JPH11241991A - High sensitivity atr analysis and prism used therefor - Google Patents

High sensitivity atr analysis and prism used therefor

Info

Publication number
JPH11241991A
JPH11241991A JP4318098A JP4318098A JPH11241991A JP H11241991 A JPH11241991 A JP H11241991A JP 4318098 A JP4318098 A JP 4318098A JP 4318098 A JP4318098 A JP 4318098A JP H11241991 A JPH11241991 A JP H11241991A
Authority
JP
Japan
Prior art keywords
prism
light
sensitivity
sample
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4318098A
Other languages
Japanese (ja)
Inventor
Sonoko Umemura
園子 梅村
Naohiko Fujino
直彦 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4318098A priority Critical patent/JPH11241991A/en
Publication of JPH11241991A publication Critical patent/JPH11241991A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Abstract

PROBLEM TO BE SOLVED: To provide a high sensitivity ATR analysis (absorbed total reflection measurement) capable of analyzing a material with a higher sensitivity. SOLUTION: In this ATR analysis, an incident light 2 having an incident angle of a critical angle or more to a prism 100 is incident on the prism 100, and a total reflection is caused on the interface of the prism 100-a sample 101 to analyze the sample 101. The incident light 2 is reciprocated within the prism 100 at least three times while it is multiply reflected in the prism 100 inner part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は一般に、全反射吸
収測定法(以下、ATR分析法という)に関するもので
あり、より特定的には、高感度な分析を実現することが
できるように改良された高感度ATR分析法に関する。
この発明は、また、そのような高感度ATR分析法に用
いる光学プリズムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for measuring total reflection absorption (hereinafter, referred to as an ATR analysis method), and more particularly, to an improved method for realizing a highly sensitive analysis. High sensitivity ATR analysis method.
The present invention also relates to an optical prism used for such a highly sensitive ATR analysis method.

【0002】[0002]

【従来の技術】たとえば、赤外光を用いた赤外分光分析
法において、塗膜、紙、フィルム、薄膜、シリコンウエ
ハ表面の微量汚染物質等(以下試料という)の構造解析
や定性定量分析によく用いられているATR法は、試料
と、それより屈折率の大きい赤外領域(測定波長領域)
に透明な媒質(プリズム)を接触させ、入射角を臨界角
より大きくとり、プリズム内部で全反射が起こるように
して測定する方法である。このとき光は試料側に、僅か
に、ある深さだけ入り込んでから全反射するので、試料
表面の赤外吸収スペクトルが得られ、このスペクトルを
解析することから、試料の構造解析や定性定量分析を行
なうことができる。なお、ATR分析法については、錦
田晃一・岩本令吉著、『赤外法による材料分析』第91
頁−第199頁(講談社サイエンティフィク,1991
年発行)に詳細に記載されている。
2. Description of the Related Art In infrared spectroscopy using infrared light, for example, it is used for structural analysis and qualitative quantitative analysis of trace contaminants (hereinafter referred to as samples) on the surface of coating films, papers, films, thin films, and silicon wafers. The commonly used ATR method uses a sample and an infrared region having a higher refractive index (measurement wavelength region).
This is a method in which a transparent medium (prism) is brought into contact with the sample, the incident angle is set to be larger than the critical angle, and total reflection occurs inside the prism for measurement. At this time, the light penetrates into the sample slightly to a certain depth and then is totally reflected, so that an infrared absorption spectrum of the sample surface is obtained. By analyzing this spectrum, the structure analysis and qualitative quantitative analysis of the sample are performed. Can be performed. The ATR analysis method is described in Koichi Nishida and Reikichi Iwamoto, Material Analysis by Infrared Method, Vol.
Page-page 199 (Kodansha Scientific, 1991
Year issuance).

【0003】この方法では、図3を参照して、プリズム
100の長さLと、厚さtと光源1から出た入射光2の
入射角度θで決まる多重反射回数Nが、試料101のサ
ンプリング回数とほぼ一致し、このサンプリング回数が
多いほど高感度な分析を行なうことができる。出射光3
は、検出器4で検出される。
In this method, referring to FIG. 3, the number of multiple reflections N determined by the length L of the prism 100, the thickness t, and the incident angle θ of the incident light 2 emitted from the light source 1 is determined by sampling the sample 101. The number almost coincides with the number of times, and the higher the number of times of sampling, the higher the sensitivity of the analysis. Outgoing light 3
Is detected by the detector 4.

