 17 Bending point 18 Groove on mountain shoulder A hypotenuse with a groove 19 A hypotenuse without a groove in the mountain shoulder 20, 21, 22 Bending point 23 A hypotenuse with a groove in the mountain shoulder 24 A hypotenuse without a groove in the mountain shoulder 25 Seal part 26 Along the longitudinal direction of the belt-shaped body One end of the side
Claims (4)
旋に沿って樹脂製帯状体を重ね合わて巻回したダクト壁
とから構成される伸縮蛇腹ダクトにおいて、前記帯状体
の長手方向に沿った側の一方の端が前記補強コイルを包
み込み、帯状体に密着シールされ、かつ前記帯状体の他
方の端が隣接する補強コイルを覆っている伸縮蛇腹ダク
ト。1. A telescopic bellows duct composed of a resin-made spiral reinforcing coil and a duct wall formed by overlapping and winding a resin-made band along the spiral of the coil, along a longitudinal direction of the band-shaped body. A telescopic bellows duct, one end of which surrounds the reinforcing coil, is tightly sealed to the band, and the other end of the band covers an adjacent reinforcing coil.
よび山肩部に溝を設けた請求項1記載の伸縮蛇腹ダク
ト。2. The telescopic bellows duct according to claim 1, wherein a groove is provided at a valley portion and a shoulder portion of the duct wall in the duct longitudinal section.
それぞれ薄肉、肉厚にした請求項1または2記載の伸縮
蛇腹ダクト。3. The telescopic bellows duct according to claim 1, wherein the left and right duct walls in the vertical section of the duct are made thin and thick, respectively.
(A)〜(F)を満足する請求項1、2または3記載の
伸縮蛇腹ダクト。 (A)ダクト縦断面におけるダクト壁の谷部の溝、また
は谷部を境とするダクト壁がなす左右の斜辺の比が3:
7〜7:3 (B)螺旋ピッチ/波高が1.8〜3.2 (C)波高/ダクト外径が0.02〜0.1 (D)ダクト壁材質の曲げ弾性率が2,500〜10,
000(kgf/cm2) (E)コイル材質の曲げ弾性率が10,000〜40,
000(kgf/cm2) (F)波高/コイル芯径が1.5〜54. The telescopic bellows duct according to claim 1, which satisfies the following (A) to (F) when the duct is extended. (A) In the vertical section of the duct, the ratio of the right and left hypotenuses formed by the groove at the trough of the duct wall or the duct wall bordering the trough is 3:
7-7: 3 (B) Spiral pitch / wave height is 1.8-3.2 (C) Wave height / duct outer diameter is 0.02-0.1 (D) Flexural modulus of duct wall material is 2,500 -10,
000 (kgf / cm 2 ) (E) The bending elastic modulus of the coil material is 10,000 to 40,
000 (kgf / cm 2 ) (F) Wave height / coil core diameter is 1.5 to 5
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10067788A JPH11248053A (en) | 1998-03-02 | 1998-03-02 | Expansion bellows type duct |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10067788A JPH11248053A (en) | 1998-03-02 | 1998-03-02 | Expansion bellows type duct |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11248053A true JPH11248053A (en) | 1999-09-14 |
Family
ID=13355053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10067788A Pending JPH11248053A (en) | 1998-03-02 | 1998-03-02 | Expansion bellows type duct |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11248053A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007205503A (en) * | 2006-02-03 | 2007-08-16 | Kuraray Plast Co Ltd | Thermal insulated double-walled pipe |
JP2008296006A (en) * | 2007-05-31 | 2008-12-11 | Samsung Kwangju Electronics Co Ltd | Flexible hose and vacuum cleaner having the same |
JP2020090960A (en) * | 2018-12-03 | 2020-06-11 | タイガースポリマー株式会社 | Flexible hose |
-
1998
- 1998-03-02 JP JP10067788A patent/JPH11248053A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007205503A (en) * | 2006-02-03 | 2007-08-16 | Kuraray Plast Co Ltd | Thermal insulated double-walled pipe |
JP2008296006A (en) * | 2007-05-31 | 2008-12-11 | Samsung Kwangju Electronics Co Ltd | Flexible hose and vacuum cleaner having the same |
JP2020090960A (en) * | 2018-12-03 | 2020-06-11 | タイガースポリマー株式会社 | Flexible hose |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4163385B2 (en) | Composite high-pressure pipe and joining method thereof | |
US6149756A (en) | Method for joining plastic pipes, a joint ring used in the joining and a pipe joint provided with the method | |
US5848618A (en) | Relating to composite tubing | |
JPH11248053A (en) | Expansion bellows type duct | |
US6622756B2 (en) | Highly flexible hose end piece | |
AU582667B2 (en) | Composite fuel and vapor tube | |
JPH11159668A (en) | Flexible hose | |
JP4503990B2 (en) | Flexible hose | |
JP3149259B2 (en) | Endoscope flexible tube | |
JPH0914526A (en) | Flexible hose | |
JPH07174292A (en) | Heat insulating hose | |
JPH11166672A (en) | Transparent expansion bellows duct | |
JPH0738786Y2 (en) | hose | |
JP2008014326A (en) | Synthetic resin made flexible tube | |
JP5340798B2 (en) | Manufacturing method for underground pipe | |
JP3301673B2 (en) | Telescopic spiral bellows hose | |
JP3296966B2 (en) | Telescopic bellows duct | |
US591092A (en) | Flexible metallic tube or conduit | |
JP4175865B2 (en) | tube | |
CN212643789U (en) | High-strength polyethylene winding reinforced pipe | |
JPH05187594A (en) | Heat insulating hose | |
JPS637206Y2 (en) | ||
JPH076586U (en) | Flexible synthetic resin tube | |
JPH08166091A (en) | Metallic expansion bellows tube | |
JPS6028584Y2 (en) | wear resistant hose |