JPH11241127A - Method for recovering alloy scrap containing rare earth metal - Google Patents

Method for recovering alloy scrap containing rare earth metal

Info

Publication number
JPH11241127A
JPH11241127A JP4663698A JP4663698A JPH11241127A JP H11241127 A JPH11241127 A JP H11241127A JP 4663698 A JP4663698 A JP 4663698A JP 4663698 A JP4663698 A JP 4663698A JP H11241127 A JPH11241127 A JP H11241127A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
melting
earth metal
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4663698A
Other languages
Japanese (ja)
Inventor
Yuichi Makino
勇一 牧野
Takashi Tode
孝 戸出
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP4663698A priority Critical patent/JPH11241127A/en
Publication of JPH11241127A publication Critical patent/JPH11241127A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To surely and economically recover an alloy which has reduced impurities, by melting an alloy scrap containing rare earth metals by charging into a melting furnace, recovering the solidified alloy from the lower part and gradually lowering and separating the impurities of oxides, etc., from the alloy. SOLUTION: It is desirable that a heating method in the melting furnace is to use any method among an arc melting, plasma melting, electron beam melting or electro slag melting and the alloy containing the rare earth metals is a magnet alloy, hydrogen storage alloy or super magnetostrictive alloy. The alloy scrap and fluoride of the rare earth element, fluoride of alkaline earth metal and/or fluoride of alkali metal, are mixedly melted, and it is desirable to contain the rare earth metal in which metal Ca is mixed in these fluorides. As for the alloy scrap containing the rare earth metal, concretely, Nd-Fe-B base alloy, La-Ni base alloy and Tb-Dy-Fe base alloy are exemplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類金属を含有
する合金スクラップの回収方法に関するものである。
The present invention relates to a method for recovering alloy scrap containing a rare earth metal.

【0002】[0002]

【従来の技術】近年、希土類金属を含有する磁石合金、
水素吸蔵合金、超磁歪合金などの工業的な利用が進めら
れ、それにともなって、製造工程中で発生する合金スク
ラップ(塊状や粉末状の合金スラッジ)の量が増加して
いる。例えば超磁歪合金は、Tb、Dy、Feなどを溶解鋳造
して合金化した後、粉末焼結法またはゾーンメルト法や
ブリッジマン法による方向性凝固方法などにより製造さ
れているが、工程中の不純物の混入、加工時の切断片や
形状不良などから生じる合金スクラップ、あるいは合金
ターゲットを超磁歪薄膜の作製に使用した後の合金スク
ラップなどが発生する。
2. Description of the Related Art In recent years, magnet alloys containing rare earth metals,
The industrial utilization of hydrogen storage alloys, giant magnetostrictive alloys, and the like has been promoted, and accordingly, the amount of alloy scrap (bulk or powdery alloy sludge) generated during the manufacturing process has increased. For example, a giant magnetostrictive alloy is manufactured by melting and casting Tb, Dy, Fe, etc., and then manufacturing by a powder sintering method or a directional solidification method by a zone melt method or a Bridgman method. Alloy scrap generated due to contamination with impurities, cut pieces or defective shape during processing, or alloy scrap after the use of an alloy target for producing a giant magnetostrictive thin film occurs.

【0003】[0003]

