JPH11239611A - Sliding member for artificial joint and manufacture therefor - Google Patents

Sliding member for artificial joint and manufacture therefor

Info

Publication number
JPH11239611A
JPH11239611A JP10044091A JP4409198A JPH11239611A JP H11239611 A JPH11239611 A JP H11239611A JP 10044091 A JP10044091 A JP 10044091A JP 4409198 A JP4409198 A JP 4409198A JP H11239611 A JPH11239611 A JP H11239611A
Authority
JP
Japan
Prior art keywords
polyethylene
sliding member
artificial joint
molding
vitamin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10044091A
Other languages
Japanese (ja)
Other versions
JP4315261B2 (en
Inventor
Naohide Tomita
直秀 富田
Yasuo Takuma
靖雄 宅間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKUSHIN KOGYO KK
Mitsui Chemicals Inc
Original Assignee
SAKUSHIN KOGYO KK
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKUSHIN KOGYO KK, Mitsui Chemicals Inc filed Critical SAKUSHIN KOGYO KK
Priority to JP04409198A priority Critical patent/JP4315261B2/en
Publication of JPH11239611A publication Critical patent/JPH11239611A/en
Application granted granted Critical
Publication of JP4315261B2 publication Critical patent/JP4315261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0035Medical or pharmaceutical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0086Fatigue strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a sliding member for an artificial joint excellent in oxidation, abrasion and fatigue resistances. SOLUTION: A polyethylene composition containing Vitamin E and polyethylene having a limiting viscosity number [η] >=1 dl/g measured in o- dichlorobenzene at 135 deg.C is prepared. Radioactive rays are irradiated on a sliding member for an artificial joint molded from this composition. The polyethylene composition may contain <=10 wt.% α-olefin resin other than polyethylene having a limiting viscosity number [η] >=1 dl/g measured in o-dichlorobenzene at 135 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療用人工関節に
使用されるポリエチレン製の人工関節用摺動部材および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member for an artificial joint made of polyethylene used for a medical artificial joint and a method of manufacturing the sliding member.

【0002】[0002]

【従来の技術】一般にポリオレフィンは合成樹脂の中で
も生体に対する安全性に優れる樹脂であることから、人
工関節を含め各種医療用材料として広く用いられてい
る。人工関節は、慢性関節リューマチや変形性関節炎症
等で十分に機能しなくなった関節、例えば膝関節、股関
節、肘関節、指関節等に対して最も有効な治療用部材と
して近年多く使用され、その効果が認められている。
2. Description of the Related Art In general, polyolefin is a synthetic resin having excellent safety for living bodies among synthetic resins, and is therefore widely used as various medical materials including artificial joints. Artificial joints have been used in recent years as the most effective therapeutic members for joints that have failed to function sufficiently due to rheumatoid arthritis or osteoarthritis, such as knee joints, hip joints, elbow joints, and finger joints. The effect has been recognized.

【0003】人工関節は、一般にポリオレフィンからな
る摺動部材と各種合金やセラミックス材料などの比較的
弾性率の高い材料からなるステム部とから構成されてい
る。このような人工関節の摺動部材は長期にわたり体内
に埋め込んで使用される上、人体の各種動作に伴ってス
テム部との摺動および摩耗が発生するほか衝撃も受ける
ため、人工関節用摺動部材の原料としては、ポリオレフ
ィンの中でも特に化学的に安定であり、摺動性、耐摩耗
性および耐衝撃性に優れた高密度ポリエチレンなどが一
般に広く使用されている。
An artificial joint generally comprises a sliding member made of polyolefin and a stem made of a material having a relatively high elastic modulus such as various alloys and ceramic materials. Such artificial joint sliding members are used by being implanted in the body for a long period of time, and in addition to sliding and abrasion with the stem part as well as receiving shock due to various operations of the human body, sliding for artificial joints is performed. As a raw material for members, high-density polyethylene, which is particularly chemically stable among polyolefins and is excellent in slidability, abrasion resistance and impact resistance, is generally widely used.

【0004】このような人工関節は医療用材料であり、
生体内で使用するため使用前に十分な滅菌を行う必要が
ある。滅菌には、一般にガンマ線または電子線等の放射
線照射が行われている。しかし、ガンマ線を照射すると
ポリエチレン内にフリーラジカルが生じ、ポリエチレン
の粒子中および粒子間に残留している酸素と反応して酸
化が起こる。この酸化により、ポリエチレンの耐摩耗性
や耐疲労性が低下する。特に耐疲労性の低下によるポリ
エチレン摺動部材の早期の摩耗による破壊は、人工関節
が開発された当初は予想されなかった現象であり、この
破壊のため再度、部材を置換するための手術を行わなけ
ればならず、近年大きな問題となっている。
[0004] Such artificial joints are medical materials,
Sufficient sterilization must be performed before use for use in vivo. Generally, radiation such as gamma ray or electron beam is applied for sterilization. However, irradiation with gamma rays generates free radicals in polyethylene, which reacts with oxygen remaining in and between polyethylene particles to cause oxidation. This oxidation lowers the wear resistance and fatigue resistance of polyethylene. In particular, destruction due to early wear of polyethylene sliding members due to reduced fatigue resistance is a phenomenon that was not expected at the time when the artificial joint was developed, and surgery for replacing the members was performed again for this destruction. Has become a major problem in recent years.