【0004】[0004]

【発明が解決しようとする課題】超LSIの製造は、数
百の工程を数百日の日時を要して行なう。この長い工程
の間には、工程間の搬送や放置などにより、超LSIは
各種の汚染を受ける。これらの汚染を最小限にすること
で、デバイスの歩留まりは向上し、プロセスの信頼性、
再現性を著しく改善することができる。汚染対策とし
て、シリコンウエハ表面の汚染物質を明らかにし、この
知見をもとに、汚染の発生源を取り除くことが重要であ
る。
In the manufacture of a VLSI, hundreds of processes are required in several hundred days. During this long process, the VLSI is subjected to various types of contamination due to transportation and standing between processes. Minimizing these contaminations increases device yield, process reliability,
The reproducibility can be significantly improved. As a countermeasure against contamination, it is important to clarify the contaminants on the silicon wafer surface and to eliminate the source of the contamination based on this knowledge.

【0005】シリコンウエハ表面の汚染物質を明らかに
する方法として、赤外分光分析法の一種である上述のA
TR法が知られている。これについては、たとえば、Pr
oc.Semiconductor Pure Water Chem. conf., (199
5)第260頁−275頁等に詳細に記載されている。
As a method for clarifying contaminants on the surface of a silicon wafer, the above-mentioned A, which is a kind of infrared spectroscopy, is used.
The TR method is known. For this, for example, Pr
oc. Semiconductor Pure Water Chem. conf., (199
5) It is described in detail on pages 260-275.

【0006】しかしながら、シリコンウエハ表面に付着
した汚染物質が単分子層以下の微量の場合や汚染物質の
持つ吸収係数が小さい場合においては、従来のATR法
では感度が不十分で必ずしも分析できなかった。このた
め、図3を参照して、プリズムの厚さtを薄くすること
も検討されているが、端面に角度をつけるプリズムの加
工が非常に難しかったり、またプリズム自体が薄くなる
ため、その機械的強度の確保がしにくくなったりするた
めに実用的とは必ずしも言えなかった。また、試料の長
さが短い場合、単純に長いプリズムを用いることもでき
ず、その結果として、既存のプリズムを用いた分析では
十分な感度の確保が必ずしもできないため、得られるピ
ークが非常に小さくなり、分析が困難になるという問題
点があった。
However, when the amount of contaminants adhering to the silicon wafer surface is a small amount of a monolayer or less, or when the absorption coefficient of the contaminants is small, the conventional ATR method has insufficient sensitivity and cannot always be analyzed. . For this reason, referring to FIG. 3, it has been considered to reduce the thickness t of the prism. However, it is very difficult to process the prism for forming an angle on the end face, and the prism itself becomes thin. However, it was not always practical because it was difficult to secure the target strength. In addition, when the sample length is short, it is not possible to simply use a long prism, and as a result, it is not always possible to ensure sufficient sensitivity by analysis using an existing prism, so that the obtained peak is very small. This makes analysis difficult.

【0007】この発明は上記のような問題点を解決する
ためになされたもので、高感度な分析を実現することが
できるように改良された高感度ATR分析法を提供する
ことを目的とする。
The present invention has been made to solve the above problems, and has as its object to provide an improved high-sensitivity ATR analysis method capable of realizing high-sensitivity analysis. .

【0008】この発明の他の目的は、そのような高感度
ATR分析法に用いるプリズムを提供することにある。
Another object of the present invention is to provide a prism used for such a highly sensitive ATR analysis method.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
プリズムに対し臨界角以上の入射角度を持つ入射光をプ
リズム内に入れ、プリズム−試料界面で全反射を起こさ
せて試料の分析を行なうATR分析に係る。入射した光
を、プリズム内部で多重に反射させながら、少なくとも
3回、該プリズム内部を行き来させるようにしたことを
特徴とする。
The invention according to claim 1 is
The present invention relates to ATR analysis in which incident light having an incident angle equal to or greater than a critical angle with respect to the prism is introduced into the prism, and the sample is analyzed by causing total reflection at the prism-sample interface. It is characterized in that incident light is made to travel back and forth inside the prism at least three times while being reflected multiple times inside the prism.

【0010】この発明によれば、入射した光を、プリズ
ム内部で多重に反射させながら、少なくとも3回、プリ
ズム内部を行き来させるので、試料のサンプリング回数
が増加することになり、高感度な分析を行なうことがで
きる。
According to the present invention, since the incident light is made to travel back and forth inside the prism at least three times while being reflected multiple times inside the prism, the number of times of sampling of the sample is increased, and high-sensitivity analysis is performed. Can do it.