【発明が解決しようとする課題】従来、合金スクラップ
から希土類金属を回収利用するには、これらスクラップ
を加熱溶解して合金インゴットを製造し、これを新たな
原料用合金に利用してきた。しかし、この方法では酸化
物などの不純物がそのまま合金インゴットに混入し、特
に粉末状の合金スラッジでは合金表面の酸化が著しいた
め、特性が得られないという問題の他に、通常の加熱溶
解が困難である。また別の方法では、希土類金属は、合
金スクラップを酸に溶解した後、蓚酸や弗化水素酸など
の沈殿剤を加えて希土類蓚酸塩や希土類弗化物として回
収されている。しかしこの方法は高価な希土類元素を回
収するには効果的であるが、酸溶解や沈殿剤及び濾過回
収などのコストがかかり、さらには金属として使用する
場合には還元する必要があるなどの問題点があるため、
より簡便で効果的な、希土類を含有する合金スクラップ
の回収方法が望まれていた。
Heretofore, in order to recover and use rare earth metals from alloy scraps, these scraps have been heated and melted to produce alloy ingots, which have been used as new alloys for raw materials. However, in this method, impurities such as oxides are mixed directly into the alloy ingot, and especially in the case of powdered alloy sludge, the surface of the alloy is significantly oxidized. It is. In another method, the rare earth metal is recovered as a rare earth oxalate or a rare earth fluoride by dissolving the alloy scrap in an acid and then adding a precipitant such as oxalic acid or hydrofluoric acid. However, although this method is effective for recovering expensive rare earth elements, it involves costs such as acid dissolution, a precipitant and filtration recovery, and furthermore, it requires reduction when used as a metal. Because there are points,
There has been a demand for a simpler and more effective method of recovering rare earth-containing alloy scrap.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記問題点
に鑑み、鋭意検討を重ねた結果、本発明を完成させた。
すなわち本発明の要旨は、希土類金属を含有する合金ス
クラップを溶解炉の加熱部に投入しながら溶解し、下部
から凝固した合金を徐々に引き下げて合金を回収し、酸
化物など不純物を合金より分離する合金スクラップの回
収方法にある。以下、本発明を詳細に説明する。
Means for Solving the Problems The present inventors have made intensive studies in view of the above problems and completed the present invention.
That is, the gist of the present invention is that an alloy scrap containing a rare earth metal is melted while being put into a heating section of a melting furnace, and the solidified alloy is gradually pulled down from below to collect the alloy, and impurities such as oxides are separated from the alloy. Alloy scrap recovery method. Hereinafter, the present invention will be described in detail.

【0005】[0005]

【発明の実施の形態】本発明は希土類金属を含有する合
金スクラップを有効利用するものである。合金スクラッ
プをアークやプラズマなどの熱源で溶解させながら、下
部から冷却されて凝固した合金を徐々に引き下げること
により、連続的に合金鋳塊と酸化物などの不純物を分離
せしめる。これにより合金スクラップから有用な希土類
金属を含有する合金を、経済的に有利に合金インゴット
として回収する方法を提供する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention effectively utilizes an alloy scrap containing a rare earth metal. While melting the alloy scrap with a heat source such as an arc or plasma, the alloy solidified by cooling from the lower portion is gradually pulled down, thereby continuously separating impurities such as the alloy ingot and oxides. This provides a method for economically and advantageously recovering an alloy containing a useful rare earth metal from an alloy scrap as an alloy ingot.

【0006】金属や合金を上部で溶解させつつ、凝固し
た下部を徐々に引き下げて金属や合金鋳塊を製造する方
法はすでに知られており、公知の装置を使用することが
できる。例えばアーク溶解炉、プラズマ溶解炉、電子ビ
ーム溶解炉、高周波誘導溶解炉、エレクトロスラグ溶解
炉などの装置において、上部で溶解し下部の冷却したイ
ンゴットを引き下げる型式の装置が使用できる。
A method of manufacturing a metal or alloy ingot by melting a metal or alloy at an upper portion and gradually lowering a solidified lower portion is already known, and a known apparatus can be used. For example, in an apparatus such as an arc melting furnace, a plasma melting furnace, an electron beam melting furnace, a high-frequency induction melting furnace, and an electroslag melting furnace, a device of a type in which an ingot is melted at an upper portion and a cooled ingot at a lower portion is pulled down can be used.

