JPH11246220A - Perovskite type multiple oxide, its production and solid oxide electrolyte fuel cell using that - Google Patents

Perovskite type multiple oxide, its production and solid oxide electrolyte fuel cell using that

Info

Publication number
JPH11246220A
JPH11246220A JP10063931A JP6393198A JPH11246220A JP H11246220 A JPH11246220 A JP H11246220A JP 10063931 A JP10063931 A JP 10063931A JP 6393198 A JP6393198 A JP 6393198A JP H11246220 A JPH11246220 A JP H11246220A
Authority
JP
Japan
Prior art keywords
electrode
perovskite
fuel cell
electrode material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10063931A
Other languages
Japanese (ja)
Other versions
JP3564693B2 (en
Inventor
Yoshiyuki Eto
義行 江渡
Hiroaki Kaneko
浩昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP06393198A priority Critical patent/JP3564693B2/en
Publication of JPH11246220A publication Critical patent/JPH11246220A/en
Application granted granted Critical
Publication of JP3564693B2 publication Critical patent/JP3564693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perovskite multiple oxide which suppresses the solid phase reaction on the interface with a solid electrolyte, which shows improved heat resistance and durability while keeping the good catalytic activity, and which realizes power generation in a low temp. region, and to provide the producing method of the perovskite multiple oxide, and a solid oxide electrolyte fuel cell and its electrode by using the oxide above described. SOLUTION: In a perovskite multiple oxide expressed by the general formula of ABCO3 , two kinds of specified elements A', A'' are assigned in the A site, two kinds of specified elements B', B'' are assigned in the B site, and further, Mg which functions as a sintering assistant is assigned in the C site. Therefore, the perovskite multiple oxide of this invention is expressed by A'1-x A''x B'1-y B ''y CO3 . In the formula, A' is a lanthanoid element, A'' is a lonthanoid element except for A', B' is an aluminum group element, B'' is a platinum group element, and C is an alkaline earth element, and (x) and (y) satisfy 0<x<1 and 0<y<1, respectively. The multiple oxide is used to produce an electrode material or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物混合イオン
伝導材として挙動する新規なペロブスカイト型複合酸化
物及びその製造方法に係り、更に詳細には、炭酸水素系
液体燃料又は天然ガス等を用いて発電する固体電解質型
燃料電池において、ジルコニアやセリア等の固体電解質
に対する空気極材料として用いることができ、しかも触
媒作用を有するペロブスカイト型複合酸化物及びその製
造方法、これを用いた電極触媒、電極及び燃料電池など
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel perovskite-type composite oxide that behaves as an oxide-mixed ion conductive material and a method for producing the same, and more particularly, to a method using a hydrogen carbonate-based liquid fuel or natural gas. In a solid electrolyte fuel cell that generates electric power by using a perovskite-type composite oxide that can be used as an air electrode material for a solid electrolyte such as zirconia or ceria, and has a catalytic action, a method for producing the same, an electrode catalyst using the same, and an electrode And a fuel cell.

【0002】[0002]

【従来の技術】従来から、炭化水素系液体燃料又は天然
ガス等を用いて発電する固体電解質型燃料電池の空気極
材料としては、白金、ロジウム及びパラジウム等の貴金
属が用いられているが、コストが高く、また、使用環境
によっては特性劣化が生じていた。特に、固体電解質型
燃料電池の空気極触媒としても用いられる場合には、1
000℃付近の温度で使用されることが想定されること
から、耐久性の面からも、耐熱性に優れた空気極材料が
望まれており、このため、耐熱性に優れ、空気極特性と
高い混合イオン伝導性とを有するペロブスカイト型複合
酸化物を空気極材料として用いる検討がなされている。
2. Description of the Related Art Conventionally, noble metals such as platinum, rhodium and palladium have been used as an air electrode material of a solid oxide fuel cell for generating electricity using a hydrocarbon-based liquid fuel or natural gas. And the characteristics deteriorated depending on the use environment. In particular, when it is also used as an air electrode catalyst of a solid oxide fuel cell,
Since it is assumed that the air electrode material is used at a temperature of about 000 ° C., an air electrode material having excellent heat resistance is also desired from the viewpoint of durability. The use of a perovskite-type composite oxide having high mixed ionic conductivity as an air electrode material has been studied.

【0003】かかる状況において、最近、高活性なペロ
ブスカイト型複合酸化物として、LaCoO3、LaM
nO3、LaSr0.8Mn0.23、LaGaO3等が、物
質工学工業技術研究所や東京大学工学系、電力中央研究
所等から報告されている(電気化学会 秋期大会 講演
予稿集97−東京)。また、特開平5−139750号
公報には、日本電信電話株式会社から、A32XO8
表される酸化物超イオン伝導材料(代表例はBa3Sc2
ZrO8)が提案されている。
Under these circumstances, recently, as highly active perovskite-type composite oxides, LaCoO 3 and LaM
nO 3 , LaSr 0.8 Mn 0.2 O 3 , LaGaO 3, etc. have been reported by the National Institute of Materials Technology, the University of Tokyo Engineering, the Central Research Institute of Electric Power Industry, etc. (Preprint of 97th Autumn Meeting of the Institute of Electrical Chemistry, Tokyo, Japan) . Japanese Unexamined Patent Publication (Kokai) No. 5-139750 discloses an oxide superionic conductive material represented by A 3 B 2 XO 8 (a typical example is Ba 3 Sc 2) from Nippon Telegraph and Telephone Corporation.
ZrO 8 ) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
高活性なペロブスカイト型複合酸化物を用いても、イオ
ン伝導が発現する温度域は未だ800℃以上であり、高
温度領域や還元雰囲気下で長時間使用すると、かかる高
活性な材料の場合ほどジルコニア系やセリア系固体電解
質とペロブスカイト型複合酸化物とが反応してしまい、
固体電解質/ペロブスカイト型複合酸化物界面の抵抗が
増加したり、一部欠落等による構造欠陥が発生し、この
結果、燃料電池の発電効率が低下する等の課題があっ
た。
However, even with the use of these highly active perovskite-type composite oxides, the temperature range in which ionic conduction develops is still 800 ° C. or higher, and the ionic conduction is not maintained for a long time in a high temperature range or a reducing atmosphere. When used, the zirconia-based or ceria-based solid electrolyte reacts with the perovskite-type composite oxide in the case of such a highly active material,
There have been problems such as an increase in resistance at the solid electrolyte / perovskite-type composite oxide interface and occurrence of structural defects due to partial omission and the like, and as a result, power generation efficiency of the fuel cell is reduced.

【0005】また、ペロブスカイト型複合酸化物を燃料
電池の空気極材料として用いる場合には、特にその触媒
作用と電気伝導性を利用することになるが、この際、酸
素イオン伝導体、即ち固体電解質と空気極材料との間に
おける界面抵抗を減少させ、且つ密着性を確保しつつ、
固体電解質/空気極材料界面での化学反応や熱応力によ
る剥離等を抑制することが必要とされる。
When a perovskite-type composite oxide is used as an air electrode material for a fuel cell, its catalytic action and electric conductivity are particularly utilized. In this case, an oxygen ion conductor, that is, a solid electrolyte is used. While reducing the interfacial resistance between the air electrode material and ensuring the adhesion,
It is necessary to suppress a chemical reaction at the solid electrolyte / air electrode material interface or separation due to thermal stress.

【0006】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、固体電解質との界面での固相反応を抑制し、良好な
触媒作用を保持したまま耐熱性や耐久性を改善し、低温
域での発電を実現できるペロブスカイト型複合酸化物、
その製造方法並びにこれを用いた固体酸化物電解質型燃
料電池及びその電極などを提供することにある。
[0006] The present invention has been made in view of such problems of the prior art, and an object thereof is to suppress a solid-phase reaction at an interface with a solid electrolyte and to provide a good catalytic action. A perovskite-type composite oxide that can improve heat resistance and durability while maintaining power and realize power generation at low temperatures.
An object of the present invention is to provide a method for producing the same, a solid oxide electrolyte fuel cell using the same, and an electrode thereof.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、Mgをドープするなど
特定の金属元素を用いて一般式ABCO3で表されるペ
ロブスカイト型複合酸化物を構成したところ、イオン伝
導性を向上するAサイトの格子欠陥と、触媒作用を担う
Bサイト原子の原子価とが有効に制御され、イオン伝導
性を低温域で発現するペロブスカイト型複合酸化物が得
られ、上記課題が解決されることを見出し、本発明を完
成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that a perovskite-type composite oxide represented by the general formula ABCO 3 using a specific metal element such as doping with Mg. A perovskite-type composite oxide that effectively controls the lattice defect of the A site that improves the ionic conductivity and the valency of the B site atom that performs the catalytic action, and expresses the ionic conductivity in a low temperature range Were found to solve the above problem, and the present invention was completed.

【0008】即ち、本発明のペロブスカイト型複合酸化
物は、次の一般式(1) A’1-xA”xB’1-yB”yCO3・・・(1) (式中のA’はランタノイド元素、A”はA’以外のラ
ンタノイド元素、B’はアルミニウム族元素、B”は白
金族元素、Cはアルカリ土類金属元素を示し、xは0<
x<1、yは0<y<1を満足する数を示す。)で表さ
れることを特徴とする。
That is, the perovskite-type composite oxide of the present invention has the following general formula (1): A ′ 1−x A ″ x B ′ 1−y B ″ y CO 3 (1) A ′ is a lanthanoid element, A ″ is a lanthanoid element other than A ′, B ′ is an aluminum group element, B ″ is a platinum group element, C is an alkaline earth metal element, and x is 0 <
x <1, y indicates a number satisfying 0 <y <1. ).