【0011】請求項2に係る発明は、高感度ATR分析
法に用いるプリズムに係る。入射した光が内部で多重反
射しながら、3回以上プリズム内を行き来できるように
構成したことを特徴とする。
The invention according to claim 2 relates to a prism used for a high-sensitivity ATR analysis method. The device is characterized in that the incident light can travel back and forth in the prism three or more times while being internally reflected multiple times.

【0012】この発明によれば、入射した光が内部を多
重反射しながら、3回以上プリズム内を行き来するの
で、サンプリング回数が多くなり、高感度な分析を行な
うことができる。
According to the present invention, the incident light travels back and forth in the prism three or more times while being internally reflected multiple times, so that the number of times of sampling is increased and high-sensitivity analysis can be performed.

【0013】請求項3に係るATR分析に用いるプリズ
ムによれば、光の入射もしくは出射を行なう試料を接触
させない第1の端面と第2の端面とを有する。上記第1
および第2の端面の、それぞれの一部に反射膜が設けら
れている。
According to the third aspect of the present invention, the prism for use in ATR analysis has a first end face and a second end face which do not come into contact with a sample which receives or emits light. The first
A reflection film is provided on a part of each of the second end face and the second end face.

【0014】この発明によれば、入射光はほとんど反射
膜で反射するため、実効光度長が長くなり、プリズム内
で3回以上の多重反射を起こすため、サンプリング回数
が増加し、光の吸収が進み、その結果、得られるスペク
トルの高感度化が達成される。
According to the present invention, since the incident light is almost reflected by the reflection film, the effective luminous length is increased, and multiple reflections are caused three or more times in the prism. As a result, higher sensitivity of the obtained spectrum is achieved.

【0015】請求項4に係る高感度ATR分析に用いる
プリズムによれば、第1の端面の全部に反射膜を設け、
光の入射および出射を行なう第2の端面の一部に反射膜
を設けている。
According to the prism used for high-sensitivity ATR analysis according to claim 4, a reflection film is provided on the entire first end face,
A reflection film is provided on a part of the second end face for inputting and outputting light.

【0016】この発明によれば、入射光はほとんど反射
膜で反射するため、実効光度長が長くなり、プリズム内
で3回以上の多重反射を起こすため、サンプリング回数
が増加し、光の吸収が進み、その結果、得られるスペク
トルの高感度化が達成される。
According to the present invention, the incident light is almost reflected by the reflection film, so that the effective luminous length is increased, and multiple reflection is caused three or more times in the prism. As a result, higher sensitivity of the obtained spectrum is achieved.

【0017】請求項5に係るプリズムにおいては、反射
膜をAu膜またはCrとAuの積層膜で形成する。反射
膜をAuで形成した場合には、赤外光の反射率が良いプ
リズムが得られる。また、Auの下地にCrを用いる
と、密着性が向上するため、機械的な信頼性が改善され
る。
In the prism according to the fifth aspect, the reflection film is formed of an Au film or a laminated film of Cr and Au. When the reflection film is formed of Au, a prism having a good infrared light reflectance can be obtained. Further, when Cr is used as the Au underlayer, the adhesion is improved, so that the mechanical reliability is improved.

【0018】請求項6に係るプリズムによれば、反射膜
をAl膜またはAlとMgF2 の積層膜で形成する。反
射膜としてAl膜を用いれば、赤外光だけでなく、紫外
光、可視光を用いた分析にも使用することができる。ま
た、Alの表面に薄いMgF 2 膜を設けることにより、
酸化を抑制し、反射率低下を防ぐことができる。
According to the prism of the sixth aspect, the reflection film
With Al film or Al and MgFTwoIs formed with a laminated film. Anti
If an Al film is used as the emitting film, not only infrared light but also ultraviolet light
It can be used for analysis using light and visible light. Ma
Also, thin MgF on the surface of Al TwoBy providing a membrane,
Oxidation can be suppressed, and a decrease in reflectance can be prevented.

【0019】請求項7に係るプリズムによれば、反射膜
をAgで形成する。Agを用いると、反射率が高くな
り、また可視光に用いることもできる。
According to the prism of the present invention, the reflection film is formed of Ag. When Ag is used, the reflectance increases, and it can also be used for visible light.