【0007】本発明の方法に用いる希土類金属を含有す
る合金スクラップとしては、例えば磁石合金または水素
吸蔵合金または超磁歪合金が挙げられ、具体的には Nd-
Fe-B系合金、La-Ni 系合金、Tb-Dy-Fe系合金である。
[0007] Examples of the alloy scrap containing a rare earth metal used in the method of the present invention include a magnet alloy, a hydrogen storage alloy or a giant magnetostrictive alloy.
Fe-B alloy, La-Ni alloy, and Tb-Dy-Fe alloy.

【0008】合金スクラップは溶解炉の上部からフィー
ダーにより炉内に投入したり、予め合金スクラップを成
形して棒状にしたものを上部から挿入することもでき
る。溶解した合金と酸化物などの不純物は比重差や融点
の差により分離され、合金は下部に、酸化物などは上部
に集積する。
[0008] The alloy scrap can be introduced into the furnace from the upper part of the melting furnace by a feeder, or a rod formed by shaping the alloy scrap in advance can be inserted from the upper part. The dissolved alloy and impurities such as oxides are separated due to a difference in specific gravity and a difference in melting point, and the alloy accumulates in a lower portion and the oxide and the like accumulate in an upper portion.

【0009】溶解にあたっては弗化物を加えて合金スク
ラップと一緒に溶解することが好ましい。弗化物は、該
希土類金属の弗化物、CaF2のようなアルカリ土類および
/またはLiF のようなアルカリ金属の弗化物の混合物が
好ましい。これら弗化物中に酸化物が溶解、分散し溶湯
の粘性が低下するので、合金中の酸素量が低下するとと
もに合金との分離が容易になるという利点がある。さら
に弗化物に金属Caを加えて溶解すれば、酸化物が金属に
還元されるため酸素低減の効果は一層顕著になり、かつ
回収率も向上するという好ましい結果が得られる。これ
らの量は合金スクラップの不純物量や弗化物の種類、溶
解の条件によって適宜選択することができる。また弗化
物を合金スクラップと混合し、一緒に加熱部へ投入する
こともできる。
In dissolving, it is preferable to add fluoride and dissolve it together with the alloy scrap. Fluorides, fluorides of the rare earth metals, mixtures of alkali metal fluorides, such as alkaline earth and / or LiF as CaF 2 is preferred. Since oxides are dissolved and dispersed in these fluorides and the viscosity of the molten metal is reduced, there is an advantage that the amount of oxygen in the alloy is reduced and separation from the alloy is facilitated. Further, if the metal Ca is added to and dissolved in the fluoride, the oxide is reduced to the metal, so that the effect of reducing the oxygen becomes more remarkable and the preferable result that the recovery rate is improved is obtained. These amounts can be appropriately selected depending on the amount of impurities in the alloy scrap, the type of fluoride, and the conditions of dissolution. It is also possible to mix the fluoride with the alloy scrap and put it together into the heating section.