【0009】また、本発明の電極材料は、固体酸化物電
解質型燃料電池の電極に用いられる電極材料であって、
上述の如きペロブスカイト型複合酸化物を含有して成る
ことを特徴とする。更に、本発明の電極触媒は、固体酸
化物電解質型燃料電池の電極に用いられる電極触媒であ
って、上述の如きペロブスカイト型複合酸化物を含有し
て成ることを特徴とする。
Further, the electrode material of the present invention is an electrode material used for an electrode of a solid oxide electrolyte fuel cell,
It is characterized by containing a perovskite-type composite oxide as described above. Further, the electrode catalyst of the present invention is an electrode catalyst used for an electrode of a solid oxide electrolyte fuel cell, and is characterized by containing the above-described perovskite-type composite oxide.

【0010】更にまた、本発明の燃料電池用電極は、固
体酸化物電解質型燃料電池に用いられる電極であって、
上記電極触媒を担持して成ることを特徴とする。また、
本発明の固体酸化物電解質型燃料電池は、上記電極材料
を含有して成る空気極を備えること特徴とする。
Further, the fuel cell electrode of the present invention is an electrode used for a solid oxide electrolyte fuel cell,
It is characterized by carrying the above-mentioned electrode catalyst. Also,
A solid oxide electrolyte fuel cell according to the present invention includes an air electrode containing the above electrode material.

【0011】更に、本発明のペロブスカイト複合酸化物
の製造方法は、上述の如きペロブスカイト型複合酸化物
を製造するに当たり、上記(1)式で表されるペロブス
カイト型複合酸化物を構成する各種金属元素の硝酸塩又
は炭酸塩に水熱反応を行ってモノオキシ炭酸塩を得、得
られたモノオキシ炭酸塩を空気中で焼成することを特徴
とする。
Further, in the method for producing a perovskite complex oxide of the present invention, when producing the perovskite complex oxide as described above, various metal elements constituting the perovskite complex oxide represented by the above formula (1) A hydrothermal reaction with the nitrate or carbonate of the above to obtain a monooxycarbonate, and firing the obtained monooxycarbonate in the air.

【0012】更にまた、本発明の燃料電池用電極の製造
方法は、上記電極材料を含有して成る固体酸化物電解質
型燃料電池用の電極を製造するに当たり、上記電極材料
を空気中で仮焼成し、得られた仮焼結粉を固体電解質基
板に塗布し、次いで、空気中で焼成することを特徴とす
る。
Further, according to the method for producing an electrode for a fuel cell of the present invention, when producing an electrode for a solid oxide electrolyte fuel cell comprising the above-mentioned electrode material, the electrode material is calcined in air. Then, the obtained temporarily sintered powder is applied to a solid electrolyte substrate, and then fired in air.

【0013】[0013]

【作用】本発明では、一般式ABCO3で表されるペロ
ブスカイト型複合酸化物において、AサイトにA’と
A”の2種の所定元素を、BサイトにB’とB”の2種
の所定元素を、更にCサイトに焼結助材として機能する
Mgを配した。これにより、イオン伝導性を向上するA
サイトの格子欠陥と、触媒作用を有し空気極に重要な貢
献をするBサイト元素、特にPtとPdの原子価とが有
効に制御されて電子−イオン混合伝導体の間の伝導特性
が高められ、空気極特性が向上する。また、上記ペロブ
スカイト型複合酸化物とこれに接している固体電解質と
の固相反応が抑制されるので、空気極として挙動し得る
本複合酸化物の耐久性や耐熱性が改善され、当該燃料電
池の低温作動が可能となる。
According to the present invention, in the perovskite-type composite oxide represented by the general formula ABCO 3 , the A site is provided with two predetermined elements A ′ and A ″, and the B site is provided with two types of B ′ and B ″. The predetermined element was further provided with Mg functioning as a sintering aid at the C site. As a result, A that improves ionic conductivity
The lattice defects of the site and the valence of the B-site element having a catalytic action and making an important contribution to the air electrode, particularly the valence of Pt and Pd, are effectively controlled to enhance the conduction characteristics between the electron-ion mixed conductor. The air electrode characteristics are improved. In addition, since the solid-state reaction between the perovskite-type composite oxide and the solid electrolyte in contact with the perovskite-type composite oxide is suppressed, the durability and heat resistance of the composite oxide that can behave as an air electrode are improved, and Low temperature operation becomes possible.

【0014】即ち、本発明では、イオン伝導材として挙
動する上記ペロブスカイト型複合酸化物のAサイトにお
ける各金属のモル比率を変化させることにより、Bサイ
ト金属元素の原子価が有効に制御され、その結果、電子
状態の制御が行われる。また、Aサイトに格子欠陥を持
つペロブスカイト構造を構成することで、酸素の放出吸
収能を向上させた結果、固体電解質/空気極(触媒)界
面の内部抵抗が減少し、作動温度の低温化が図れる。更
に、ペロブスカイト型複合酸化物自体のシンタリング抑
制効果により、耐久性及び耐熱性を改善できる。
That is, in the present invention, the valence of the B-site metal element is effectively controlled by changing the molar ratio of each metal at the A site of the perovskite-type composite oxide which behaves as an ion conductive material. As a result, the electronic state is controlled. In addition, by constructing a perovskite structure having lattice defects at the A site, the ability to release and absorb oxygen is improved. As a result, the internal resistance at the solid electrolyte / air electrode (catalyst) interface is reduced, and the operating temperature can be reduced. I can do it. Furthermore, durability and heat resistance can be improved by the sintering suppressing effect of the perovskite-type composite oxide itself.

【0015】また、上記格子欠陥を導入した結果、一般
に酸素移動に重要な収着酸素を増加させることができ
る。かかる収着酸素には、(a)800℃以下の幅広い
温度域で脱離し、Aサイトイオンの部分置換によって生
じる酸素空孔に収着している酸素(α−酸素)と、
(b)820℃付近で鋭いピーク状に脱離し、Bサイト
元素の低原子価への還元に対応する酸素(β−酸素)の
2種があり、この2種の酸素の存在により、結晶構造中
に存在するPtとPdの安定化が図られるため、幅広い
温度域において酸素の移動性が向上する。
In addition, as a result of introducing the above-described lattice defects, sorbed oxygen generally important for oxygen transfer can be increased. The sorbed oxygen includes (a) oxygen (α-oxygen) which is desorbed in a wide temperature range of 800 ° C. or less and sorbs into oxygen vacancies generated by partial substitution of A-site ions;
(B) There are two types of oxygen (β-oxygen) which desorb in a sharp peak at around 820 ° C. and correspond to the reduction of the B-site element to a lower valence. Since Pt and Pd existing in the metal are stabilized, the mobility of oxygen is improved in a wide temperature range.

【0016】また、本発明のペロブスカイト型複合酸化
物とアルミナ又はシリカゾルとを混合粉砕してスラリー
とした後、固体電解質基板上に塗布し、焼結すれば、か
かる構造中に存在する焼結助材であるMgとの相乗効果
により、固体電解質基板に対して強力な密着性を持ち、
燃料電池の起動停止によるヒートサイクルに対し、安定
した性能を発揮し、電極触媒作用をも有する燃料電池用
の空気極を得ることができる。
Further, after the perovskite-type composite oxide of the present invention and alumina or silica sol are mixed and pulverized to form a slurry, the slurry is applied on a solid electrolyte substrate and sintered, whereby the sintering aid existing in the structure is obtained. Due to the synergistic effect with the material Mg, it has strong adhesion to the solid electrolyte substrate,
It is possible to obtain a fuel cell air electrode that exhibits stable performance with respect to a heat cycle caused by the start / stop of the fuel cell and also has an electrode catalytic action.

【0017】[0017]

【発明の実施の形態】以下、本発明のペロブスカイト型
複合酸化物について詳細に説明する。上述の如く、本発
明のペロブスカイト型複合酸化物は、酸化物複合イオン
伝導材として機能し、具体的には、固体酸化物電解質型
燃料電池における電極触媒及び電極材料として兼用可能
であるが、特にかかる燃料電池の空気極を形成するのに
好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the perovskite-type composite oxide of the present invention will be described in detail. As described above, the perovskite-type composite oxide of the present invention functions as an oxide composite ion-conductive material, and specifically, can be used also as an electrode catalyst and an electrode material in a solid oxide electrolyte fuel cell. It is suitable for forming an air electrode of such a fuel cell.

【0018】本発明のペロブスカイト型複合酸化物は、
次の一般式(1) A’1-xA”xB’1-yB”yCO3・・・(1) (式中のA’はランタノイド元素、A”はA’以外のラ
ンタノイド元素、B’はアルミニウム族元素、B”は白
金族元素、Cはアルカリ土類金属元素を示し、xは0<
x<1、yは0<y<1を満足する数を示す。)で表さ
れる。具体的には、A’としてはLa、A”としてはG
d及び/又はDy、B’としてはAl、B”としてはP
t及び/又はPd、CとしてはMgが好ましい。また、
(1)式において、xは0<x≦0.5、yは0<y≦
0.2を満足する数であることが好ましく、xが0.5
を超えると、また、yが0.2を超えても、効果の向上
は期待できず、好ましくない。
The perovskite-type composite oxide of the present invention comprises:
The following general formula (1): A ′ 1−x A ″ x B ′ 1−y B ″ y CO 3 (1) (where A ′ is a lanthanoid element and A ″ is a lanthanoid element other than A ′) , B ′ are an aluminum group element, B ″ is a platinum group element, C is an alkaline earth metal element, and x is 0 <
x <1, y indicates a number satisfying 0 <y <1. ). Specifically, La is A for A ′, and G is A for A ″.
d and / or Dy, B ′ is Al, B ″ is P
Mg is preferable as t and / or Pd and C. Also,
In the formula (1), x is 0 <x ≦ 0.5, and y is 0 <y ≦
It is preferable that the number satisfies 0.2, and x is 0.5
If y exceeds 0.2, and if y exceeds 0.2, no improvement in the effect can be expected, which is not preferable.