【0020】[0020]

【発明の実施の形態】以下、図を用いて本発明の実施の
形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0021】実施の形態1 図1は、実施の形態1に係るプリズムの概念図である。
(A)はプリズムの断面図を表わしており、(B)は、
プリズムの第1の端面を示す図であり、(C)は、プリ
ズムの第2の端面を示す図である。実施の形態1に係る
プリズムでは、光を反射できる膜5を第1および第2の
端面の一部に設けたことにより、図のように、光がプリ
ズム内を多重反射しながら、往復するために、試料10
1表面における光の多重反射回数Nが増加する。そのた
め、光の吸収が進み、その結果、得られるスペクトルの
高感度化を達成することができる。
Embodiment 1 FIG. 1 is a conceptual diagram of a prism according to Embodiment 1.
(A) shows a sectional view of the prism, and (B) shows a sectional view of the prism.
It is a figure which shows the 1st end surface of a prism, (C) is a figure which shows the 2nd end surface of a prism. In the prism according to the first embodiment, since the film 5 capable of reflecting light is provided on a part of the first and second end faces, light reciprocates while being multiple-reflected inside the prism as illustrated. And sample 10
The number N of multiple reflections of light on one surface increases. For this reason, light absorption proceeds, and as a result, high sensitivity of the obtained spectrum can be achieved.

【0022】また図1を参照して、光を入射、出射する
窓の部分以外の、プリズム100の端面の一部分に、光
を反射できるようにした反射膜5を金属蒸着法等により
設けて、赤外光を反射できるようにこれを加工した。反
射膜5がついていない入射窓6の部分から光2をプリズ
ム内に入射させ、プリズム中を何度となく全反射させて
出射窓7から出射してきた光3を検出器4へ導入し、プ
リズム100表面に配置した試料101の吸収スペクト
ルを得る。入射光2はほとんど反射膜5で反射するた
め、実効光路長が長くなり、プリズム100内で3回以
上の多重反射を起こす。そのため、サンプリング回数N
が増加し、光の吸収が進み、その結果、得られるスペク
トルの高感度化が達成される。このときのバックグラウ
ンドスペクトルとしては、試料101をプリズム100
に接触させずに、光を同様にプリズム100に入射さ
せ、出射してきた光3を検出器4に導入することにより
得ることができる。試料101の置き方は、図1に示す
ようにプリズム100の上面あるいは下面に接触させて
もよいし、上面と下面の両方に試料101を接触させて
もよい。
Referring to FIG. 1, a reflecting film 5 for reflecting light is provided on a part of the end face of the prism 100 by a metal vapor deposition method or the like, except for a part of a window through which light enters and exits. This was processed so that infrared light could be reflected. The light 2 is made to enter the prism from the part of the entrance window 6 where the reflection film 5 is not attached, and the light 3 emitted from the exit window 7 after being totally reflected in the prism several times is introduced into the detector 4. An absorption spectrum of the sample 101 arranged on the surface 100 is obtained. Since the incident light 2 is almost reflected by the reflection film 5, the effective optical path length becomes long, and causes multiple reflections in the prism 100 three or more times. Therefore, the sampling frequency N
Increases, light absorption proceeds, and as a result, high sensitivity of the obtained spectrum is achieved. As the background spectrum at this time, the sample 101 was
The light 3 can be obtained by making the light incident on the prism 100 in the same manner without contact with the prism 100 and introducing the emitted light 3 into the detector 4. As shown in FIG. 1, the sample 101 may be placed on the upper surface or the lower surface of the prism 100, or the sample 101 may be contacted on both the upper surface and the lower surface.

【0023】実施の形態2 図2は、実施の形態2に係るATR分析に用いるプリズ
ムの概念図である。(A)はプリズムの断面図であり、
(B)はプリズムの第1の端面を示す図であり、(C)
はプリズムの第2の端面を示す図である。
Second Embodiment FIG. 2 is a conceptual diagram of a prism used for ATR analysis according to a second embodiment. (A) is a sectional view of a prism,
(B) is a diagram showing a first end face of the prism, (C)
FIG. 4 is a view showing a second end face of the prism.

【0024】実施の形態2に係るプリズムによれば、プ
リズム100の一方の片端面11の全部と、他方の片端
面10の一部に反射膜5を設け、入射光2と反射光3を
同じ側から取り出す。このように構成しても、光がプリ
ズム100内を多重反射しながら往復するために、試料
101表面における光の多重反射回数Nが増加する。そ
のため、光の吸収が進み、その結果、得られるスペクト
ルの高感度化を達成することができる。
According to the prism of the second embodiment, the reflection film 5 is provided on the entire one end surface 11 of the prism 100 and a part of the other end surface 10 so that the incident light 2 and the reflected light 3 are the same. Take out from the side. Even with such a configuration, since light reciprocates in the prism 100 while being multiply reflected, the number N of multiple reflections of light on the surface of the sample 101 increases. For this reason, light absorption proceeds, and as a result, high sensitivity of the obtained spectrum can be achieved.