【0010】こうして得られた回収合金は上部の酸化物
やハロゲン化物と分離され、原料合金として再使用され
る。また必要に応じて原料金属を加えて溶解し、組成の
調整を行うことができる。
[0010] The recovered alloy thus obtained is separated from the upper oxides and halides and reused as a raw material alloy. If necessary, a raw material metal may be added and dissolved to adjust the composition.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。 (実施例1)非消耗型アーク溶解炉を使用し、Nd系磁石
スクラップ(約1mm以下の粉末)を溶解した。上部から
約 100g/分の速度でスクラップを投入し溶解しながら、
下部の50φmmの水冷ハース上に凝固した合金を徐々に引
き下げた。これを30分間継続した後、スクラップの投入
をやめ、アークを停止して炉を冷却し、長さが約 200mm
の合金を得た。この合金の上部には合金が混在した酸化
物層が見られたので、これを分離し、合金を分析した結
果、Nd 28.4wt%、Dy 1.8wt% 、B 1.1wt% 、Co2.0wt%
、残Feで、酸素は 0.05wt%であった。この回収した合
金に不足分のNdメタル及びDyメタルを加えて溶解し、所
定組成の磁石合金を製造した。公知の製法により焼結磁
石を製造し磁石特性を測定したところ、Br=12.9kG、iH
C =16.2kOe 、(BH)max =40.2MG・Oe であり、回収合金
を使用しない従来の磁石と同等の特性が得られた。
Next, an embodiment of the present invention will be described. (Example 1) A non-consumable arc melting furnace was used to melt Nd-based magnet scrap (powder of about 1 mm or less). At the rate of about 100 g / min from the top of the scrap while melting,
The alloy solidified on the lower 50 mm water-cooled hearth was gradually lowered. After continuing this for 30 minutes, stop charging the scrap, stop the arc, cool the furnace, and reduce the length to about 200 mm.
Alloy was obtained. An oxide layer mixed with the alloy was found at the top of this alloy. This was separated, and the alloy was analyzed. As a result, Nd 28.4 wt%, Dy 1.8 wt%, B 1.1 wt%, Co2.0 wt%
The remaining Fe was oxygen at 0.05 wt%. Insufficient Nd metal and Dy metal were added to the recovered alloy and melted to produce a magnet alloy having a predetermined composition. When a sintered magnet was manufactured by a known manufacturing method and the magnet characteristics were measured, Br = 12.9 kG, i H
C = 16.2 kOe, (BH) max = 40.2 MG · Oe, and the same characteristics as those of the conventional magnet without using the recovered alloy were obtained.

【0012】(実施例2)実施例1のアーク溶解炉を使
用し、Tb-Dy-Fe系超磁歪合金スクラップ(約20mm以下の
小塊および粉末)を溶解した。スクラップを投入し溶湯
のプールが生じたときに DyF3 300gを投入して合金とDy
F3からなる溶湯を形成させた。この溶湯を保持したま
ま、上部からスクラップを80g/分の速度でフィードしな
がら、下部から凝固した合金を徐々に引き下げた。これ
を30分継続し、合金を回収した。回収した合金中の酸素
は 0.03wt%であった。この回収合金を使用した超磁歪材
料の0.5kOeでの磁歪量は680ppmであり、回収合金を使用
しない従来のものと同等の特性であった。
Example 2 Using the arc melting furnace of Example 1, scraps of Tb-Dy-Fe-based giant magnetostrictive alloy (small pieces and powder having a size of about 20 mm or less) were melted. When scrap is added and a pool of molten metal is generated, 300 g of DyF 3 is added and alloy and Dy are added.
The melt consisting of F 3 was formed. While maintaining the molten metal, the solidified alloy was gradually pulled down from the lower part while feeding scrap at a rate of 80 g / min from the upper part. This was continued for 30 minutes, and the alloy was recovered. Oxygen in the recovered alloy was 0.03 wt%. The magnetostriction at 0.5 kOe of the giant magnetostrictive material using the recovered alloy was 680 ppm, which was equivalent to that of the conventional material without using the recovered alloy.

【0013】(実施例3)プラズマ溶解炉を使用し、Nd
系磁石スクラップ(約5〜20mmの小塊)を溶解した。70
wt% NdF3−15wt% CaF2−15wt% LiF からなるフラックス
を合金スクラップ100 wt部に対して2wt部の割合でフィ
ードしながら、下部から凝固した合金を徐々に引き下げ
て合金を回収した。回収した合金中の酸素は 0.03wt%で
あった。この回収合金を使用した磁石の特性はBr=12.6
kG、iHC =18.1kOe 、(BH)max =38.7MG・Oe であり、回
収合金を使用しない従来のものと同等の特性であった。
(Embodiment 3) Using a plasma melting furnace, Nd
The system magnet scrap (small block of about 5 to 20 mm) was melted. 70
While feeding a flux composed of wt% NdF 3 -15 wt% CaF 2 -15 wt% LiF at a ratio of 2 wt parts to 100 wt parts of the alloy scrap, the solidified alloy was gradually pulled down from the lower part to recover the alloy. Oxygen in the recovered alloy was 0.03 wt%. The properties of the magnet using this recovered alloy are Br = 12.6
kG, i H C = 18.1 kOe and (BH) max = 38.7 MG · Oe, which were equivalent to those of the conventional one without using a recovery alloy.