【0005】これらの破壊のメカニズムを解明するべく
種々の研究が行われ、破壊がポリエチレンの粒界に沿っ
て進行することが解明されてきた。このような破壊を防
ぐことが人工関節を長期間使用するための課題となって
いる。その解決法として、例えば米国特許第54140
49号には、不活性ガス中にポリエチレンを入れた後ガ
ンマ線照射による滅菌を行い、フリーラジカルの発生が
原因で起こる酸化を防止する方法が記載されている。し
かし、不活性ガス中に入れてもポリオレフィン中の酸素
を完全に取り除くことは困難であり、酸化を完全に防ぐ
ことはできない。また、フリーラジカルを短時間で消滅
させることにより酸化を防ぐ方法として、ガンマ線照射
後のアニーリングの実施が提案されているが、ガンマ線
照射時の酸化を抑制できないため、その効果も確実では
ない。このような状況から、より長期にわたり安定して
人工関節を使用するため、耐酸化性、耐摩耗性および耐
疲労性に優れた人工関節用摺動部材の開発が急務となっ
ている。
Various studies have been conducted to elucidate the mechanism of these fractures, and it has been elucidated that the fracture proceeds along the polyethylene grain boundaries. Preventing such destruction is an issue for prolonged use of the artificial joint. As a solution, for example, US Pat.
No. 49 describes a method in which polyethylene is placed in an inert gas and then sterilized by gamma irradiation to prevent oxidation caused by generation of free radicals. However, it is difficult to completely remove oxygen from the polyolefin even if it is put in an inert gas, and it is not possible to completely prevent oxidation. Further, as a method of preventing oxidation by extinguishing free radicals in a short time, performing annealing after gamma ray irradiation has been proposed. However, since oxidation during gamma ray irradiation cannot be suppressed, the effect is not certain. Under such circumstances, in order to use the artificial joint stably for a longer period of time, there is an urgent need to develop a sliding member for an artificial joint having excellent oxidation resistance, wear resistance, and fatigue resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、耐酸
化性、耐摩耗性および耐疲労性に優れた人工関節用摺動
部材およびその製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sliding member for an artificial joint having excellent oxidation resistance, wear resistance and fatigue resistance, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来のポ
リエチレン摺動部材の欠点の改良と耐疲労性の向上のた
め、製造処方について鋭意検討した結果、酸化防止剤と
して比較的耐熱性が高く、生体への影響が少ないビタミ
ンE類を使用し、成形品にガンマ線照射を行うことで飛
躍的に耐疲労性を改善できることを見いだし、本発明に
至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the manufacturing prescription in order to improve the drawbacks of conventional polyethylene sliding members and improve fatigue resistance. The present inventors have found that fatigue resistance can be remarkably improved by irradiating a molded article with gamma rays using vitamin Es having a high effect on the living body and having a low effect on the living body.

【0008】すなわち、本発明は次の人工関節用摺動部
材およびその製造方法である。 (1)135℃のo−ジクロロベンゼン中で測定した極
限粘度[η]が1dl/g以上のポリエチレンと、ビタ
ミンE類とを含むポリエチレン組成物を成形して得られ
る人工関節用摺動部材。 (2)ポリエチレン組成物中のビタミンE類含有量が
0.001〜10重量%である上記(1)記載の人工関
節用摺動部材。 (3)ポリエチレン組成物が、135℃のo−ジクロロ
ベンゼン中で測定した極限粘度[η]が1dl/g以上
のポリエチレン以外のα−オレフィン樹脂を10重量%
以下含む組成物である上記(1)または(2)記載の人
工関節用摺動部材。 (4)135℃のo−ジクロロベンゼン中で測定した極
限粘度[η]が1dl/g以上のポリエチレンと、ビタ
ミンE類とを含むポリエチレン組成物を成形する人工関
節用摺動部材の製造方法。 (5)成形する前、ポリエチレンまたはポリエチレン組
成物を予め不活性ガスと接触させる上記(4)記載の製
造方法。 (6)成形中ないし成形後に放射線を照射する上記
(4)または(5)記載の製造方法。
That is, the present invention relates to the following sliding member for an artificial joint and a method of manufacturing the same. (1) A sliding member for an artificial joint obtained by molding a polyethylene composition containing a polyethylene having an intrinsic viscosity [η] of 1 dl / g or more in o-dichlorobenzene at 135 ° C. and vitamin Es. (2) The sliding member for an artificial joint according to the above (1), wherein the content of vitamin Es in the polyethylene composition is 0.001 to 10% by weight. (3) 10% by weight of an α-olefin resin other than polyethylene having an intrinsic viscosity [η] of 1 dl / g or more measured in o-dichlorobenzene at 135 ° C.
The sliding member for an artificial joint according to the above (1) or (2), which is a composition containing the following. (4) A method for producing a sliding member for an artificial joint, which comprises molding a polyethylene composition containing a polyethylene having an intrinsic viscosity [η] of 1 dl / g or more in o-dichlorobenzene at 135 ° C. and vitamin Es. (5) The method according to (4), wherein the polyethylene or the polyethylene composition is brought into contact with an inert gas before molding. (6) The method according to (4) or (5) above, wherein the radiation is applied during or after molding.

【0009】本発明で使用するポリエチレンは、135
℃のo−ジクロロベンゼン中で測定した極限粘度[η]
が1dl/g以上、好ましくは3〜40dl/g、さら
に好ましくは5〜35dl/gのポリエチレンである。
このようなポリエチレンは、モノマー成分としてエチレ
ンを主成分とするものであり、例えばエチレンの単独重
合体、エチレンと少量、例えば10重量%以下、好まし
くは3重量%以下のエチレン以外のモノマーとの共重合
体などがあげられる。エチレンと共重合するモノマーと
しては、エチレンと共重合可能なモノマーであれば特に
制限されず、例えば炭素数3〜20、好ましくは3〜1
5のα−オレフィンなどがあげられる。
The polyethylene used in the present invention is 135
Intrinsic viscosity [η] measured in o-dichlorobenzene at ℃
Is 1 dl / g or more, preferably 3 to 40 dl / g, more preferably 5 to 35 dl / g.
Such a polyethylene is mainly composed of ethylene as a monomer component. For example, a homopolymer of ethylene, a copolymer of ethylene with a small amount, for example, 10% by weight or less, preferably 3% by weight or less of a monomer other than ethylene is used. Polymers. The monomer copolymerized with ethylene is not particularly limited as long as it is a monomer copolymerizable with ethylene, and has, for example, 3 to 20 carbon atoms, preferably 3 to 1 carbon atoms.
Α-olefin of No. 5 and the like.