【0025】なお、上記実施の形態において、反射膜5
としては、光を反射するものであれば、いずれのものも
使用し得る。
In the above embodiment, the reflection film 5
Any material can be used as long as it reflects light.

【0026】赤外光を用いる場合においては、赤外光の
反射率の良い材料として、Auが特に良い。なお、Au
の下地にCrを用いると、密着性が向上するため、機械
的な信頼性が改善される。
In the case of using infrared light, Au is particularly preferable as a material having a high infrared light reflectance. In addition, Au
When Cr is used for the underlayer, the adhesion is improved, and the mechanical reliability is improved.

【0027】プリズム材料としては、たとえば赤外光に
おいては、KRS−5、GeやSi等が良く、可視・紫
外光ではガラスが良い。
As the prism material, for example, KRS-5, Ge or Si is preferable for infrared light, and glass is preferable for visible / ultraviolet light.

【0028】安価で、反射率の良い材料としてはAlが
挙げられる。Alを用いれば、赤外光だけでなく、紫外
光、可視光を用いた分析にも用いることができる。な
お、Alは時間とともに酸化されて反射率が低下し、特
に、この低下は紫外光域で激しいという問題があるが、
Alの表面に薄いMgF2 膜を設けることにより酸化を
抑制し、反射率低下を防ぐことができるようになる。
Al is an inexpensive material having a high reflectivity. If Al is used, it can be used for analysis using not only infrared light but also ultraviolet light and visible light. It should be noted that Al is oxidized with time and the reflectance is reduced. In particular, there is a problem that this reduction is severe in an ultraviolet light region.
By providing a thin MgF 2 film on the surface of Al, oxidation can be suppressed and a decrease in reflectance can be prevented.

【0029】さらに、反射率の高い材料としてはAgが
良い。Agは可視光に用いることもできるという利点が
ある。
Further, Ag is preferable as a material having a high reflectance. Ag has the advantage that it can also be used for visible light.

【0030】[0030]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0031】実施例1 本実施例は、シリコンウエハ表面に付着している有機物
の分析に本発明を適用した場合の具体例である。Siの
屈折率は3.4であるため、図1を参照して、プリズム
100はそれより屈折率の大きな材料である必要があ
る。このため、プリズム100は屈折率が4.0である
ゲルマニウム結晶からなるものを用いた。ゲルマニウム
プリズムとしては市販の端面が60°になっているもの
を用い、ゲルマニウムプリズムの両端面の一部にAlを
100nm程度蒸着し、反射膜5を設けた。片端面の一
部を入射光2の入射窓6としてそれ以外の端面部分8に
は、Alを蒸着し、もう片端面についても、端面の一部
を出射光の出射窓7とし、それ以外の端面部分9にはA
lを蒸着した。
Embodiment 1 This embodiment is a specific example in which the present invention is applied to the analysis of organic substances attached to the surface of a silicon wafer. Since the refractive index of Si is 3.4, with reference to FIG. 1, the prism 100 needs to be a material having a higher refractive index. For this reason, the prism 100 used was made of germanium crystal having a refractive index of 4.0. A commercially available germanium prism having an end face of 60 ° was used, and Al was deposited on a part of both end faces of the germanium prism by about 100 nm to provide a reflection film 5. A part of one end face is used as an incident window 6 for the incident light 2, Al is vapor-deposited on the other end face part 8, and a part of the other end face is used as an exit window 7 for outgoing light. A on the end face part 9
1 was deposited.

【0032】赤外分光分析装置としてフーリエ変換赤外
分析装置を用い、赤外光2を入射し、高感度MCT検出
器4で、出射光3を分析した。このとき、Geの屈折率
とSiの屈折率から臨界角は58°であるため、試料面
への入射角度は58°より大きくしなければならない。
試料101であるシリコンウエハは分析面をプリズム1
00に強く密着させて測定した。測定のバックグラウン
ドスペクトルとしては、プリズム100に試料101を
密着させずに同じ条件で測定したものを用いた。
Using a Fourier transform infrared analyzer as an infrared spectrometer, infrared light 2 was incident, and the outgoing light 3 was analyzed by a high sensitivity MCT detector 4. At this time, since the critical angle is 58 ° based on the refractive index of Ge and the refractive index of Si, the angle of incidence on the sample surface must be larger than 58 °.
The analysis surface of the silicon wafer as the sample 101 is prism 1
The measurement was carried out with a strong adhesion to 00. As a background spectrum for measurement, a spectrum measured under the same conditions without bringing the sample 101 into close contact with the prism 100 was used.

