JPH11238615A - Magnetic material for magnetic cooling and magnetic cooling device using the same - Google Patents

Magnetic material for magnetic cooling and magnetic cooling device using the same

Info

Publication number
JPH11238615A
JPH11238615A JP10041596A JP4159698A JPH11238615A JP H11238615 A JPH11238615 A JP H11238615A JP 10041596 A JP10041596 A JP 10041596A JP 4159698 A JP4159698 A JP 4159698A JP H11238615 A JPH11238615 A JP H11238615A
Authority
JP
Japan
Prior art keywords
magnetic
cooling
temperature
magnetic field
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10041596A
Other languages
Japanese (ja)
Other versions
JP3461114B2 (en
Inventor
Akimasa Sakuma
昭正 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP04159698A priority Critical patent/JP3461114B2/en
Publication of JPH11238615A publication Critical patent/JPH11238615A/en
Application granted granted Critical
Publication of JP3461114B2 publication Critical patent/JP3461114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic cooling device, in which CFC gas need not be used at 100-400 K and which utilizes adiabatic demagnetization, and a magnetic material for magnetic cooling useful for the magnetic cooling device. SOLUTION: In this magnetic material for magnetic cooling, a composition is represented by R1-x AxMnO3 (R is represented by at least one kind or more from among La, Pr, Nd and Sm and A by Sr and/or Ca) at an atomic ratio and 0.1<=X<=0.6, and has a perovskite structure, and the magnetic material is composed of a ferromagnetic material having a Curic temperature of 200-400 K.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフロンガスを必要と
しない冷却装置に用いられる冷却用磁性材料およびそれ
を用いた磁気冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material for cooling used in a cooling device which does not require Freon gas, and a magnetic cooling device using the same.

【0002】[0002]

【従来の技術】近年、通常の冷蔵庫や空調機が人間の生
存にとって重要な障害となるという認識が次第に大きく
なってきている。これはそのような機器の殆どがフレオ
ン(freon:CFC(chorinated fluorinated hydrocarbon
s)、フロンともいう)を用いており、それが漏洩や修
理、廃却時に大気中に逃げ、成層圏まで達すると太陽光
の紫外線を遮断しているオゾン層を攻撃し破壊するため
である。これにより紫外線の地表面への照射量が急激に
増大し人間の健康への悪影響が懸念されている。このよ
うに、成層圏のオゾン層の保存と地球温暖化の予想がフ
レオンの使用禁止の方向に向かわせている。例えば、フ
レオンを封入した冷蔵庫、エアコン等の冷却装置は広く
普及しており、地球環境に及ぼす影響は多大である。こ
のため、フレオンの全面禁止が必須であり、フレオン使
用の冷却装置を代替え可能な冷却媒体や冷却装置が求め
られている。
2. Description of the Related Art In recent years, it has been increasingly recognized that ordinary refrigerators and air conditioners are important obstacles to human survival. This is because most of such equipment is freon (CFC).
s), also known as chlorofluorocarbons), which escape into the atmosphere during leaks, repairs, or disposal, and when they reach the stratosphere, attack and destroy the ozone layer, which blocks the ultraviolet rays of sunlight. As a result, the amount of irradiation of the ground surface with ultraviolet rays is rapidly increased, and there is a concern that adverse effects on human health may occur. Thus, the preservation of the stratospheric ozone layer and anticipation of global warming are driving the ban on freon use. For example, cooling devices such as refrigerators and air conditioners in which Freon is sealed are widely used, and have a great influence on the global environment. For this reason, it is essential to completely ban freons, and there is a demand for a cooling medium or a cooling device that can replace a freon-based cooling device.

【0003】代替え装置の一つに磁性体を用いた断熱消
磁方式が考えられる。例えば極低温技術の一つとして古
くから知られた常磁性塩(例えば鉄ミョウバン)を適用
した断熱消磁の方式が考えられる。絶対零度付近での物
性測定のための低温化技術に断熱消磁が用いられる理由
は、第一に、この領域での磁性体のエントロピーは格子
振動からの寄与は少なく主にスピンに依存しているから
である。第二に、常磁性体のスピンエントロピーは絶対
零度で最も磁場依存性が大きいことである。後者は、有
限のキュリー温度を持つ強磁性体を用いれば、極低温度
域より高温領域(例えば室温域等)で断熱消磁が期待で
きることを示唆している。前者は逆にこれを妨げる方向
に働くが、近年の高性能磁石や超伝導磁石による強磁場
の実現は高温領域での断熱消磁の可能性をさらに促して
いる。
[0003] An adiabatic demagnetization system using a magnetic material as one of the alternative devices can be considered. For example, a method of adiabatic demagnetization using a paramagnetic salt (for example, iron alum) which has been known for a long time as one of the cryogenic technologies can be considered. The reason why adiabatic demagnetization is used in the low-temperature technique for measuring physical properties near absolute zero is that, first, the entropy of the magnetic material in this region has little contribution from lattice vibration and mainly depends on spin. Because. Second, the spin entropy of a paramagnetic material has the largest magnetic field dependence at absolute zero. The latter suggests that if a ferromagnetic material having a finite Curie temperature is used, adiabatic demagnetization can be expected in a higher temperature region (for example, a room temperature region) than an extremely low temperature region. The former works in the opposite direction, but the realization of a strong magnetic field with high-performance magnets and superconducting magnets in recent years has further promoted the possibility of adiabatic demagnetization in a high-temperature region.