【0010】エチレンと共重合する上記α−オレフィン
としては、例えばプロピレン、1−ブテン、イソブテ
ン、1−ペンテン、2−メチル−1−ブテン、3−メチ
ル−1−ブテン、1−ヘキセン、3−メチル−1−ペン
テン、4−メチル−1−ペンテン、1−ヘプテン、1−
オクテン、1−デセン、1−ドデセン、1−テトラデセ
ン、1−ヘキサデセン、1−オクタデセン、1−イコセ
ンなどがあげられる。これらは1種または2種以上で共
重合体される。
The above α-olefin copolymerized with ethylene includes, for example, propylene, 1-butene, isobutene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, Methyl-1-pentene, 4-methyl-1-pentene, 1-heptene, 1-
Octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-icosene and the like can be mentioned. These are copolymerized by one kind or two or more kinds.

【0011】このようなポリエチレンとしては、市販品
を使用することもできる。また前記物性を有するもので
あれば、従来の人工関節用摺動部材の原料として使用さ
れている公知のポリエチレンを使用することもできる。
As such polyethylene, commercially available products can be used. In addition, as long as it has the above-mentioned physical properties, a known polyethylene used as a raw material of a conventional sliding member for an artificial joint can be used.

【0012】本発明で使用するビタミンE類としては、
ビタミンEまたはビタミンE活性を有する化合物が使用
できる。これらは天然品および合成品が使用できる。具
体的なものとしては、d−α−トコフェノール、d−β
−トコフェノール、d−γ−トコフェノール、d−δ−
トコフェノール、dl−α−トコフェノール、d−α−
トコトリエノール、d−β−トコトリエノール、d−γ
−トコトリエノール、d−δ−トコトリエノール、d−
α−トコフェリルアセタート、これらの異性体、誘導
体、およびこれらの混合物などが使用できる。またビタ
ミンE類としては市販品を使用することもできる。ビタ
ミンE類は食品添加物などとしても使用されている化合
物であり、人工関節用摺動部材の成分として使用しても
安全である。
The vitamin E used in the present invention includes:
Vitamin E or compounds having vitamin E activity can be used. These can be used natural and synthetic products. Specific examples include d-α-tocophenol, d-β
-Tocophenol, d-γ-tocophenol, d-δ-
Tocophenol, dl-α-tocophenol, d-α-
Tocotrienol, d-β-tocotrienol, d-γ
-Tocotrienol, d-δ-tocotrienol, d-
α-Tocopheryl acetate, isomers and derivatives thereof, and mixtures thereof can be used. Commercially available products can also be used as the vitamin Es. Vitamin E is a compound that is also used as a food additive or the like, and is safe to use as a component of a sliding member for an artificial joint.

【0013】本発明の人工関節用摺動部材は前記ポリエ
チレンおよびビタミンE類を含むポリエチレン組成物か
ら成形されてなるものである。このポリエチレン組成物
中のポリエチレンの含有量は90〜99.999重量
%、好ましくは95〜99.99重量%、ビタミンE類
の含有量は0.001〜10重量%、好ましくは0.0
1〜5重量%であるのが望ましい。
The sliding member for an artificial joint according to the present invention is formed from the polyethylene composition containing the polyethylene and vitamin Es. The polyethylene content in this polyethylene composition is 90 to 99.999% by weight, preferably 95 to 99.99% by weight, and the content of vitamin Es is 0.001 to 10% by weight, preferably 0.0
Desirably, it is 1 to 5% by weight.

【0014】原料となるポリエチレン組成物中には、前
記ポリエチレンおよびビタミンE類に加えて、生体中で
使用可能な樹脂や添加剤などが含まれていてもよい。こ
のような樹脂としては、前記ポリエチレン以外のα−オ
レフィン樹脂などがあげられ、通常ポリエチレン組成物
中の含有量として10重量%以下、好ましくは0.1〜
5重量%配合することができる。また添加物としては、
例えばステアリン酸塩類などがあげられる。
The polyethylene composition as a raw material may contain, in addition to the polyethylene and vitamins E, resins and additives that can be used in a living body. Examples of such a resin include α-olefin resins other than the above-mentioned polyethylene, and the content in the polyethylene composition is usually 10% by weight or less, preferably 0.1 to 10% by weight.
5% by weight can be blended. Also, as an additive,
Examples include stearates.

【0015】本発明の人工関節用摺動部材は、前記ポリ
エチレン組成物を成形することにより製造することがで
きる。製造に使用するポリエチレン組成物は前記ポリエ
チレン、ビタミンE類および必要により配合する他の成
分をヘンシェルタイプのミキサー等の混合機などを用い
て混合することにより調製することができる。ポリエチ
レン組成物中ではビタミンE類はできるだけ均一に分散
されているのが好ましい。
The sliding member for an artificial joint according to the present invention can be manufactured by molding the polyethylene composition. The polyethylene composition used for the production can be prepared by mixing the polyethylene, vitamin Es and other components to be blended if necessary using a mixer such as a Henschel type mixer. It is preferred that the vitamin Es are dispersed as uniformly as possible in the polyethylene composition.

【0016】ポリエチレン組成物を調製する場合、ポリ
エチレンはどのような形状のものでも使用でき、例えば
パウダー、ペレットまたはタブレット状のものなどが使
用できる。またビタミンE類もどのような形状のもので
も使用でき、例えばパウダーまたはペレット状のものな
どが使用できるが、ポリエチレンと混合する際に容易に
均一に分散させることができるため、パウダー状のもの
が好ましい。その他の形状の場合は粉砕して使用するの
が好ましい。
In preparing the polyethylene composition, polyethylene may be used in any shape, for example, powder, pellet or tablet. Vitamin Es can also be used in any shape, for example, powder or pellets, but can be easily and uniformly dispersed when mixed with polyethylene. preferable. In the case of other shapes, it is preferable to use it after crushing.