【0019】次に、本発明のペロブスカイト型複合酸化
物の製造方法について説明する。この複合酸化物は、上
記(1)式に示された各種金属の硝酸塩又は炭酸塩を所
定の化学量論比で混合し、出発塩として硝酸塩を用いた
場合は、炭酸水素アンモニウム溶液中に添加し、一旦炭
酸塩とした後、加熱水蒸気中で水熱反応によりモノオキ
シ炭酸塩を合成し、出発塩が炭酸塩の場合には、純水中
に分散後、加熱水蒸気中で水熱反応によりモノオキシ炭
酸塩を合成し、しかる後、得られたモノオキシ炭酸塩を
空気中で焼成して得られる。従って、(1)式に示され
ている各種構成金属元素、即ちLa、Gd、Dy、Pt
及びPd等は、これらの硝酸塩又は炭酸塩由来のもので
あるといい得る。
Next, a method for producing the perovskite-type composite oxide of the present invention will be described. This composite oxide is prepared by mixing nitrates or carbonates of various metals represented by the above formula (1) at a predetermined stoichiometric ratio, and adding nitrate to a solution of ammonium hydrogencarbonate when nitrate is used as a starting salt. Then, once converted to a carbonate, a monooxycarbonate is synthesized by a hydrothermal reaction in heated steam. If the starting salt is a carbonate, the monooxycarbonate is dispersed in pure water and then subjected to hydrothermal reaction in heated steam to produce a monooxycarbonate. It is obtained by synthesizing a carbonate and then calcining the obtained monooxycarbonate in air. Therefore, various constituent metal elements shown in the formula (1), that is, La, Gd, Dy, Pt
And Pd can be said to be derived from these nitrates or carbonates.

【0020】以下、上述の製造方法の代表例につき説明
すると、まず、硝酸La、硝酸Gd又は硝酸Dy、硝酸
Al及び硝酸Mgの混合溶液に、純水で約倍量に希釈し
たジニトロジアミノ白金、硝酸Pd又はジニトロジアミ
ノPd溶液を添加し、十分に攪拌混合する。次いで、こ
の混合溶液を、オートクレーブ中で予め純水に溶解、攪
拌しておいた炭酸水素アンモニウムに添加する。全量を
添加した後、オートクレーブ中に約110〜120℃、
蒸気圧3kg/cm2の水蒸気を密閉状態で導入する。
オートクレーブ内圧が1.1〜1.2kg/cm2程度
に達したところで水蒸気の導入量を調整し、2〜3時間
反応を継続させる。水蒸気導入の必要がなくなってから
約0.4〜0.5時間後に反応を終了する。そして、反
応終了後、濾過、洗浄及び乾燥を行った後、空気中約5
00〜600℃で3〜5時間焼成して本発明のペロブス
カイト型複合酸化物を得る。
Hereinafter, a typical example of the above-mentioned production method will be described. First, dinitrodiaminoplatinum diluted to about twice the amount with pure water in a mixed solution of La nitrate, Gd nitrate or Dy nitrate, Al nitrate and Mg nitrate is described. Add the Pd nitrate or dinitrodiamino Pd solution and mix well with stirring. Next, this mixed solution is added to ammonium hydrogen carbonate dissolved and stirred in pure water in an autoclave in advance. After adding the entire amount, about 110 to 120 ° C in an autoclave,
Steam with a vapor pressure of 3 kg / cm 2 is introduced in a sealed state.
When the internal pressure of the autoclave reaches about 1.1 to 1.2 kg / cm 2, the amount of introduced steam is adjusted, and the reaction is continued for 2 to 3 hours. The reaction is terminated about 0.4 to 0.5 hours after the introduction of steam is no longer necessary. After completion of the reaction, filtration, washing, and drying are performed, and the air is filtered for about 5 hours.
By baking at 00 to 600 ° C. for 3 to 5 hours, a perovskite-type composite oxide of the present invention is obtained.

【0021】次に、本発明の電極触媒、電極材料及び燃
料電池用空気極について説明する。上述の如く、本発明
の電極触媒及び電極材料は、上記一般式(1)式に示し
たペロブスカイト型複合酸化物を含有する。また、本発
明の空気極は、本発明の電極触媒を本発明の電極材料若
しくは他の電極材料に担持するか、又は本発明の電極材
料のみを用いるか若しくは他の材料と混合して用いるこ
とにより、形成することができる。
Next, the electrode catalyst, electrode material and air electrode for a fuel cell of the present invention will be described. As described above, the electrode catalyst and the electrode material of the present invention contain the perovskite-type composite oxide represented by the general formula (1). Further, the air electrode of the present invention uses the electrode catalyst of the present invention on the electrode material of the present invention or another electrode material, or uses only the electrode material of the present invention or is mixed with other materials. Can be formed.

【0022】ここで、上記電極触媒、電極材料及び空気
極は、ジルコニアやセリア、好ましくはイットリウム部
分安定化ジツコニア等の固体電解質を用いる高温固体電
解質型燃料電池において、かかる固体電解質に接した状
態で使用される。なお、本発明のペロブスカイト型複合
酸化物を電極触媒として用いる場合、本発明の電極材料
以外の他の電極材料の具体例としては、ジルコニアやチ
タニアを挙げることができる。
Here, the above-mentioned electrode catalyst, electrode material and air electrode are in contact with the solid electrolyte in a high temperature solid electrolyte fuel cell using a solid electrolyte such as zirconia or ceria, preferably yttrium partially stabilized diconia. used. When the perovskite-type composite oxide of the present invention is used as an electrode catalyst, specific examples of the electrode material other than the electrode material of the present invention include zirconia and titania.

【0023】また、本発明の空気極は、固体電解質基板
に上記ペロブスカイト複合酸化物を塗布した後、空気中
で焼成することにより作成できる。この際、上記ペロブ
スカイト複合酸化物を単独で用いてもよいが、アルミナ
又はシリカゾルと混合してもよく、かかる混合使用によ
り、焼結助材成分たるMgとアルミナ等との相乗効果が
得られ、固体電解質基板に対して強力な密着性をもって
被覆できるようになり、より安定した作動を実現する燃
料電池を得ることが可能になる。
Further, the air electrode of the present invention can be prepared by applying the perovskite composite oxide to a solid electrolyte substrate and then firing in air. At this time, the perovskite composite oxide may be used alone, or may be mixed with alumina or silica sol. By using such a mixture, a synergistic effect of sintering aid components Mg and alumina can be obtained, It is possible to coat the solid electrolyte substrate with strong adhesion, and it is possible to obtain a fuel cell that realizes more stable operation.

【0024】典型的には、かかるペロブスカイト型複合
酸化物粉末を、10重量%以下のアルミナ又はシリカを
含む塩酸酸性ゾルと、遊星型ボールミルで粉砕混合して
スラリーを得、得られたスラリーを固体電解質基板に塗
布した後、空気中約800〜850℃で焼結することに
より、本発明の空気極を得ることができる。なお、アル
ミナ、ジリカの含有量を10重量%以下としたのは、1
0重量%を超えると、ペロブスカイト成分量が相対的に
低下することになり好ましくないためである。また、塩
酸酸性ゾルを用いたのは、Cl-イオンの焼結助材効果
を考慮したものである。
Typically, the perovskite-type composite oxide powder is pulverized and mixed with a hydrochloric acid sol containing 10% by weight or less of alumina or silica in a planetary ball mill to obtain a slurry. After being applied to the electrolyte substrate, it is sintered at about 800 to 850 ° C. in the air to obtain the air electrode of the present invention. The content of alumina and zirica was set to 10% by weight or less because
If it exceeds 0% by weight, the amount of perovskite component is relatively reduced, which is not preferable. The reason for using the hydrochloric acid sol is to take into account the effect of the sintering aid of Cl - ions.

【0025】[0025]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0026】(実施例1)各元素の比率がLa0.9モ
ル、Gd0.1モル、Al0.95モル、Pd0.05
モル及びMg1.0モルになるように各元素の硝酸塩を
混合した。即ち、硝酸ランタン[La(NO33・6H
2O]389.6g、硝酸ガドリニウム[Gd(NO3
3・6H2O]45.1g、硝酸アルミニウム[Al(N
33・9H2O]356.4g、硝酸パラジウム[P
d(NO32+H2O]11.5g+11.5g、硝酸
マグネシウム[Mg(NO32・6H2O]256.4
gを純水1Lと混合し、十分に攪拌して混合溶液を得
た。
(Example 1) The ratio of each element is La 0.9 mol, Gd 0.1 mol, Al 0.95 mol, Pd 0.05
The nitrate of each element was mixed so as to be 1.0 mol and 1.0 mol of Mg. That is, lanthanum nitrate [La (NO 3) 3 · 6H
2 O] 389.6g, gadolinium nitrate [Gd (NO 3)
3 · 6H 2 O] 45.1g, aluminum nitrate [Al (N
O 3) 3 · 9H 2 O ] 356.4g, palladium nitrate [P
d (NO 3 ) 2 + H 2 O] 11.5 g + 11.5 g, magnesium nitrate [Mg (NO 3 ) 2 .6H 2 O] 256.4
g was mixed with 1 L of pure water and sufficiently stirred to obtain a mixed solution.