【0033】プリズム端面の、反射膜を設けない入射窓
6、出射窓7の大きさについては、小さくするほど、有
機物のCHピーク強度は大きくなった。このとき、窓が
小さくなるほど光量が減少し、S/Nが悪くなったが、
測定の積算回数を多くする、あるいは高輝度光源を用い
る、あるいは窓6に入射光2を集光することにより、改
善することができた。今回の方法と端面に反射膜を設け
ない従来法とで、2900cm-1付近にあるC−H2
合の伸縮振動に基づくピークのピーク強度を比較したと
ころ、今回の方法では、ピーク強度が著しく増大し、高
感度化が達成された。
As for the size of the entrance window 6 and the exit window 7 on which no reflecting film is provided on the end face of the prism, the CH peak intensity of the organic substance increases as the size decreases. At this time, the light amount decreased as the window became smaller, and the S / N ratio became worse.
The improvement was achieved by increasing the number of times of measurement integration, using a high-luminance light source, or condensing the incident light 2 on the window 6. A comparison of the peak intensity of the peak at around 2900 cm −1 based on the stretching vibration of the C—H 2 bond between the method of the present invention and the conventional method without the reflective film on the end face shows that the peak intensity is remarkably large in the present method. And increased sensitivity was achieved.

【0034】実施例2 図2に示すようにゲルマニウムプリズム100の片端面
11の全面と、もう片端面10の一部に反射膜5とし
て、Auを蒸着した。Auのみを蒸着した場合、プリズ
ム100とAuの密着性が悪かったため、まずCrを薄
くプリズム100上に蒸着し、次にAuを蒸着すると密
着性の良い反射膜5が形成できた。片端面10の一部に
蒸着するときの位置としては、入射光2と出射光3を分
離するために、図2に示すように、端面の上方を入射光
2の入射窓6とし、端面の下方を出射光3の出射窓7と
した。これによって、入射光2と出射光3を分離するこ
とができた。さらに、入射窓6、出射窓7の大きさを小
さくすると分離しやすくなった。また、有機物のCHピ
ーク強度は大きくなり、高感度化が図られた。しかし、
光量については減少し、S/Nが悪くなったが、測定の
積算回数を多くする、あるいは高輝度光源を用いる、あ
るいは窓6に入射光2を集光することにより、改善する
ことができた。また、入射角度を変えることにより、若
干感度が異なることがわかった。
Example 2 As shown in FIG. 2, Au was deposited as a reflective film 5 on the entirety of one end face 11 of the germanium prism 100 and a part of the other end face 10. When only Au was vapor-deposited, the adhesion between the prism 100 and Au was poor. Therefore, when the Cr was first vapor-deposited thinly on the prism 100, and then Au was vapor-deposited, the reflection film 5 having good adhesion could be formed. As shown in FIG. 2, in order to separate the incident light 2 and the outgoing light 3, the position at the time of vapor deposition on a part of one end face 10 is defined as an entrance window 6 of the incident light 2 above the end face, and The lower part is an emission window 7 for the emitted light 3. As a result, the incident light 2 and the output light 3 could be separated. Further, when the size of the entrance window 6 and the exit window 7 is reduced, separation becomes easier. Further, the CH peak intensity of the organic substance was increased, and high sensitivity was achieved. But,
Although the amount of light decreased and the S / N ratio deteriorated, it could be improved by increasing the number of measurement integrations, using a high-luminance light source, or condensing the incident light 2 on the window 6. . It was also found that the sensitivity was slightly different by changing the incident angle.

【0035】実施例1と同じく、Siウエハ表面に付着
している有機物の分析に本発明を適用し、2900cm
-1付近にあるC−H2 結合の伸縮振動に基づくピークの
ピーク強度を従来法とで比較したところ、今回の方法で
は、ピーク強度が著しく増大し、高感度化が達成され
た。
As in Example 1, the present invention is applied to the analysis of organic substances adhering to the Si wafer surface,
A comparison of the peak intensity of the peak near the −1 based on the stretching vibration of the C—H 2 bond with that of the conventional method revealed that the peak intensity was remarkably increased in the present method, and high sensitivity was achieved.