【0017】ポリエチレン組成物の調製および人工関節
用摺動部材の成形は連続して行うこともできるし、ポリ
エチレン組成物を調製して一時貯蔵した後人工関節用摺
動部材の成形を行うこともできる。いずれの場合も、原
料となるポリエチレンおよびポリエチレン組成物(以
下、これらをまとめて成形前の原料という)はそのまま
人工関節用摺動部材の成形に使用することができるが、
成形前に不活性ガスと接触させて、ポリエチレンまたは
ポリエチレン組成物中に包含されている酸素を不活性ガ
スで置換し、酸素濃度を低減させておくのが好ましい。
酸素濃度を低減させることにより、成形時または成形後
に粒子間に封入された酸素により内部で起こる酸化を防
止することができ、このためより耐酸化性に優れた人工
関節用摺動部材を得ることができる。
The preparation of the polyethylene composition and the molding of the sliding member for artificial joints can be performed continuously, or the preparation of the polyethylene composition and its temporary storage can be followed by molding of the sliding member for artificial joints. it can. In any case, the raw material polyethylene and polyethylene composition (hereinafter collectively referred to as raw materials before molding) can be used as it is for molding the sliding member for artificial joints.
It is preferable that the oxygen contained in the polyethylene or the polyethylene composition is replaced with the inert gas to reduce the oxygen concentration before the molding is brought into contact with the inert gas before molding.
By reducing the oxygen concentration, it is possible to prevent oxidation occurring inside due to oxygen enclosed between the particles during or after molding, thereby obtaining a sliding member for an artificial joint having better oxidation resistance. Can be.

【0018】成形前の原料と不活性ガスとの接触方法と
しては、例えば不活性ガスが充填された密閉容器中に成
形前の原料を入れて一時保管する方法;密閉容器中に成
形前の原料を入れた後、減圧してから不活性ガスを導入
し、強制的に不活性ガスで置換方法する方法;密閉容器
中に成形前の原料を入れた後、不活性ガスを流通させて
自然置換させる方法等があげられる。不活性ガスとして
は、ポリエチレンおよび成形原料と反応しないガスであ
ればどのようなものでも使用することができ、例えば窒
素、ヘリウム、ネオン、アルゴン等があげられる。
As a method of contacting the raw material before molding with the inert gas, for example, a method of temporarily storing the raw material before molding in a closed container filled with an inert gas; After the pressure is reduced, the inert gas is introduced, and the inert gas is forcibly replaced with the inert gas; after the raw material before molding is placed in a closed container, the inert gas is allowed to flow and natural replacement is performed. And the like. As the inert gas, any gas can be used as long as it does not react with polyethylene and the molding material, and examples thereof include nitrogen, helium, neon, and argon.

【0019】本発明の人工関節用摺動部材を製造する際
の成形法は特に限定されず、押出成形、圧縮成形、射出
成形等、公知の成形法を採用することができる。また、
これらの成形法で成形した成形物はそのまま本発明の人
工関節用摺動部材として使用することもできるし、成形
後さらに切削加工を行った後本発明の人工関節用摺動部
材として使用することもできる。例えば、ラム押出成形
機によりロッドに成形した後、切削加工により摺動部材
に成形する方法;圧縮成形により板状成形物にした後、
切削加工により摺動部材に成形する方法等があげられ
る。
The molding method for producing the sliding member for an artificial joint of the present invention is not particularly limited, and a known molding method such as extrusion molding, compression molding, or injection molding can be employed. Also,
The molded product molded by these molding methods can be used as it is as the sliding member for artificial joints of the present invention, or it can be used as the sliding member for artificial joints of the present invention after further cutting after molding. Can also. For example, a method of forming a rod by a ram extruder and then forming a sliding member by a cutting process;
A method of forming a sliding member by cutting and the like can be given.

【0020】人工関節用摺動部材は医療用として使用さ
れるため、殺菌を行う必要がある。殺菌は成形中または
成形後に行うことができる。殺菌方法は医療用品の殺菌
に採用されている公知の殺菌方法であって、ポリエチレ
ン、ビタミンE類および所望により配合される他の原料
に適用できる殺菌方法であれば特に限定されない。例え
ば、放射線滅菌法、乾熱法またはガス滅菌法等が採用で
きる。これらの中では、容易に、短時間で、かつ完全に
殺菌でき、しかもポリエチレンを架橋させることができ
る放射線滅菌法が好ましい。
Since the artificial joint sliding member is used for medical purposes, it must be sterilized. Sterilization can be performed during or after molding. The sterilization method is a known sterilization method used for sterilization of medical supplies, and is not particularly limited as long as it can be applied to polyethylene, vitamin Es and other raw materials to be blended as desired. For example, a radiation sterilization method, a dry heat method, a gas sterilization method, or the like can be employed. Among these, a radiation sterilization method that can easily, completely, and completely sterilize, and can crosslink polyethylene is preferable.