【0027】炭酸水素アンモニウム[NH4HCO3]2
61gを予めオートクレーブ中で純水0.5Lに溶解し
ておき、これを攪拌しながら上記混合溶液を投入した。
混合溶液全量を投入した後、オートクレーブを密閉して
攪拌を続けながら、オートクレーブ中に温度が約120
℃、水蒸気圧が約2kg/cm2の水蒸気を圧入し、オ
ートクレーブ内圧が1.1kg/cm2になった時点で
水蒸気の供給を一旦停止した。次いで、オートクレーブ
内圧が1.1kg/cm2、最大1.2kg/cm2の条
件を維持するように、水蒸気の供給量を調整しながら反
応させた。水蒸気の供給開始から2時間で、内圧は水蒸
気の供給を止めても1.1kg/cm2を維持するよう
になった。この状態で0.5時間反応を継続した後、攪
拌を止め、密閉を解除した。
Ammonium hydrogen carbonate [NH 4 HCO 3 ] 2
61 g was previously dissolved in 0.5 L of pure water in an autoclave, and the above mixed solution was charged with stirring.
After charging the whole amount of the mixed solution, the autoclave was closed and the temperature was maintained at about 120
At 2 ° C., steam pressure of about 2 kg / cm 2 was injected, and when the internal pressure of the autoclave reached 1.1 kg / cm 2 , the supply of steam was temporarily stopped. Then, the reaction was performed while adjusting the supply amount of steam so that the internal pressure of the autoclave was maintained at 1.1 kg / cm 2 and the maximum condition was 1.2 kg / cm 2 . Two hours after the start of the supply of steam, the internal pressure was maintained at 1.1 kg / cm 2 even when the supply of steam was stopped. After continuing the reaction for 0.5 hour in this state, the stirring was stopped and the sealing was released.

【0028】反応が終了したスラリー状水和物をオート
クレーブから取り出し、吸引濾過して沈澱物を回収し、
この沈澱物を純水を用いて洗浄した後、120℃のオー
ブン中で12時間乾燥した。しかる後、上記乾燥粉末
を、アルミナ製坩堝を用い、空気中500℃で5時間焼
成して、触媒作用を有するペロブスカイト型複合酸化物
粉末である本例の電極材料を得た。この電極材料の理論
組成はLa0.9Gd0.1Al0.95Pd0.05MgO3であっ
た。組成を表1に示す。
The slurry-like hydrate after the reaction is removed from the autoclave, and the precipitate is collected by suction filtration.
The precipitate was washed with pure water and dried in an oven at 120 ° C. for 12 hours. Thereafter, the dried powder was calcined in an air at 500 ° C. for 5 hours using an alumina crucible to obtain an electrode material of the present example, which is a perovskite-type composite oxide powder having a catalytic action. Theoretical composition of the electrode material was La 0.9 Gd 0.1 Al 0.95 Pd 0.05 MgO 3. The composition is shown in Table 1.

【0029】次に、本例の電極材料100gと8重量%
塩酸酸性アルミナゾル(13gのベーマイトアルミナと
10wt%塩酸水溶液87gの混合溶液)100gとを
遊星型ボールミル(ポット及び、ボールはメノウ製)を
用いて5時間粉砕混合し、ペロブスカイト型複合酸化物
微粉末スラリーを得た。得られたスラリー6.8gを、
15cm角の固体電解質基板に酸化物として均一に塗布
し、50℃で12時間乾燥後、空気中1200℃で焼結
して本例の空気極Aを得た。この空気極A1枚当たりの
Pd使用量は137.4mgであり、単位面積当たりで
は0.61mg/cm2であった。空気極の組成を表2
に示す。
Next, 100 g of the electrode material of the present example and 8% by weight
100 g of hydrochloric acid acidic alumina sol (a mixed solution of 13 g of boehmite alumina and 87 g of 10 wt% hydrochloric acid aqueous solution) was pulverized and mixed for 5 hours using a planetary ball mill (pots and balls are made of agate), and a perovskite-type composite oxide fine powder slurry was prepared. I got 6.8 g of the obtained slurry,
An oxide was uniformly applied as an oxide on a 15 cm square solid electrolyte substrate, dried at 50 ° C. for 12 hours, and then sintered at 1200 ° C. in air to obtain an air electrode A of this example. The amount of Pd used per air electrode A was 137.4 mg, and was 0.61 mg / cm 2 per unit area. Table 2 shows the composition of the cathode
Shown in

【0030】(実施例2)La0.8モル、Gd0.2
モル、即ち硝酸ランタン346.3g、硝酸ガドリニウ
ム90.3gとした以外は、実施例1と同様の操作を繰
り返し、本例の電極材料であるペロブスカイト型複合酸
化物La0.8Gd0.2Al0.95Pd0.05MgO3を得た。
また、得られた電極材料を用いて更に実施例1と同様の
操作を繰り返し、本例の空気極Bを得た。この空気極B
1枚当たりのPd使用量は136.3mgであり、単位
面積当たりでは、0.606mg/cm2であった。
Example 2 La 0.8 mol, Gd 0.2
The same operation as in Example 1 was repeated except that the moles, that is, 346.3 g of lanthanum nitrate and 90.3 g of gadolinium nitrate, were used, and the perovskite-type composite oxide La 0.8 Gd 0.2 Al 0.95 Pd 0.05 MgO which was the electrode material of this example Got three .
Further, the same operation as in Example 1 was further repeated using the obtained electrode material to obtain the air electrode B of this example. This air pole B
The amount of Pd used per sheet was 136.3 mg, and the amount per unit area was 0.606 mg / cm 2 .

【0031】(実施例3)La0.7モル、Gd0.3
モル、即ち硝酸ランタン303g、硝酸ガドリニウム1
35.4gとした以外は、実施例1と同様の操作を繰り
返し、本例の電極材料であるペロブスカイト型複合酸化
物La0.7Gd0.3Al0.95Pd0.05MgO3を得た。次
いで、この電極材料を用いて更に実施例1と同様の操作
を繰り返し、本例の空気極Cを得た。この空気C1枚当
たりのPd使用量は135.3mgであり、単位面積当
たりでは、0.601mg/cm2であった。
(Example 3) La 0.7 mol, Gd 0.3
Mol: 303 g of lanthanum nitrate, 1 gadolinium nitrate
Except that the 35.4g, repeat the same operation as in Example 1 to obtain a perovskite-type composite oxide La 0.7 Gd 0.3 Al 0.95 Pd 0.05 MgO 3 is an electrode material of the present embodiment. Next, the same operation as in Example 1 was further repeated using this electrode material to obtain the air electrode C of this example. The amount of Pd used per sheet of air C was 135.3 mg, and was 0.601 mg / cm 2 per unit area.

【0032】(実施例4)La0.6モル、Gd0.4
モル、即ち硝酸ランタン259.7g、硝酸ガドリニウ
ム180.5gとした以外は、実施例1と同様の操作を
繰り返し、本例の電極材料La0.6Gd0.4Al0.95Pd
0.05MgO3を得た。次いで、この電極材料を用いて更
に実施例1と同様の操作を繰り返し、本例の空気極Dを
得た。この空気極D1枚当たりのPd使用量は134.
3mgであり、単位面積当たりでは、0.60mg/c
2であった。
Example 4 La 0.6 mol, Gd 0.4
The same operation as in Example 1 was repeated except that the moles, ie, 259.7 g of lanthanum nitrate and 180.5 g of gadolinium nitrate, were used, and the electrode material of the present example was La 0.6 Gd 0.4 Al 0.95 Pd.
0.05 MgO 3 was obtained. Next, the same operation as in Example 1 was further repeated using this electrode material to obtain an air electrode D of this example. The amount of Pd used per one air electrode D is 134.
3 mg, and 0.60 mg / c per unit area.
m 2 .

【0033】(実施例5)La0.5モル、Gd0.5
モル、即ち硝酸ランタン216.5g、硝酸ガドリニウ
ム225.7gとした以外は、実施例1と同様の操作を
繰り返し、本例の電極材料La0.5Gd0.5Al0.95Pd
0.05MgO3を得た。更に、この電極材料を用いて実施
例1と同様の操作を繰り返し、本例の空気極Eを得た。
この空気極E1枚当たりのPd使用量は133.3mg
であり、単位面積当たりでは、0.59mg/cm2
あった。
Example 5 La 0.5 mol, Gd 0.5
The same operation as in Example 1 was repeated except that the moles, that is, 216.5 g of lanthanum nitrate and 225.7 g of gadolinium nitrate, were used, and the electrode material of this example was La 0.5 Gd 0.5 Al 0.95 Pd.
0.05 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode E of this example.
The amount of Pd used per air electrode E is 133.3 mg.
And it was 0.59 mg / cm 2 per unit area.

【0034】(実施例6)Al0.9モル、Pd0.1
モル、即ち硝酸アルミニウム337.6g、[硝酸パラ
ジウム+H2O]23g+23gとした以外は、実施例
2と同様の操作を繰り返し、本例の電極材料La0.8
0.2Al0.9Pd0.1MgO3を得た。更に、この電極材
料を用いて実施例1と同様の操作を繰り返し、本例の空
気極Fを得た。この空気極F1枚当たりのPd使用量は
268.3mgであり、単位面積当たりでは、1.19
mg/cm2であった。
Example 6 0.9 mol of Al, 0.1 Pd
The same operation as in Example 2 was repeated except that the moles, ie, 337.6 g of aluminum nitrate and 23 g + 23 g of [palladium nitrate + H 2 O], were used, and the electrode material La 0.8 G of this example was used.
to obtain a d 0.2 Al 0.9 Pd 0.1 MgO 3 . Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode F of this example. The used amount of Pd per one air electrode F is 268.3 mg, and 1.19 per unit area.
mg / cm 2 .