【0014】(実施例4)エレクトロスラグ溶解炉を使
用し、La-Ni 系水素吸蔵合金スクラップ(約0.5mm以下
の粉末)を溶解した。スクラップを50φmmの丸棒に成形
し電極とした。40wt% LaF3−55wt% CaF2−5wt% Ca から
なるフラックスを溶融させながら合金スクラップの電極
を溶解し、下部から凝固した合金を徐々に引き下げて合
金を回収した。回収した合金中の酸素は 0.04wt%であっ
た。この回収合金を使用した水素吸蔵合金の PCT特性は
60℃で平衡解離圧 0.85atm、水素吸蔵量 H/M=0.71(1a
tm)であり、従来と同等の特性であった。
(Example 4) Using an electroslag melting furnace, La-Ni-based hydrogen storage alloy scrap (powder of about 0.5 mm or less) was melted. The scrap was formed into a 50 mm round bar to form an electrode. Dissolving 40wt% LaF 3 -55wt% CaF 2 -5wt% electrode alloy scrap while melting the flux consisting of Ca, to recover gradually pulled down alloy alloy solidifies from the bottom. Oxygen in the recovered alloy was 0.04 wt%. The PCT characteristics of the hydrogen storage alloy using this recovered alloy
Equilibrium dissociation pressure at 60 ° C 0.85 atm, hydrogen storage capacity H / M = 0.71 (1a
tm), which is equivalent to the conventional characteristics.

【0015】[0015]

【発明の効果】本発明によれば、希土類金属を含有する
合金スクラップから、酸素などの不純物が低減された合
金を、簡便で経済的に有利に回収することができ、その
工業的価値は非常に大きい。
According to the present invention, an alloy with reduced impurities such as oxygen can be easily and economically and advantageously recovered from an alloy scrap containing a rare earth metal, and its industrial value is extremely high. Big.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属を含有する合金スクラップを
溶解炉の加熱部に投入しながら溶解し、下部から凝固し
た合金を徐々に引き下げて合金を回収し、酸化物など不
純物を合金より分離することを特徴とする希土類金属を
含有する合金スクラップの回収方法。
1. An alloy scrap containing a rare earth metal is melted while being introduced into a heating section of a melting furnace, and the solidified alloy is gradually pulled down from below to collect the alloy, thereby separating impurities such as oxides from the alloy. A method for recovering alloy scrap containing a rare earth metal, comprising:
【請求項2】 溶解炉の加熱方法がアーク溶解、プラズ
マ溶解、電子ビーム溶解、エレクトロスラグ溶解のいず
れかである請求項1記載の希土類金属を含有する合金ス
クラップの回収方法。
2. The method for recovering a rare earth metal-containing alloy scrap according to claim 1, wherein the heating method of the melting furnace is any one of arc melting, plasma melting, electron beam melting and electroslag melting.
【請求項3】 希土類金属を含有する合金スクラップが
磁石合金、水素吸蔵合金または超磁歪合金である請求項
1または2記載の希土類金属を含有する合金スクラップ
の回収方法。
3. The method according to claim 1, wherein the alloy scrap containing the rare earth metal is a magnet alloy, a hydrogen storage alloy or a giant magnetostrictive alloy.
【請求項4】 合金スクラップと、希土類元素の弗化
物、アルカリ土類弗化物および/またはアルカリ金属弗
化物とを一緒に溶解する請求項1から3のいずれか記載
の希土類金属を含有する合金スクラップの回収方法。
4. An alloy scrap containing a rare earth metal according to claim 1, wherein the alloy scrap and the fluoride of the rare earth element, the alkaline earth fluoride and / or the alkali metal fluoride are dissolved together. Collection method.
【請求項5】 前記弗化物に金属Caが混合されている請
求項4記載の希土類金属を含有する合金スクラップの回
収方法。
5. The method according to claim 4, wherein said fluoride is mixed with metal Ca.
JP4663698A 1998-02-27 1998-02-27 Method for recovering alloy scrap containing rare earth metal Pending JPH11241127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4663698A JPH11241127A (en) 1998-02-27 1998-02-27 Method for recovering alloy scrap containing rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4663698A JPH11241127A (en) 1998-02-27 1998-02-27 Method for recovering alloy scrap containing rare earth metal