【0021】前記放射線滅菌法は、ガンマ線などの電磁
放射線を照射する方法と、電子線などの粒子放射線を照
射する方法に大別されるが、いずれの方法を用いてもよ
い。放射線の照射量は、滅菌が可能な照射量であれば特
に限定されないが、ポリエチレンが十分な架橋反応を起
こすような照射量とするのが好ましい。通常0.1Mr
ad以上の放射線を照射すると、滅菌が可能であり、か
つポリエチレンが架橋するので、照射量は0.1Mra
d以上、好ましくは0.5〜5Mradとするのが望ま
しい。ポリエチレンを架橋させることにより、人工関節
用摺動部材の耐摩耗性をより向上させることができる。
なおポリエチレン以外のα−オレフィン樹脂を配合した
場合、このα−オレフィンも架橋する。
The radiation sterilization method is broadly classified into a method of irradiating electromagnetic radiation such as gamma rays and a method of irradiating particle radiation such as an electron beam. Either method may be used. The irradiation dose of radiation is not particularly limited as long as it can be sterilized, but it is preferable that the irradiation dose be such that polyethylene causes a sufficient crosslinking reaction. Usually 0.1Mr
Irradiation of ad or more can sterilize and crosslink polyethylene, so the irradiation amount is 0.1 Mra.
d or more, preferably 0.5 to 5 Mrad. By cross-linking the polyethylene, the wear resistance of the sliding member for an artificial joint can be further improved.
When an α-olefin resin other than polyethylene is blended, the α-olefin is also crosslinked.

【0022】前記乾熱法では、人工関節用摺動部材を1
40〜200℃で乾熱することにより殺菌することがで
きる。また前記ガス滅菌法は、人工関節用摺動部材をエ
チレンオキサイドガスまたはプロピレンオキサイドガス
と接触させることにより殺菌することができる。この場
合、ガスが滅菌物に吸着して残留したり、ガスに毒性が
あるため、操作に注意する必要がある。
In the dry heat method, the sliding member for an artificial joint is
Sterilization can be achieved by drying at 40 to 200 ° C. In the gas sterilization method, the artificial joint sliding member can be sterilized by contacting the sliding member with an ethylene oxide gas or a propylene oxide gas. In this case, care must be taken in the operation because the gas adsorbs and remains on the sterilized material or the gas is toxic.

【0023】滅菌は空気中、不活性ガス中または真空中
のいずれで行ってもよいが、酸化を極力避けるため、酸
素を含まない不活性ガス中または真空中で行うが好まし
い。不活性ガスとしては、例えばヘリウム、窒素、アル
ゴン、ネオン等があげられる。また真空中で行う場合は
酸素の残存を避けるため、いったん不活性ガス雰囲気に
ガス置換を行った後、真空にするのが好ましい。
Sterilization may be performed in air, in an inert gas, or in a vacuum, but is preferably performed in an oxygen-free inert gas or in a vacuum in order to minimize oxidation. Examples of the inert gas include helium, nitrogen, argon, neon and the like. Further, in the case of performing in a vacuum, it is preferable to first perform gas replacement in an inert gas atmosphere and then to perform vacuum in order to avoid remaining of oxygen.

【0024】このようにして得られる本発明の人工関節
用摺動部材は、従来の摺動部材に比較して耐酸化性に優
れ、酸化劣化をほとんど起こさない。さらに、酸化が原
因と考えられている耐疲労性が改善し、長期間にわたる
使用においても材料の破壊が認められないため、人工関
節用途に求められる要求を高い水準で満たした理想的な
摺動部材である。
The sliding member for an artificial joint according to the present invention thus obtained is excellent in oxidation resistance and hardly causes oxidation deterioration as compared with the conventional sliding member. Furthermore, since the fatigue resistance, which is considered to be caused by oxidation, is improved and the material is not destroyed even when used for a long period of time, the ideal sliding that meets the demands for artificial joint applications at a high level It is a member.

【0025】このように本発明の人工関節用摺動部材
は、長期間安定して人工関節に用いることができ、医療
分野においてきわめて有用な製品となる。
As described above, the sliding member for an artificial joint of the present invention can be stably used for an artificial joint for a long period of time, and is a very useful product in the medical field.

【0026】[0026]

【発明の効果】本発明の人工関節用摺動部材は、ポリエ
チレンおよびビタミンE類を含有するポリエチレン組成
物から成形されているので、耐酸化性に優れ、酸化劣化
をほとんど起こさない。このため、酸化が原因と考えら
れている耐摩耗性および耐疲労性が改善され、長期間に
わたる使用においても材料の破壊が認められず、長期間
安定して使用することができる。
Since the sliding member for an artificial joint of the present invention is formed from a polyethylene composition containing polyethylene and vitamin E, it is excellent in oxidation resistance and hardly undergoes oxidation deterioration. For this reason, the abrasion resistance and fatigue resistance, which are considered to be caused by oxidation, are improved, and even when used for a long time, no destruction of the material is observed.

【0027】本発明の人工関節用摺動部材の製造方法
は、ポリエチレンおよびビタミンE類を含有するポリエ
チレン組成物を成形しているので、上記人工関節用摺動
部材を効率よく簡単に製造することができる。また成形
する前に、ポリエチレンまたはポリエチレン組成物を予
め不活性ガスと接触させることにより、より耐酸化性に
優れた人工関節用摺動部材を容易に製造することができ
る。さらに成形中ないし成形後に放射線照射を行うこと
により、殺菌とともにポリエチレンを架橋させることが
でき、これにより、より耐摩耗性に優れた人工関節用摺
動部材を容易に製造することができる。
In the method for manufacturing a sliding member for an artificial joint according to the present invention, since the polyethylene composition containing polyethylene and vitamin E is molded, the sliding member for an artificial joint can be efficiently and simply manufactured. Can be. In addition, by contacting the polyethylene or the polyethylene composition with an inert gas in advance before molding, a sliding member for an artificial joint having more excellent oxidation resistance can be easily manufactured. Further, by performing radiation irradiation during or after molding, the polyethylene can be cross-linked together with sterilization, whereby a sliding member for an artificial joint having more excellent wear resistance can be easily manufactured.