【0035】(実施例7)Al0.85モル、Pd0.
15モル、即ち硝酸アルミニウム318.9g、[硝酸
パラジウム+H2O]34.6g+34.6gとした以
外は、実施例2と同様の操作を繰り返し、本例の電極材
料La0.8Gd0.2Al0.85Pd0.15MgO3を得た。更
に、この電極材料を用いて実施例1と同様の操作を繰り
返し、本例の空気極Gを得た。この空気極G1枚当たり
のPd使用量は396.2mgであり、単位面積当たり
では、1.76mg/cm2であった。
(Example 7) 0.85 mol of Al, Pd.
The same operation as in Example 2 was repeated except that 15 mol, that is, 318.9 g of aluminum nitrate and 34.6 g + 34.6 g of [palladium nitrate + H 2 O], and the electrode material of this example was La 0.8 Gd 0.2 Al 0.85 Pd 0.15. MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode G of this example. The amount of Pd used per air electrode G was 396.2 mg, and was 1.76 mg / cm 2 per unit area.

【0036】(実施例8)Al0.8モル、Pd0.2
モル、即ち硝酸アルミニウム300.1g、[硝酸パラ
ジウム+H2O]46.1g+46.1gとした以外
は、実施例2と同様の操作を繰り返し、本例の電極材料
La0.8Gd0.2Al0.8Pd0.2MgO3を得た。更に、
この電極材料を用いて実施例1と同様の操作を繰り返
し、本例の空気極Hを得た。この空気極H1枚当たりの
Pd使用量は520.15mgであり、単位面積当たり
では、2.3mg/cm2であった。
Example 8 0.8 mol of Al, 0.2 Pd
The same operation as in Example 2 was repeated except that the moles, ie, 300.1 g of aluminum nitrate and 46.1 g + 46.1 g of [palladium nitrate + H 2 O], were used, and the electrode material of this example was La 0.8 Gd 0.2 Al 0.8 Pd 0.2 MgO. Got three . Furthermore,
The same operation as in Example 1 was repeated using this electrode material to obtain the air electrode H of this example. The amount of Pd used per air electrode H was 520.15 mg, and was 2.3 mg / cm 2 per unit area.

【0037】(実施例9)Al0.975モル、Pt
0.025モル、即ち硝酸アルミニウム365.75
g、ジニトロジアミノ白金硝酸溶液(Pt=200g/
kg溶液)24.5g+H2O24・5gとした以外
は、実施例2と同様の操作を繰り返し、本例の電極材料
La0.8Gd0.2Al0.975Pt0.025MgO3を得た。更
に、この電極材料を用いて実施例1と同様の操作を繰り
返し、本例の空気極Iを得た。この空気極I1枚当たり
のPt使用量は125.4mgであり、単位面積当たり
では、0.56mg/cm2であった。
Example 9 0.975 mol of Al, Pt
0.025 mol, ie 365.75 aluminum nitrate
g, dinitrodiaminoplatinum nitrate solution (Pt = 200 g /
(kg solution) 24.5 g + 24.5 g of H 2 O, and the same operation as in Example 2 was repeated to obtain an electrode material La 0.8 Gd 0.2 Al 0.975 Pt 0.025 MgO 3 of this example. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode I of this example. The amount of Pt used per one air electrode I was 125.4 mg, and was 0.56 mg / cm 2 per unit area.

【0038】(実施例10)Al0.95モル、Pt
0.05モル、即ち硝酸アルミニウム356.4g、ジ
ニトロジアミノ白金硝酸溶液48.8g+H2O48.
8gとした以外は、実施例2と同様の操作を繰り返し、
本例の電極材料La0.8Gd0.2Al0.95Pt0 .05MgO
3を得た。更に、この電極材料を用いて実施例1と同様
の操作を繰り返し、本例の空気極Jを得た。この空気極
J1枚当たりのPt使用量は245.4mgであり、単
位面積当たりでは、1.09mg/cm2であった。
Example 10 0.95 mol of Al, Pt
0.05 mol, i.e. aluminum nitrate 356.4 g, dinitrodiamino platinum nitrate solution 48.8g + H 2 O48.
The same operation as in Example 2 was repeated except that the amount was 8 g,
Electrode material of this example La 0.8 Gd 0.2 Al 0.95 Pt 0 .05 MgO
Got three . Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode J of this example. The amount of Pt used per air electrode J was 245.4 mg, and was 1.09 mg / cm 2 per unit area.

【0039】(実施例11)Al0.925モル、Pt
0.075モル、即ち硝酸アルミニウム347g、ジニ
トロジアミノ白金硝酸溶液73.0g+H2O73.0
gとした以外は、実施例2と同様の操作を繰り返し、本
例の電極材料La0.8Gd0.2Al0.925Pt0.075MgO
3を得た。更に、この電極材料を用いて実施例1と同様
の操作を繰り返し、本例の空気極Kを得た。この空気極
K1枚当たりのPt使用量は362.1mgであり、単
位面積当たりでは、1.61mg/cm2であった。
Example 11 0.925 mol of Al, Pt
0.075 mole, i.e. aluminum nitrate 347 g, dinitrodiamino platinum nitrate solution 73.0g + H 2 O73.0
g, the same operation as in Example 2 was repeated, and the electrode material of this example La 0.8 Gd 0.2 Al 0.925 Pt 0.075 MgO
Got three . Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode K of this example. The amount of Pt used per air electrode K was 362.1 mg, and was 1.61 mg / cm 2 per unit area.

【0040】(実施例12)Al0.9モル、Pt0.
1モル、即ち硝酸アルミニウム337.6g、ジニトロ
ジアミノ白金硝酸溶液97.5g+H2O97.5gと
した以外は、実施例2と同様の操作を繰り返し、本例の
電極材料La0.8Gd0.2Al0.9Pt0.1MgO3を得
た。更に、この電極材料を用いて実施例1と同様の操作
を繰り返し、本例の空気極Lを得た。この空気極L1枚
当たりのPt使用量は475mgであり、単位面積当た
りでは、2.11mg/cm2であった。
(Example 12) Al 0.9 mol, Pt0.
The same operation as in Example 2 was repeated except that 1 mol, that is, 337.6 g of aluminum nitrate and 97.5 g of dinitrodiaminoplatinum nitric acid solution + 97.5 g of H 2 O, was used, and the electrode material of this example was La 0.8 Gd 0.2 Al 0.9 Pt 0.1 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode L of this example. The amount of Pt used per one air electrode L was 475 mg, and was 2.11 mg / cm 2 per unit area.

【0041】(実施例13)La0.9モル、Dy0.
1モル、Al0.95モル、Pd0.05モルの比率に
なるように各金属の硝酸塩を混合した。即ち、硝酸ラン
タン389.6g、硝酸ジスプロシウム[Dy(N
33・5H2O]43.9g、硝酸アルミニウム35
6.4g、[硝酸パラジウム+H2O]11.5g+1
1.5g、硝酸マグネシウム256.4gを純水1Lと
混合して十分に攪拌し、更に実施例1と同様の操作を繰
り返し、本例の電極材料La0.9Dy0.1Al0.95Pd
0.05MgO3を得た。次いで、この電極材料を用いて実
施例1と同様の操作を繰り返し、本例の空気極Mを得
た。この空気極M1枚当たりのPd使用量は137.3
mgであり、単位面積当たりでは、0.61mg/cm
2であった。
Example 13 La 0.9 mol, Dy0.
The nitrates of each metal were mixed at a ratio of 1 mol, 0.95 mol of Al, and 0.05 mol of Pd. That is, 389.6 g of lanthanum nitrate, dysprosium nitrate [Dy (N
O 3) 3 · 5H 2 O ] 43.9g, aluminum nitrate 35
6.4 g, [palladium nitrate + H 2 O] 11.5 g + 1
1.5 g and 256.4 g of magnesium nitrate were mixed with 1 L of pure water and sufficiently stirred, and the same operation as in Example 1 was repeated to obtain an electrode material of this example La 0.9 Dy 0.1 Al 0.95 Pd.
0.05 MgO 3 was obtained. Next, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode M of this example. The amount of Pd used per one cathode M is 137.3.
mg, and 0.61 mg / cm per unit area.
Was 2 .

【0042】(実施例14)La0.8モル、Dy0.
2モル、即ち硝酸ランタン346.3g、硝酸ジスプロ
シウム87.7gとした以外は、実施例13と同様の操
作を繰り返し、本例の電極材料La0.8Dy0.2Al0.95
Pd0.05MgO3を得た。更に、この電極材料を用いて
実施例1と同様の操作を繰り返し、本例の空気極Nを得
た。この空気極N1枚当たりのPd使用量は135.8
mgであり、単位面積当たりでは、0.603mg/c
2であった。
(Example 14) La 0.8 mol, Dy 0.
The same operation as in Example 13 was repeated except that 2 mol, that is, 346.3 g of lanthanum nitrate and 87.7 g of dysprosium nitrate, was used, and the electrode material of this example was La 0.8 Dy 0.2 Al 0.95.
Pd 0.05 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode N of this example. The amount of Pd used per air electrode N is 135.8.
mg and 0.603 mg / c per unit area.
m 2 .

【0043】(実施例15)La0.7モル、Dy0.
3モル、即ち硝酸ランタン313g、硝酸ジスプロシウ
ム131.6gとした以外は、実施例13と同様の操作
を繰り返し、本例の電極材料La0.7Dy0.3Al0.95
0.05MgO3を得た。更に、この電極材料を用いて実
施例1と同様の操作を繰り返し、本例の空気極Oを得
た。この空気極O1枚当たりのPd使用量は134.5
mgであり、単位面積当たりでは、0.60mg/cm
2であった。
Example 15 0.7 mol of La, Dy0.
The same operation as in Example 13 was repeated except that 3 mol, that is, 313 g of lanthanum nitrate and 131.6 g of dysprosium nitrate were used, and the electrode material of this example La 0.7 Dy 0.3 Al 0.95 P
d 0.05 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode O of this example. The amount of Pd used per air electrode O is 134.5.
mg and 0.60 mg / cm per unit area.
Was 2 .