【0036】実施例3 2mm厚さのガラス板に、Au、Al、Agを100n
m程度、蒸着し、赤外分光光度計と紫外・可視分光光度
計を用いて、赤外光、紫外光、可視光を入射し、反射光
強度を測定し、各材料間で反射率を比較した。なお、A
uについては、Au蒸着膜とガラスの密着性が悪かった
ため、ガラスの上にCrを薄く蒸着し、その上にAuを
蒸着すると良好な密着性が得られた。その結果、 紫外光域では反射率は、Al>>Au、Ag 可視光域では反射率は、Ag>Al>Au 赤外光域では反射率は、Au>Al>Agであった。
Example 3 A 2 mm thick glass plate was coated with 100 n of Au, Al and Ag.
Approximately m, deposit infrared light, ultraviolet light, and visible light using an infrared spectrophotometer and an ultraviolet / visible spectrophotometer, measure the reflected light intensity, and compare the reflectance between each material. did. Note that A
Regarding u, since the adhesion between the Au deposited film and the glass was poor, when Cr was thinly deposited on the glass and Au was deposited thereon, good adhesion was obtained. As a result, in the ultraviolet light range, the reflectance was Al >> Au, in the Ag visible light range, the reflectance was Ag>Al> Au In the infrared light range, the reflectance was Au>Al> Ag.

【0037】したがって、Alは広範囲で良好な反射膜
であり、Agは可視光域で良く、Auは赤外光域で良い
ので、測定したい波長により、これらの材料を選べばよ
いことがわかった。
Therefore, Al is a good reflection film over a wide range, Ag is good in the visible light range, and Au is good in the infrared light range. Therefore, it was found that these materials should be selected according to the wavelength to be measured. .

【0038】[0038]

【発明の効果】本発明によれば、端面の一部もしくは全
面に反射膜を設けたプリズムを用いて、光の多重反射回
数を増加させることにより、サンプリング回数を増加さ
せることができたため、その効果として、より一層の高
感度な材料の分析ができるようになった。
According to the present invention, the number of times of multiple reflection of light can be increased by using a prism provided with a reflection film on a part or the whole of the end face, so that the number of times of sampling can be increased. As an effect, it has become possible to analyze materials with even higher sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1に係るATR法の一例を示す概
念図である。
FIG. 1 is a conceptual diagram showing an example of an ATR method according to Embodiment 1.

【図2】 実施の形態2に係るATR法の一例を示す概
念図である。
FIG. 2 is a conceptual diagram showing an example of an ATR method according to a second embodiment.

【図3】 従来のATR法の概念図である。FIG. 3 is a conceptual diagram of a conventional ATR method.

【符号の説明】[Explanation of symbols]

2 入射光、3 出射光、100 プリズム、101
試料。
2 incident light, 3 outgoing light, 100 prism, 101
sample.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 プリズムに対し臨界角以上の入射角度を
持つ入射光をプリズム内に入れ、プリズム−試料界面で
全反射を起こさせて試料の分析を行なうATR分析法に
おいて、 前記入射した光を、前記プリズム内部で多重に反射させ
ながら、少なくとも3回、該プリズム内部を行き来させ
るようにしたことを特徴とする、高感度ATR分析法。
1. An ATR analysis method in which incident light having an incident angle greater than a critical angle with respect to a prism is introduced into the prism and total reflection is caused at a prism-sample interface to analyze the sample. A high-sensitivity ATR analysis method, wherein the laser beam is moved back and forth inside the prism at least three times while being reflected multiple times inside the prism.
【請求項2】 入射した光が内部で多重反射しながら、
3回以上プリズム内部を行き来できるように構成したこ
とを特徴とする、高感度ATR分析法に用いるプリズ
ム。
2. While the incident light is internally reflected multiple times,
A prism used for high-sensitivity ATR analysis, characterized in that the prism can be moved back and forth inside the prism three or more times.
【請求項3】 光の入射もしくは出射を行なう試料を接
触させない第1の端面と第2の端面をもち、 前記第1および第2の端面のそれぞれの一部に反射膜を
設けたことを特徴とする、請求項2に記載の高感度AT
R分析法に用いるプリズム。
3. A method according to claim 1, further comprising a first end face and a second end face that do not come into contact with a sample for light incidence or light emission, and a reflection film provided on a part of each of the first and second end faces. The high sensitivity AT according to claim 2,
Prism used for R analysis.
【請求項4】 前記第1の端面の全部に反射膜を設け、
光の入射および出射を行なう前記第2の端面の一部に反
射膜を設けた、請求項2に記載の高感度ATR分析法に
用いるプリズム。
4. A reflection film is provided on the entire first end face,
3. The prism for use in a high-sensitivity ATR analysis method according to claim 2, wherein a reflection film is provided on a part of the second end face for inputting and outputting light.
【請求項5】 前記反射膜を、Au膜または、CrとA
uの積層膜で形成する、請求項2,3または4に記載の
高感度ATR分析法に用いるプリズム。
5. The reflection film is made of an Au film or Cr and A
The prism used in the high-sensitivity ATR analysis method according to claim 2, which is formed of a laminated film of u.
【請求項6】 前記反射膜を、Al膜、あるいはAlと
MgF2 の積層膜で構成する、請求項2,3または4に
記載の高感度ATR分析法に用いるプリズム。
6. The prism for use in a high-sensitivity ATR analysis method according to claim 2 , wherein the reflection film is formed of an Al film or a laminated film of Al and MgF 2 .
【請求項7】 前記反射膜を、Agで構成する、請求項
2,3または4に記載の高感度ATR分析法に用いるプ
リズム。
7. The prism for use in a high-sensitivity ATR analysis method according to claim 2, wherein the reflection film is made of Ag.
JP4318098A 1998-02-25 1998-02-25 High sensitivity atr analysis and prism used therefor Withdrawn JPH11241991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318098A JPH11241991A (en) 1998-02-25 1998-02-25 High sensitivity atr analysis and prism used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318098A JPH11241991A (en) 1998-02-25 1998-02-25 High sensitivity atr analysis and prism used therefor