【0028】[0028]

【発明の実施の形態】次に実施例をあげて本発明をさら
に具体的に説明するが、本発明はこれらの実施例になん
ら制約されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0029】実施例1〜3 超高分子量ポリエチレン(三井化学(株)製ハイゼック
ス・ミリオン240S、商標、分子量200万、135
℃のo−ジクロロベンゼン中で測定した極限粘度[η]
13.5dl/g)を500g計量した後、ビタミンE
(和光純薬工業(株)製)を所定量秤量して添加した。
その後、ブレンドミキサーにより、3分間攪拌を行い、
成形用のポリエチレン組成物とした。このポリエチレン
組成物粉体を直径3cmのガラス管に充填し、組成物粉
末の飛散防止のためガラスウールをフィルターとして両
端につめた後、両端をガラス管付きゴム栓で封じた。
Examples 1 to 3 Ultra high molecular weight polyethylene (HIZEX Million 240S manufactured by Mitsui Chemicals, Inc., trademark, molecular weight 2,000,000, 135)
Intrinsic viscosity [η] measured in o-dichlorobenzene at ℃
13.5 dl / g), weigh 500 g,
A predetermined amount (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed and added.
Then, with a blend mixer, stir for 3 minutes,
A polyethylene composition for molding was obtained. The polyethylene composition powder was filled in a glass tube having a diameter of 3 cm, and glass wool was used as a filter to prevent scattering of the composition powder at both ends, and then both ends were sealed with a rubber stopper with a glass tube.

【0030】次に窒素置換のため、窒素ボンベに接続し
た一方のガラス管から、窒素を600ml〜700ml
/分の流量に調整して吹き込んだ。5分間窒素を吹き込
んだ後、プレス機の金型にポリエチレン組成物粉体を1
50g入れた。金型(内寸35mm×125mm×12
5mm)は予めポリエチレンフィルムで覆い、チューブ
を1箇所から中に差し込み窒素ガスを導入することによ
り、窒素雰囲気にした。
Next, for the replacement of nitrogen, 600 ml to 700 ml of nitrogen was supplied from one glass tube connected to a nitrogen cylinder.
The flow was adjusted to a flow rate of / min. After injecting nitrogen for 5 minutes, the polyethylene composition powder
50g was put. Mold (inner size 35mm × 125mm × 12
5 mm) was previously covered with a polyethylene film, and a tube was inserted into the tube from one position, and nitrogen gas was introduced to make a nitrogen atmosphere.

【0031】室温下、圧力51kg/cm2でプレスし
た後、一旦5分間の脱気を行い、185℃に昇温後プレ
スを5分間、さらに加熱終了後6分間プレスを継続して
自然冷却した。その後、金型を水冷却して10分間プレ
スを行い成形を終了した。成形終了後、窒素ガス雰囲気
下、所定量の60Co線源にてガンマ線照射処理を行っ
た。
After pressing at room temperature at a pressure of 51 kg / cm 2 , degassing was performed once for 5 minutes, the temperature was raised to 185 ° C., the press was continued for 5 minutes, and after the heating was completed, the press was continued and naturally cooled for 6 minutes. . Thereafter, the mold was cooled with water and pressed for 10 minutes to complete the molding. After completion of molding, under a nitrogen gas atmosphere, gamma irradiation treatment at a predetermined amount of a 60 Co radiation source was conducted.

【0032】成形プレートから5mm×5mm×20m
mの試料を作成し、オーブンを使用して200℃の空気
中で所定時間加熱した。加熱終了後IR分析を行い、ケ
トン基、カルボニル基の吸収を調べた。結果を表1にま
とめた。
5 mm × 5 mm × 20 m from the molding plate
m sample was prepared and heated in an air at 200 ° C. for a predetermined time using an oven. After the heating was completed, IR analysis was performed to examine the absorption of a ketone group and a carbonyl group. The results are summarized in Table 1.

【0033】また、成形プレートから60mm×60m
m×10mmの試料を作成し、凸面接触疲労試験機を用
いて疲労試験を行った。試験は、37℃の蒸留水中で曲
率半径3mmの球上の頭部を有するチタン合金製ロッド
により最大3kg/mm2の圧力を加え、摩耗試験を行
った。摩耗により発生した試験片内部のクラックを、超
音波式探査映像装置(日立建機製AT5500、商標)
を用いて観察した。フレーキングの発生は目視および実
体顕微鏡で確認した。またクラック面積率は超音波反射
強度0.4V以上の部分をクラック面積とみなし、観察
面積に占める比率を求めた。その結果を表1にまとめ
た。
Further, the distance from the forming plate is 60 mm × 60 m.
An mx 10 mm sample was prepared and subjected to a fatigue test using a convex contact fatigue tester. In the test, a wear test was performed by applying a maximum pressure of 3 kg / mm 2 with a titanium alloy rod having a spherical head having a radius of curvature of 3 mm in distilled water at 37 ° C. The cracks inside the test piece caused by abrasion are detected by an ultrasonic exploration imager (AT5500, manufactured by Hitachi Construction Machinery, trademark).
Observed using. The occurrence of flaking was confirmed visually and by a stereoscopic microscope. As for the crack area ratio, a portion having an ultrasonic reflection intensity of 0.4 V or more was regarded as a crack area, and the ratio of the crack area to the observation area was determined. Table 1 summarizes the results.

【0034】比較例1〜3 実施例においてビタミンEを添加しないことと成形前の
窒素置換を行わない以外は実施例1と同様の方法でプレ
ス成形を行った。実施例1と同様の試料でテストした結
果を表1にまとめた。
Comparative Examples 1 to 3 Press molding was performed in the same manner as in Example 1 except that vitamin E was not added and nitrogen substitution before molding was not performed. Table 1 summarizes the results of tests performed on the same samples as in Example 1.