【0044】(実施例16)La0.6モル、Dy0.
4モル、即ち硝酸ランタン259.7g、硝酸ジスプロ
シウム175.4gとした以外は、実施例13と同様の
操作を繰り返し、本例の電極材料La0.6Dy0.4Al
0.95Pd0.05MgO3を得た。更に、この電極材料を用
いて実施例1と同様の操作を繰り返し、本例の空気極P
を得た。この空気極P1枚当たりのPd使用量は13
3.2mgであり、単位面積当たりでは、0.59mg
/cm2であった。
Example 16 0.6 mol of La, Dy0.
The same operation as in Example 13 was repeated except that 4 mol, that is, 259.7 g of lanthanum nitrate and 175.4 g of dysprosium nitrate were used, and the electrode material La 0.6 Dy 0.4 Al of this example was repeated.
0.95 Pd 0.05 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material, and the air electrode P of this example was repeated.
I got The amount of Pd used per air electrode P is 13
3.2 mg, 0.59 mg per unit area
/ Cm 2 .

【0045】(実施例17)La0.5モル、Dy0.
5モル、即ち硝酸ランタン216.5g、硝酸ジスプロ
シウム219.3gとした以外は、実施例13と同様の
操作を繰り返し、本例の電極材料La0.5Dy0.5Al
0.95Pd0.05MgO3を得た。更に、この電極材料を用
いて実施例1と同様の操作を繰り返し、本例の空気極Q
を得た。この空気極Q1枚当たりのPd使用量は132
mgであり、単位面積当たりでは、0.59mg/cm
2であった。
(Example 17) La 0.5 mol, Dy 0.
The same operation as in Example 13 was repeated except that 5 mol, that is, 216.5 g of lanthanum nitrate and 219.3 g of dysprosium nitrate were used, and the electrode material La 0.5 Dy 0.5 Al of this example was repeated.
0.95 Pd 0.05 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material, and the air electrode Q of this example was repeated.
I got The amount of Pd used per one cathode Q is 132
mg and 0.59 mg / cm per unit area.
Was 2 .

【0046】(実施例18)Al0.9モル、Pd0.
1モル、即ち硝酸アルミニウム337.6g、[硝酸パ
ラジウム+H2O]23g+23gとした以外は、実施
例14と同様の操作を繰り返し、本例の電極材料La
0.8Dy0.2Al0.9Pd0.1MgO3を得た。更に、この
電極材料を用いて実施例1と同様の操作を繰り返し、本
例の空気極Rを得た。この空気極R1枚当たりのPd使
用量は267.2mgであり、単位面積当たりでは、
1.19mg/cm2であった。
Example 18 0.9 mol of Al, 0.1 mol of Pd.
The same operation as in Example 14 was repeated, except that 1 mol, that is, 337.6 g of aluminum nitrate and 23 g + 23 g of [palladium nitrate + H 2 O] was used.
0.8 Dy 0.2 Al 0.9 Pd 0.1 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode R of this example. The amount of Pd used per one air electrode R is 267.2 mg, and per unit area:
1.19 mg / cm 2 .

【0047】(実施例19)Al0.85モル、Pd
0.15モル、即ち硝酸アルミニウム318.9g、
[硝酸パラジウム+H2O]34.6g+34.6gと
した以外は、実施例14と同様の操作を繰り返し、本例
の電極材料La0.8Dy0.2Al0.85Pd0.15MgO3
得た。更に、この電極材料を用いて実施例1と同様の操
作を繰り返し、空気極Sを得た。この空気極S1枚当た
りのPd使用量は394.6mgであり、単位面積当た
りでは、1.75mg/cm2であった。
Example 19 0.85 mol of Al, Pd
0.15 mol, ie 318.9 g of aluminum nitrate,
The same operation as in Example 14 was repeated, except that [palladium nitrate + H 2 O] was changed to 34.6 g + 34.6 g, to obtain an electrode material La 0.8 Dy 0.2 Al 0.85 Pd 0.15 MgO 3 of this example. Further, the same operation as in Example 1 was repeated using this electrode material to obtain an air electrode S. The amount of Pd used per air electrode S was 394.6 mg, and was 1.75 mg / cm 2 per unit area.

【0048】(実施例20)Al0.8モル、Pd0.
2モル、即ち硝酸アルミニウム300.1g、[硝酸パ
ラジウム+H2O]46.1g+46.1gとした以外
は、実施例14と同様の操作を繰り返し、本例の電極材
料La0.8Dy0.2Al0.8Pd0.2MgO3を得た。更
に、この電極材料を用いて実施例1と同様の操作を繰り
返し、本例の空気極Tを得た。この空気極T1枚当たり
のPd使用量は518mgであり、単位面積当たりで
は、2.3mg/cm2であった。
Example 20 0.8 mol of Al, Pd.
The same operation as in Example 14 was repeated except that 2 mol, that is, 300.1 g of aluminum nitrate and 46.1 g + 46.1 g of [palladium nitrate + H 2 O] were used, and the electrode material of this example La 0.8 Dy 0.2 Al 0.8 Pd 0.2 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode T of this example. The amount of Pd used per one air electrode T was 518 mg, and was 2.3 mg / cm 2 per unit area.

【0049】(実施例21)Al0.975モル、Pt
0.025モル、即ち硝酸アルミニウム365.3g、
ジニトロジアミノ白金硝酸溶液(Pt=200g/kg
溶液)+H2O24.5g+24.5gとした以外は、
実施例14と同様の操作を繰り返し、本例の電極材料L
0.8Dy0.2Al0.975Pt0.025MgO3を得た。更
に、この電極材料を用いて実施例1と同様の操作を繰り
返し、本例の空気極Uを得た。この空気極U1枚当たり
のPt使用量は124.9mgであり、単位面積当たり
では、0.56mg/cm2であった。
Example 21 0.975 mol of Al, Pt
0.025 mol, ie 365.3 g of aluminum nitrate,
Dinitrodiaminoplatinic nitric acid solution (Pt = 200 g / kg
Solution) + H 2 O 24.5 g + 24.5 g except that
The same operation as in Example 14 was repeated to obtain the electrode material L of this example.
a 0.8 Dy 0.2 Al 0.975 Pt 0.025 MgO 3 was obtained. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode U of this example. The amount of Pt used per air electrode U was 124.9 mg, and was 0.56 mg / cm 2 per unit area.

【0050】(実施例22)Al0.95モル、Pt
0.05モル、即ち硝酸アルミニウム356.4g、ジ
ニトロジアミノ白金硝酸溶液+H2O48.8g+4
8.8gとした以外は、実施例14と同様の操作を繰り
返し、本例の電極材料La0.8Dy0.2Al0.95Pt0.05
MgO3を得た。更に、この電極材料を用いて実施例1
と同様の操作を繰り返し、本例の空気極Vを得た。この
空気極V1枚当たりのPt使用量は244.4mgであ
り、単位面積当たりでは、1.09mg/cm2であっ
た。
Example 22 0.95 mol of Al, Pt
0.05 mol, that is, 356.4 g of aluminum nitrate, dinitrodiaminoplatinum nitrate solution + 48.8 g of H 2 O + 4
The same operation as in Example 14 was repeated except that the amount was changed to 8.8 g, and the electrode material of this example was La 0.8 Dy 0.2 Al 0.95 Pt 0.05
MgO 3 was obtained. Further, using this electrode material,
The same operation as described above was repeated to obtain the air electrode V of this example. The amount of Pt used per air electrode V was 244.4 mg, and was 1.09 mg / cm 2 per unit area.

【0051】(実施例23)Al0.925モル、Pt
0.075モル、即ち硝酸アルミニウム347g、ジニ
トロジアミノ白金硝酸溶液+H2O73.0g+73.
0gとした以外は、実施例14と同様の操作を繰り返
し、本例の電極材料La0.8Dy0.2Al0.925Pt0.075
MgO3を得た。更に、この電極材料を用いて実施例1
と同様の操作を繰り返し、本例の空気極Wを得た。この
空気極W1枚当たりのPt使用量は360.6mgであ
り、単位面積当たりでは、1.60mg/cm2であっ
た。
Example 23 0.925 mol of Al, Pt
0.075 mole, i.e. aluminum nitrate 347 g, dinitrodiamino platinum nitrate solution + H 2 O73.0g + 73.
The same operation as in Example 14 was repeated except that the amount was 0 g, and the electrode material of this example was La 0.8 Dy 0.2 Al 0.925 Pt 0.075.
MgO 3 was obtained. Further, using this electrode material,
The same operation as described above was repeated to obtain the air electrode W of this example. The amount of Pt used per air electrode W was 360.6 mg, and was 1.60 mg / cm 2 per unit area.

【0052】(実施例24)Al0.9モル、Pt0.
1モル、即ち硝酸アルミニウム337.6g、ジニトロ
ジアミノ白金硝酸溶液+H2O97.5g+97.5g
とした以外は、実施例14と同様の操作を繰り返し、本
例の電極材料La0.8Dy0.2Al0.9Pt0. 1MgO3
得た。更に、この電極材料を用いて実施例1と同様の操
作を繰り返し、本例の空気極Xを得た。この空気極X1
枚当たりのPt使用量は473mgであり、単位面積当
たりでは、2.1mg/cm2であった。
Example 24 0.9 mol of Al, 0.1 mol of Pt.
1 mol, that is, 337.6 g of aluminum nitrate, 97.5 g of dinitrodiaminoplatinum nitric acid solution + 97.5 g of H 2 O + 97.5 g
Except that the repeats in the same manner as in Example 14, to obtain an electrode material La 0.8 Dy 0.2 Al 0.9 Pt 0. 1 MgO 3 of the present embodiment. Further, the same operation as in Example 1 was repeated using this electrode material to obtain the air electrode X of this example. This air electrode X1
The amount of Pt used per sheet was 473 mg, and was 2.1 mg / cm 2 per unit area.