Publications (1)

Publication Number Publication Date
JPH11241991A true JPH11241991A (en) 1999-09-07

Family

ID=12656704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318098A Withdrawn JPH11241991A (en) 1998-02-25 1998-02-25 High sensitivity atr analysis and prism used therefor

Country Status (1)

Country Link
JP (1) JPH11241991A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221914A (en) * 2012-04-19 2013-10-28 Fujifilm Corp Method for analyzing waveguide spectrum and device therefor
CN108603832A (en) * 2015-12-30 2018-09-28 蓝海新星股份有限公司 Equipment for analyzing the article to be analyzed being located in product chambers
WO2018193924A1 (en) 2017-04-19 2018-10-25 日本分光株式会社 Total internal reflection optical member, and total internal reflection measuring device provided with same
CN110087544A (en) * 2016-12-26 2019-08-02 三菱电机株式会社 Organism substance-measuring device and organism substance-measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221914A (en) * 2012-04-19 2013-10-28 Fujifilm Corp Method for analyzing waveguide spectrum and device therefor
CN108603832A (en) * 2015-12-30 2018-09-28 蓝海新星股份有限公司 Equipment for analyzing the article to be analyzed being located in product chambers
US11156561B2 (en) 2015-12-30 2021-10-26 Blue Ocean Nova AG Device for analyzing a product to be analyzed located in a product space
CN110087544A (en) * 2016-12-26 2019-08-02 三菱电机株式会社 Organism substance-measuring device and organism substance-measuring method
WO2018193924A1 (en) 2017-04-19 2018-10-25 日本分光株式会社 Total internal reflection optical member, and total internal reflection measuring device provided with same

Similar Documents

Publication Publication Date Title
US5415842A (en) Surface plasmon resonance analytical device
US6320991B1 (en) Optical sensor having dielectric film stack
US7679748B2 (en) Coupled waveguide-surface plasmon resonance biosensor
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
US6330062B1 (en) Fourier transform surface plasmon resonance adsorption sensor instrument
US5925878A (en) Diffraction anomaly sensor having grating coated with protective dielectric layer
US5814565A (en) Integrated optic waveguide immunosensor
US6992770B2 (en) Sensor utilizing attenuated total reflection
EP0546061A1 (en) Surface plasmon resonance device.
JP2002357543A (en) Analyzing element and method for analyzing sample using the same
JPH0815133A (en) Analytic element
US6891620B2 (en) Measuring plate
EP0620916A1 (en) Analytical device with light scattering
JPH11241991A (en) High sensitivity atr analysis and prism used therefor
JP4792267B2 (en) Surface state measuring method and apparatus
US20050025676A1 (en) Method for quantitatively and/or qualitatively detecting layer thicknesses, a microreaction vessel and titre plate
JP2000111474A (en) High sensitivity atr analysis method and optical prism therefor
US6788415B2 (en) Turntable measuring apparatus utilizing attenuated total reflection
US20140363336A1 (en) Spr sensor cell and spr sensor
US7075657B2 (en) Surface plasmon resonance measuring apparatus
WO1994025850A1 (en) Analytical device
US20150029502A1 (en) Spr sensor cell, and spr sensor
JP2002357542A (en) Analyzing element and method for analyzing sample using the same
JPH10281982A (en) Surface plasmon sensor
JP2002357537A (en) Method for manufacturing analyzing element and analyzing element as well as method for analyzing sample using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510