【0035】[0035]

【表1】 [Table 1]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 135℃のo−ジクロロベンゼン中で測
定した極限粘度[η]が1dl/g以上のポリエチレン
と、ビタミンE類とを含むポリエチレン組成物を成形し
て得られる人工関節用摺動部材。
1. A sliding for artificial joint obtained by molding a polyethylene composition containing a polyethylene having an intrinsic viscosity [η] of 1 dl / g or more in o-dichlorobenzene at 135 ° C. and vitamin Es. Element.
【請求項2】 ポリエチレン組成物中のビタミンE類含
有量が0.001〜10重量%である請求項1記載の人
工関節用摺動部材。
2. The sliding member for an artificial joint according to claim 1, wherein the content of vitamin E in the polyethylene composition is 0.001 to 10% by weight.
【請求項3】 ポリエチレン組成物が、135℃のo−
ジクロロベンゼン中で測定した極限粘度[η]が1dl
/g以上のポリエチレン以外のα−オレフィン樹脂を1
0重量%以下含む組成物である請求項1または2記載の
人工関節用摺動部材。
3. The method of claim 1, wherein the polyethylene composition has an o-
The intrinsic viscosity [η] measured in dichlorobenzene is 1 dl
/ G of α-olefin resin other than polyethylene
The sliding member for an artificial joint according to claim 1 or 2, which is a composition containing 0% by weight or less.
【請求項4】 135℃のo−ジクロロベンゼン中で測
定した極限粘度[η]が1dl/g以上のポリエチレン
と、ビタミンE類とを含むポリエチレン組成物を成形す
る人工関節用摺動部材の製造方法。
4. Manufacture of a sliding member for an artificial joint for molding a polyethylene composition containing a polyethylene having an intrinsic viscosity [η] of 1 dl / g or more in o-dichlorobenzene at 135 ° C. and vitamin Es. Method.
【請求項5】 成形する前、ポリエチレンまたはポリエ
チレン組成物を予め不活性ガスと接触させる請求項4記
載の製造方法。
5. The method according to claim 4, wherein the polyethylene or the polyethylene composition is brought into contact with an inert gas before molding.
【請求項6】 成形中ないし成形後に放射線を照射する
請求項4または5記載の製造方法。
6. The method according to claim 4, wherein radiation is applied during or after molding.
JP04409198A 1998-02-25 1998-02-25 Sliding member for artificial joint and manufacturing method Expired - Lifetime JP4315261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04409198A JP4315261B2 (en) 1998-02-25 1998-02-25 Sliding member for artificial joint and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04409198A JP4315261B2 (en) 1998-02-25 1998-02-25 Sliding member for artificial joint and manufacturing method

Publications (2)

Publication Number Publication Date
JPH11239611A true JPH11239611A (en) 1999-09-07
JP4315261B2 JP4315261B2 (en) 2009-08-19

Family

ID=12681961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04409198A Expired - Lifetime JP4315261B2 (en) 1998-02-25 1998-02-25 Sliding member for artificial joint and manufacturing method

Country Status (1)

Country Link
JP (1) JP4315261B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114921A (en) * 2000-10-04 2002-04-16 Bmg:Kk Biodegradable polymer composition excellent in heat decomposability
JP2006515777A (en) * 2003-01-16 2006-06-08 マサチューセッツ、ゼネラル、ホスピタル Method for producing oxidation-resistant polymer material
JP2007500773A (en) * 2003-05-19 2007-01-18 レデラー,クラウス Cross-linked ultra high molecular weight polyethylene (UHMW-PE)
JP2007536998A (en) * 2004-05-11 2007-12-20 ザ ジェネラル ホスピタル コーポレイション ディー ビー エイ マサチューセッツ ジェネラル ホスピタル Method for producing oxidation-resistant polymeric material
JP2009061283A (en) * 2000-04-27 2009-03-26 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylene for human joint replacements and methods for making them
JP2010000221A (en) * 2008-06-20 2010-01-07 Nakashima Medical Co Ltd Method of molding artificial joint sliding member, and artificial joint sliding member molded by the method
JP2010516517A (en) * 2007-01-25 2010-05-20 ザ・ジェネラル・ホスピタル・コーポレイション Method for producing oxidation-resistant crosslinked polymeric material
JP2010521566A (en) * 2007-03-20 2010-06-24 スミス アンド ネフュー オーソペディックス アーゲー Highly cross-linked oxidation resistant ultra high molecular weight polyethylene
US8546460B2 (en) 2007-09-04 2013-10-01 Smith & Nephew, Inc. Ultra high molecular weight polyethylene for bearing surfaces
US8586667B2 (en) 2008-05-13 2013-11-19 Smith & Nephew Orthopaedics Ag Oxidation resistant highly-crosslinked UHMWPE
JP2014004352A (en) * 2012-05-31 2014-01-16 Kyocera Medical Corp Sliding material and method of manufacturing the same
JP2014124502A (en) * 2012-12-27 2014-07-07 Kyocera Medical Corp Method for manufacturing sliding member of artificial joint and sliding member of artificial joint
JP2014166229A (en) * 2013-02-28 2014-09-11 Kyocera Medical Corp Sliding material and method of manufacturing the same
US9017590B2 (en) 2004-10-07 2015-04-28 Biomet Manufacturing, Llc Solid state deformation processing of crosslinked high molecular weight polymeric materials
US9265545B2 (en) 2007-04-10 2016-02-23 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9277949B2 (en) 2007-04-10 2016-03-08 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9421104B2 (en) 2007-07-27 2016-08-23 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
US11001680B2 (en) 2005-08-18 2021-05-11 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
JP2021100990A (en) * 2019-12-24 2021-07-08 公立大学法人 滋賀県立大学 Resin composition, resin-molded article, and manufacturing method of resin-molded article