【0053】(実施例25)6%重量%Siを含む塩酸
酸性シリカゾル100gを用いた以外は、実施例1と同
様の操作を繰り返し、空気極Yを得た。この空気極Y1
枚当たりのPd使用量は140.6mgであり、単位面
積当たりでは、0.625mg/cm2であった。
Example 25 An air electrode Y was obtained by repeating the same operation as in Example 1 except that 100 g of hydrochloric acid acidic silica sol containing 6% by weight of Si was used. This air electrode Y1
The amount of Pd used per sheet was 140.6 mg, and was 0.625 mg / cm 2 per unit area.

【0054】(比較例1)La0.8モル、Gd0.2
モル、Al1.0モル、Mg1.0モルの比率とすべ
く、硝酸ランタン346.3g、硝酸ガドリニウム9
0.3g、硝酸アルミニウム375.1g、硝酸マグネ
シウム256.4gを純水1Lと混合し、十分に攪拌
し、混合溶液を得た。この混合溶液について実施例1と
同様の操作を繰り返し、ペロブスカイト型複合酸化物粉
末を得た。この複合酸化物粉末の理論組成はLa0.8
0.2AlMgO3である。
Comparative Example 1 La 0.8 mol, Gd 0.2
Mol, 1.0 mol of Al, 1.0 mol of Mg, 346.3 g of lanthanum nitrate and 9 gadolinium nitrate.
0.3 g, 375.1 g of aluminum nitrate, and 256.4 g of magnesium nitrate were mixed with 1 L of pure water, and sufficiently stirred to obtain a mixed solution. The same operation as in Example 1 was repeated for this mixed solution to obtain a perovskite-type composite oxide powder. The theoretical composition of this composite oxide powder is La 0.8 G
d 0.2 AlMgO 3 .

【0055】次いで、得られたペロブスカイト型複合酸
化物粉末にPd0.05モル、即ち硝酸パラジウム1
1.5gを純水100mlに溶解した溶液を混合し、十
分に攪拌した後、120℃のオーブン中で3時間乾燥
し、空気中500℃で2時間焼成して、本例の電極材料
であるPd担持ペロブスカイト型複合酸化物粉末を得
た。
Next, 0.05 mol of Pd, that is, palladium nitrate 1 was added to the obtained perovskite-type composite oxide powder.
A solution obtained by dissolving 1.5 g in 100 ml of pure water was mixed, sufficiently stirred, dried in an oven at 120 ° C. for 3 hours, and baked in air at 500 ° C. for 2 hours to obtain an electrode material of this example. A Pd-supported perovskite-type composite oxide powder was obtained.

【0056】得られたPd担持ペロブスカイト型複合酸
化物粉末100gと8重量%塩酸酸性アルミナゾル10
0gとを、遊星型ボールミルを用いて5時間粉砕混合
し、Pd担持ペロブスカイト型複合酸化物微粉末スラリ
ーを得た。得られたスラリーを15cm角の固体電解質
基板に酸化物として6.8gを均一に塗布し、50℃で
12時間乾燥後、空気中850℃で焼結し、本例の空気
極aを得た。この空気極a1枚当たりのPd使用量は1
35.6mgであり、単位面積当たりでは、0.602
gm/cm2であった。
100 g of the obtained Pd-supported perovskite-type composite oxide powder and 8% by weight hydrochloric acid acidic alumina sol 10
And 0 g were pulverized and mixed using a planetary ball mill for 5 hours to obtain a Pd-supported perovskite-type composite oxide fine powder slurry. The obtained slurry is uniformly coated with 6.8 g of oxide as an oxide on a 15 cm square solid electrolyte substrate, dried at 50 ° C. for 12 hours, and then sintered in air at 850 ° C. to obtain an air electrode a of this example. . The amount of Pd used per air electrode a is 1
35.6 mg, and 0.602 per unit area.
gm / cm 2 .

【0057】(比較例2)La0.8モル、Dy0.2
モル、即ち硝酸ランタン346.3g、硝酸ジスプロシ
ウム87.7gとした以外は、比較例1と同様の操作を
繰り返し、ペロブスカイト型複合酸化物La0.8Dy0.2
AlMgO3を得た。更に、比較例1と同様の操作を繰
り返し、本例の電極材料であるPd担持ペロブスカイト
型複合酸化物粉末を得た。次いで、この電極材料を用い
て比較例1と同様の操作を繰り返し、空気極bを得た。
この空気極b1枚当たりのPd使用量は135mgであ
り、単位面積当たりでは、0.60mg/cm2であっ
た。
Comparative Example 2 La 0.8 mol, Dy 0.2
The same operation as in Comparative Example 1 was repeated except that the moles, that is, 346.3 g of lanthanum nitrate and 87.7 g of dysprosium nitrate, were used, and the perovskite-type composite oxide La 0.8 Dy 0.2
AlMgO 3 was obtained. Further, the same operation as in Comparative Example 1 was repeated to obtain a Pd-supported perovskite-type composite oxide powder as the electrode material of this example. Next, the same operation as in Comparative Example 1 was repeated using this electrode material to obtain an air electrode b.
The amount of Pd used per air electrode b was 135 mg, and was 0.60 mg / cm 2 per unit area.

【0058】(比較例3)比較例1で得られたペロブス
カイト型複合酸化物La0.8Gd0.2AlMgO3粉末を
用い、スラリー化した後、固体電解質基板に塗布して焼
結し、本例の空気極cを得た。なお、この空気極cには
PtもPdも含まれていない。
[0058] (Comparative Example 3) using a perovskite-type composite oxide La 0.8 Gd 0.2 AlMgO 3 powder obtained in Comparative Example 1 was slurried by coating the solid electrolyte substrate and sintered, air in this example The pole c was obtained. The air electrode c contains neither Pt nor Pd.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】(特性評価)実施例1〜24及び比較例1
〜3で得られたペロブスカイト型複合酸化物たる電極材
料を用いた空気極を使用して図1に示す測定用セルを組
み立て、起電力の測定を行った。この測定の際には、本
発明による貴金属元素包含型のものと、従来型のペロブ
スカイト型複合酸化物のものにおける起電力が、Ner
unstの式による理論起電力に一致する温度を作動開
始温度TNe(℃)とし、このTNe(℃)を特性評価の指
標とした。特性評価は、図1において、基準極に1at
mの酸素を流し、測定極に10%O2−N2ガスを流した
時の起電力を測定することにより行った。評価結果を表
1に併記する。
(Characteristic evaluation) Examples 1 to 24 and Comparative Example 1
The measurement cell shown in FIG. 1 was assembled using the air electrode using the electrode material as the perovskite-type composite oxide obtained in Nos. 3 to 3, and the electromotive force was measured. In this measurement, the electromotive force of the noble metal element-containing type oxide according to the present invention and that of the conventional perovskite type composite oxide were Ner
The temperature that coincides with the theoretical electromotive force according to the unst equation was defined as the operation start temperature T Ne (° C.), and this T Ne (° C.) was used as an index for characteristic evaluation. In the characteristic evaluation, in FIG.
m of oxygen was flowed, and the electromotive force was measured when 10% O 2 -N 2 gas was flowed through the measurement electrode. The evaluation results are also shown in Table 1.

【0062】(耐久後特性評価)実施例2、6、10、
14、18、22及び比較例1、2で得られた空気極
B、F、J、N、R、V及びa、bについて、空気雰囲
気中1200℃で5時間耐久し、上記同様に起電力を測
定し、作動開始温度の変化を求めた。得られた結果を表
3に示す。
(Evaluation of characteristics after durability) Examples 2, 6, 10,
The air electrodes B, F, J, N, R, V, and a and b obtained in Examples 14, 18, and 22 and Comparative Examples 1 and 2 were durable in an air atmosphere at 1200 ° C. for 5 hours, and the electromotive force was the same as described above. Was measured, and the change in the operation start temperature was determined. Table 3 shows the obtained results.

【0063】[0063]

【表3】 [Table 3]

【0064】表3より、複合酸化物ヘのPd担持を行っ
た比較例1及び2では、熱(耐久)によりPd結晶粒子
の成長が起こるので、Pdを担持していないペロブスカ
イト型複合酸化物よりは低温で作動するものの、Pd等
を結晶構造の中に取り込んだ構成の各実施例における空
気極に比べると、大幅に劣化していることがわかる。
As shown in Table 3, in Comparative Examples 1 and 2 in which Pd was supported on the composite oxide, Pd crystal particles grew due to heat (durability). Although it operates at a low temperature, it can be seen that it is significantly deteriorated as compared with the air electrode in each embodiment in which Pd or the like is incorporated in the crystal structure.