Publications (1)

Publication Number Publication Date
JPH11241127A true JPH11241127A (en) 1999-09-07

Family

ID=12752795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4663698A Pending JPH11241127A (en) 1998-02-27 1998-02-27 Method for recovering alloy scrap containing rare earth metal

Country Status (1)

Country Link
JP (1) JPH11241127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199110A (en) * 2009-02-23 2010-09-09 Rare Metals 21:Kk Method of recovering neodymium magnet from used equipment, and neodymium magnet collected or recycled by the method
JP2018109231A (en) * 2016-12-29 2018-07-12 有研稀土新材料股▲フン▼有限公司 Rare earth metal and method for purifying the same
CN111893311A (en) * 2020-08-07 2020-11-06 上海大学 Device and method for removing impurity elements in electron beam smelting process by using static magnetic field acceleration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199110A (en) * 2009-02-23 2010-09-09 Rare Metals 21:Kk Method of recovering neodymium magnet from used equipment, and neodymium magnet collected or recycled by the method
JP2018109231A (en) * 2016-12-29 2018-07-12 有研稀土新材料股▲フン▼有限公司 Rare earth metal and method for purifying the same
CN111893311A (en) * 2020-08-07 2020-11-06 上海大学 Device and method for removing impurity elements in electron beam smelting process by using static magnetic field acceleration

Similar Documents

Publication Publication Date Title
US7204891B2 (en) Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet
US6309441B1 (en) Reduction-melting process to form rare earth-transition metal alloys and the alloys
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JP4296372B2 (en) Recycling method of Nd-based rare earth magnet scrap
US4786319A (en) Proces for the production of rare earth metals and alloys
CN111945000A (en) Metal purification method
US5174811A (en) Method for treating rare earth-transition metal scrap
JP3894061B2 (en) Rare earth magnet scrap and / or sludge remelting method, magnet alloy and rare earth sintered magnet
JP5767993B2 (en) Method for enriching rare earth elements from rare earth-containing materials
KR101547051B1 (en) High-purity erbium, sputtering target comprising high-purity erbium, metal gate film having high-purity erbium as main component thereof, and production method for high-purity erbium
US3264093A (en) Method for the production of alloys
JPH11241127A (en) Method for recovering alloy scrap containing rare earth metal
JP5977385B2 (en) Method for enriching rare earth elements from rare earth-containing materials
US3364015A (en) Silicon alloys containing rare earth metals
KR20150042018A (en) Refining method of rare-earth metals by vacuum molten process and apparatus for the manufacturing
JP4414861B2 (en) Long ingot manufacturing method for active refractory metal-containing alloys
JP7412197B2 (en) Method for manufacturing Ti-Al alloy
US5087291A (en) Rare earth-transition metal scrap treatment method
US4297132A (en) Electroslag remelting method and flux composition
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
WO2000039514A1 (en) Method and device for melting rare earth magnet scrap and primary molten alloy of rare earth magnet
JP5905782B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP2002012921A (en) Method for regenerating rare earth magnet scrap
Saito et al. The extraction of Sm from Sm-Co alloys by the glass slag method
JP5004195B2 (en) Cold crucible dissolution method