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658710B2 (en) 2000-04-27 2014-02-25 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US9302028B2 (en) 2000-04-27 2016-04-05 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US9242025B2 (en) 2000-04-27 2016-01-26 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
JP2009061283A (en) * 2000-04-27 2009-03-26 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylene for human joint replacements and methods for making them
US9155817B2 (en) 2000-04-27 2015-10-13 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US8796347B2 (en) 2000-04-27 2014-08-05 Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
JP2002114921A (en) * 2000-10-04 2002-04-16 Bmg:Kk Biodegradable polymer composition excellent in heat decomposability
US9688004B2 (en) 2003-01-16 2017-06-27 The General Hospital Corporation Methods for making oxidation resistant polymeric material
US8530057B2 (en) 2003-01-16 2013-09-10 The General Hospital Corporation Methods for making oxidation resistant polymeric material
US8038927B2 (en) 2003-01-16 2011-10-18 The General Hosital Corporation Methods for making oxidation resistant polymeric material
JP2012120855A (en) * 2003-01-16 2012-06-28 General Hospital Corp:The Method for making oxidation resistant polymeric material
JP2012120854A (en) * 2003-01-16 2012-06-28 General Hospital Corp:The Method for making oxidation resistant polymeric material
US9370878B2 (en) 2003-01-16 2016-06-21 The General Hospital Corp. Methods for making oxidation resistant polymeric material
US9943993B2 (en) 2003-01-16 2018-04-17 The General Hospital Corporation Methods for making oxidation resistant polymeric material
JP2006515777A (en) * 2003-01-16 2006-06-08 マサチューセッツ、ゼネラル、ホスピタル Method for producing oxidation-resistant polymer material
US8968628B2 (en) 2003-01-16 2015-03-03 The General Hospital Corp. Methods for making oxidation resistant polymeric material
US8888859B2 (en) 2003-01-16 2014-11-18 The General Hospital Corporation Methods for making oxidation resistant polymeric material
US10821632B2 (en) 2003-01-16 2020-11-03 The General Hospital Corporation Methods for making oxidation resistant polymeric material
US8728379B2 (en) 2003-01-16 2014-05-20 The General Hospital Corporation Methods for making oxidation resistant polymeric material
JP4751830B2 (en) * 2003-05-19 2011-08-17 レデラー,クラウス Cross-linked ultra high molecular weight polyethylene (UHMW-PE)
JP2007500773A (en) * 2003-05-19 2007-01-18 レデラー,クラウス Cross-linked ultra high molecular weight polyethylene (UHMW-PE)
JP2013150864A (en) * 2004-05-11 2013-08-08 General Hospital Corp Method for making oxidation resistant polymeric material
US8865043B2 (en) 2004-05-11 2014-10-21 The General Hospital Corporation Methods for making oxidation resistant polymeric material
US9561306B2 (en) 2004-05-11 2017-02-07 The General Hospital Corporation Methods for making oxidation resistant polymeric material
JP2007536998A (en) * 2004-05-11 2007-12-20 ザ ジェネラル ホスピタル コーポレイション ディー ビー エイ マサチューセッツ ジェネラル ホスピタル Method for producing oxidation-resistant polymeric material
JP2013135871A (en) * 2004-05-11 2013-07-11 General Hospital Corp Method for producing oxidation resistant polymeric material
US9017590B2 (en) 2004-10-07 2015-04-28 Biomet Manufacturing, Llc Solid state deformation processing of crosslinked high molecular weight polymeric materials
US11001680B2 (en) 2005-08-18 2021-05-11 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US11015030B2 (en) 2005-08-18 2021-05-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
JP2010516517A (en) * 2007-01-25 2010-05-20 ザ・ジェネラル・ホスピタル・コーポレイション Method for producing oxidation-resistant crosslinked polymeric material
JP2010521566A (en) * 2007-03-20 2010-06-24 スミス アンド ネフュー オーソペディックス アーゲー Highly cross-linked oxidation resistant ultra high molecular weight polyethylene
US10556998B2 (en) 2007-04-10 2020-02-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9277949B2 (en) 2007-04-10 2016-03-08 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9926432B2 (en) 2007-04-10 2018-03-27 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9265545B2 (en) 2007-04-10 2016-02-23 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9822224B2 (en) 2007-04-10 2017-11-21 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US9421104B2 (en) 2007-07-27 2016-08-23 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
US8546460B2 (en) 2007-09-04 2013-10-01 Smith & Nephew, Inc. Ultra high molecular weight polyethylene for bearing surfaces
US8586667B2 (en) 2008-05-13 2013-11-19 Smith & Nephew Orthopaedics Ag Oxidation resistant highly-crosslinked UHMWPE
JP2010000221A (en) * 2008-06-20 2010-01-07 Nakashima Medical Co Ltd Method of molding artificial joint sliding member, and artificial joint sliding member molded by the method
JP2014004352A (en) * 2012-05-31 2014-01-16 Kyocera Medical Corp Sliding material and method of manufacturing the same
JP2014124502A (en) * 2012-12-27 2014-07-07 Kyocera Medical Corp Method for manufacturing sliding member of artificial joint and sliding member of artificial joint
JP2014166229A (en) * 2013-02-28 2014-09-11 Kyocera Medical Corp Sliding material and method of manufacturing the same
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10184031B2 (en) 2014-03-12 2019-01-22 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
US10265891B2 (en) 2014-12-03 2019-04-23 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
JP2021100990A (en) * 2019-12-24 2021-07-08 公立大学法人 滋賀県立大学 Resin composition, resin-molded article, and manufacturing method of resin-molded article

Also Published As

Publication number Publication date
JP4315261B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JPH11239611A (en) Sliding member for artificial joint and manufacture therefor
US9926432B2 (en) Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
CA2335271C (en) Compositions, processes and methods of improving the wear resistance of prosthetic medical devices
US7205051B2 (en) Medical implant or medical implant part
US10556998B2 (en) Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US8303657B2 (en) Polyethylene cross-linked with an anthocyanin
JP5758316B2 (en) Method for producing oxidation-resistant polymer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term