【0065】[0065]

【発明の効果】以上説明してきたように、本発明によれ
ば、Mgをドープするなど特定の金属元素を用いて一般
式ABCO3で表されるペロブスカイト型複合酸化物を
構成することとしたため、固体電解質との界面での固相
反応を抑制し、良好な触媒作用を保持したまま耐熱性や
耐久性を改善し、低温域での発電を実現できるペロブス
カイト型複合酸化物、その製造方法並びにこれを用いた
固体酸化物電解質型燃料電池及びその電極などを提供す
ることができる。このため、従来の高温作動型固体電解
質型燃料電池で考慮されていた、スタック化のための高
耐熱材の使用等の必要性が無くなり、安価な材料の使用
によるコスト低減が図れ、燃料電池システムの早期実用
化が可能になり、代替燃料の利用及び環境保護等の効果
が期待できる。
As described above, according to the present invention, a perovskite-type composite oxide represented by the general formula ABCO 3 is constituted by using a specific metal element such as Mg doping. A perovskite-type composite oxide capable of suppressing solid-phase reaction at the interface with the solid electrolyte, improving heat resistance and durability while maintaining good catalytic action, and realizing power generation in a low temperature range, a method for producing the same, and a method for producing the same And a solid oxide electrolyte fuel cell using the same and an electrode thereof. For this reason, the necessity of using a high heat-resistant material for stacking, which was considered in the conventional high temperature operation type solid electrolyte fuel cell, is eliminated, and the cost can be reduced by using an inexpensive material. Can be put to practical use early, and the effects of using alternative fuels and protecting the environment can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】特性評価用の測定セルを示す模式図である。FIG. 1 is a schematic view showing a measurement cell for evaluating characteristics.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 次の一般式(1) A’1-xA”xB’1-yB”yCO3・・・(1) (式中のA’はランタノイド元素、A”はA’以外のラ
ンタノイド元素、B’はアルミニウム族元素、B”は白
金族元素、Cはアルカリ土類金属元素を示し、xは0<
x<1、yは0<y<1を満足する数を示す。)で表さ
れることを特徴とするペロブスカイト型複合酸化物。
1. The following general formula (1): A ′ 1-x A ″ x B ′ 1-y B ″ y CO 3 (1) (where A ′ is a lanthanoid element and A ″ is A Lanthanoid elements other than ', B' is an aluminum group element, B "is a platinum group element, C is an alkaline earth metal element, and x is 0 <
x <1, y indicates a number satisfying 0 <y <1. A perovskite-type composite oxide characterized by the following formula:
【請求項2】 上記(1)式におけるA’がLa、A”
がGd及び/又はDy、B’がAl、B”がPt及び/
又はPd、CがMgであることを特徴とする請求項1記
載のペロブスカイト型複合酸化物。
2. In the formula (1), A ′ is La, A ″
Is Gd and / or Dy, B 'is Al, B "is Pt and / or
2. The perovskite-type composite oxide according to claim 1, wherein Pd and C are Mg.
【請求項3】 上記(1)式におけるxが0<x≦0.
5、yが0<y≦0.2を満足することを特徴とする請
求項1記載のペロブスカイト型複合酸化物。
3. In the formula (1), x is 0 <x ≦ 0.
5. The perovskite-type composite oxide according to claim 1, wherein y satisfies 0 <y ≦ 0.2.
【請求項4】 固体酸化物電解質型燃料電池の電極に用
いられる電極材料であって、請求項1〜3のいずれか1
つの項に記載のペロブスカイト型複合酸化物を含有して
成ることを特徴とする電極材料。
4. An electrode material used for an electrode of a solid oxide electrolyte fuel cell, wherein the material is an electrode material.
An electrode material comprising the perovskite-type composite oxide described in any one of the above items.
【請求項5】 固体酸化物電解質型燃料電池の電極に用
いられる電極触媒であって、請求項1〜3のいずれか1
つの項に記載のペロブスカイト型複合酸化物を含有して
成ることを特徴とする電極触媒。
5. An electrocatalyst used for an electrode of a solid oxide electrolyte fuel cell, wherein the electrocatalyst is an electrode catalyst.
An electrocatalyst comprising the perovskite-type composite oxide described in any one of the above items.
【請求項6】 固体酸化物電解質型燃料電池に用いられ
る電極であって、請求項5記載の電極触媒を担持して成
ることを特徴とする燃料電池用電極。
6. An electrode for use in a solid oxide electrolyte fuel cell, comprising an electrode catalyst according to claim 5 supported thereon.
【請求項7】 請求項4記載の電極材料を含有して成る
空気極を備えること特徴とする固体酸化物電解質型燃料
電池。
7. A solid oxide electrolyte fuel cell comprising an air electrode containing the electrode material according to claim 4.
【請求項8】 請求項6記載の電極を空気極として備え
ることを特徴とする固体酸化物電解質型燃料電池。
8. A solid oxide electrolyte fuel cell comprising the electrode according to claim 6 as an air electrode.
【請求項9】 請求項1〜3のいずれか1つの項に記載
のペロブスカイト型複合酸化物を製造するに当たり、 上記(1)式で表されるペロブスカイト型複合酸化物を
構成する各種金属元素の硝酸塩又は炭酸塩に水熱反応を
行ってモノオキシ炭酸塩を得、 得られたモノオキシ炭酸塩を空気中で焼成することを特
徴とするペロブスカイト型複合酸化物の製造方法。
9. In producing the perovskite-type composite oxide according to any one of claims 1 to 3, the metal element constituting the perovskite-type composite oxide represented by the above formula (1) is selected from the group consisting of: A method for producing a perovskite-type composite oxide, which comprises subjecting a nitrate or a carbonate to a hydrothermal reaction to obtain a monooxycarbonate, and calcining the obtained monooxycarbonate in the air.
【請求項10】 請求項4記載の電極材料を含有して成
る固体酸化物電解質型燃料電池用の電極を製造するに当
たり、 上記電極材料を空気中で仮焼成し、得られた仮焼結粉を
固体電解質基板に塗布し、次いで、空気中で焼成するこ
とを特徴とする燃料電池用電極の製造方法。
10. In producing an electrode for a solid oxide electrolyte fuel cell comprising the electrode material according to claim 4, the electrode material is preliminarily calcined in air to obtain a temporarily sintered powder. Is applied to a solid electrolyte substrate, and then fired in air to produce a fuel cell electrode.
【請求項11】 上記固体電解質基板への塗布を、上記
電極材料をアルミナゾル又はシリカゾルと混練して得ら
れたスラリーを上記固体電解質基板に塗布することによ
り行うことを特徴とする請求項10記載の燃料電池用電
極の製造方法。
11. The solid electrolyte substrate according to claim 10, wherein the application to the solid electrolyte substrate is performed by applying a slurry obtained by kneading the electrode material with alumina sol or silica sol to the solid electrolyte substrate. A method for manufacturing a fuel cell electrode.
【請求項12】 上記アルミナゾル又はシリカゾルが塩
酸酸性であり、アルミナ又はシリカの濃度が10重量%
以下であることを特徴とする請求項11記載の燃料電池
の製造方法。
12. The alumina sol or silica sol is acidic with hydrochloric acid and the concentration of alumina or silica is 10% by weight.
The method for manufacturing a fuel cell according to claim 11, wherein:
JP06393198A 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same Expired - Lifetime JP3564693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06393198A JP3564693B2 (en) 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06393198A JP3564693B2 (en) 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH11246220A true JPH11246220A (en) 1999-09-14
JP3564693B2 JP3564693B2 (en) 2004-09-15

Family

ID=13243598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06393198A Expired - Lifetime JP3564693B2 (en) 1998-03-02 1998-03-02 Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3564693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055326A (en) * 2002-07-19 2004-02-19 Toho Gas Co Ltd Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
JP2005187311A (en) * 2003-03-28 2005-07-14 Dowa Mining Co Ltd Method of producing perovskite compound oxide and precursor substance used in the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055326A (en) * 2002-07-19 2004-02-19 Toho Gas Co Ltd Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
US7108938B2 (en) 2002-07-19 2006-09-19 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2005187311A (en) * 2003-03-28 2005-07-14 Dowa Mining Co Ltd Method of producing perovskite compound oxide and precursor substance used in the method

Also Published As

Publication number Publication date
JP3564693B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US6800388B2 (en) Catalyst composition
US6060420A (en) Composite oxides of A-site defect type perovskite structure as catalysts
EP1532710B1 (en) Perovskite-based fuel cell electrode and membrane
CN101320814B (en) Electrolyte material of low temperature oxide fuel battery and preparation method thereof
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
US8247113B2 (en) Titanates of perovskite or derived structure and applications thereof
JP2007200693A (en) Manufacturing method of material for solid oxide fuel cell
US20090297923A1 (en) Sol-gel derived high performance catalyst thin films for sensors, oxygen separation devices, and solid oxide fuel cells
CN105655605B (en) Solid oxide fuel cell cathod catalyst, composite cathode material and preparation method thereof
CN108649235A (en) A kind of A laminated perovskite type electrode material and preparation method thereof
JP2001307750A (en) Solid electrolyte fuel battery and its manufacturing method
EP2353713A1 (en) Composite oxide for exhaust-gas purification catalyst, process for producing same, coating material for exhaust-gas purification catalyst, and filter for diesel exhaust-gas purification
JPH08130018A (en) Electrode material for solid electrolyte
CN113964331B (en) Nano-micron multilevel structure strontium-cobalt-based perovskite composite cathode and preparation method thereof
JP4524791B2 (en) Solid oxide fuel cell
JPH11214014A (en) Air pole for solid electrolyte type fuel cell and manufacture thereof
CN111589452B (en) Tail gas combustion catalyst for solid oxide fuel cell system and preparation method thereof
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
JP5283500B2 (en) Fuel cell cathode with large surface area
CN109841845A (en) A kind of method of LSM-YSZ cathode modification
JP3564693B2 (en) Perovskite-type composite oxide, method for producing the same, and solid oxide electrolyte fuel cell using the same
JP3729194B2 (en) Solid oxide fuel cell
JP4192733B2 (en) Solid oxide fuel cell
JP4130796B2 (en) SOFC fuel electrode containing ceria-based perovskite oxide and method for producing the same
JPH11307104A (en) Electrode catalyst for solid electrolyte type fuel cell and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

EXPY Cancellation because of completion of term