【0004】強磁性体を用いてより高温領域で磁気的に
冷却あるいは昇温を行うアイディアはEdison(1887)やTe
sla(1890)によって提案され、1976年には室温領域
における断熱消磁(増磁)の候補としてGd金属の磁気
−熱効果に関する研究が報告されている。しかしなが
ら、文献(G.V.Brown: J.Appl.Phys.47(1976),p3673)
によれば、Gd金属においても1T(テスラ)の磁場を
用いても温度変化は僅かに1.5℃ということである。
したがって、室温域で空調機や冷蔵庫等の冷却装置とし
て使用するには少なくとも数Tの磁場が必要であり、実
用化が困難である。
[0004] The idea of magnetically cooling or raising the temperature in a higher temperature region using a ferromagnetic material is Edison (1887) or Te.
sla (1890), and in 1976 a study on the magneto-thermal effect of Gd metal was reported as a candidate for adiabatic demagnetization (magnetization) in the room temperature range. However, the literature (GV Brown: J. Appl. Phys. 47 (1976), p3673)
According to the above, even in the case of Gd metal, even when a magnetic field of 1 T (tesla) is used, the temperature change is only 1.5 ° C.
Therefore, a magnetic field of at least several T is required for use as a cooling device such as an air conditioner or a refrigerator in a room temperature range, and practical use is difficult.

【0005】[0005]

【発明が解決しようとする課題】上記従来の問題を踏ま
えて、本発明の課題は、100〜400Kにおいて、フ
レオンガスを用いる必要がない断熱消磁を利用した磁気
冷却装置およびそれに有用な磁気冷却用磁性材料を提供
することである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, an object of the present invention is to provide a magnetic cooling device utilizing adiabatic demagnetization which does not require the use of freon gas at 100 to 400K, and a magnetic cooling magnet useful therefor. Is to provide the material.

【0006】[0006]

【課題を解決するための手段】本発明者は、理論的考察
から、室温領域における断熱消磁においてより大きな温
度変化を得るためには、デバイ温度が高く、キュリー温
度(Tc)が室温付近にあり、かつTc以上での帯磁率
が大きい物質を用いることが重要であり、さらに上記条
件を満たすとともに、Tcが少しずつ異なる複数の物質
をTcの大きい方から順番に作動させれば大きな温度低
下が得られることを見出し、本発明に至った。以下で本
発明を詳しく説明する。
According to theoretical considerations, the present inventor has found that in order to obtain a larger temperature change in adiabatic demagnetization in the room temperature range, the Debye temperature is high and the Curie temperature (Tc) is close to room temperature. It is important to use a substance having a large magnetic susceptibility above Tc, and furthermore, if the above conditions are satisfied and a plurality of substances having slightly different Tc are operated in order from the one with the larger Tc, a large temperature drop will occur. The inventors have found that they can be obtained, and have reached the present invention. Hereinafter, the present invention will be described in detail.

【0007】磁性体を用いた断熱消磁は図1に示される
ような過程によって理解されている。まず、温度T1に
ある磁性体に強磁場を加えてスピンの熱振動を沈める。
この場合、系の磁気秩序は増大するので、この過程が等
温的に行われると、系のエントロピーは低下する(図1
の(a))。ここで、磁場を取り除くとスピンは再び自
由になろうとする。しかし、この過程が断熱的(熱量を
QとするとdQ=0)に行われると、エントロピーSは
一定に保たれるので(dS=dQ/Tにより、dQ=0
の場合dS=0となる)、スピンの熱振動は抑えられた
ままとなる。磁場ゼロでスピンが秩序状態を保つため、
系は低温となる(図1の(b))。逆に、磁場の印加過
程を断熱的に行うと、エントロピー一定の条件から、図
1の(c)に対応して温度は上昇することになる。以上
のことから、理論的に各磁場でのエントロピーSと温度
Tとの相関がわかれば断熱消磁過程における温度変化が
予測できる。一般に、エントロピーSは比熱Cより、式
(1)を用いて求められる。
Adiabatic demagnetization using a magnetic material is understood by a process as shown in FIG. First, a strong magnetic field is applied to the magnetic material at the temperature T1 to reduce thermal oscillation of spin.
In this case, since the magnetic order of the system increases, if this process is performed isothermally, the entropy of the system decreases (FIG. 1).
(A)). Here, when the magnetic field is removed, the spins try to be free again. However, when this process is performed adiabatically (dQ = 0 when the heat quantity is Q), the entropy S is kept constant (dQ = 0 by dS = dQ / T).
In the case of dS = 0), the thermal oscillation of the spin is kept suppressed. Because spin keeps order state at zero magnetic field,
The system becomes cold (FIG. 1 (b)). Conversely, when the process of applying the magnetic field is performed adiabatically, the temperature rises from the condition of constant entropy corresponding to FIG. From the above, if the correlation between the entropy S and the temperature T in each magnetic field is theoretically known, the temperature change in the adiabatic demagnetization process can be predicted. Generally, the entropy S is obtained from the specific heat C by using the equation (1).

【0008】[0008]

【数1】 ここで、比熱Cは一般にスピン、格子振動(フォノン)
および伝導電子の3つの部分から構成される。
(Equation 1) Here, the specific heat C is generally spin, lattice vibration (phonon)
And three parts of conduction electrons.

【0009】Gd金属のように磁性体中の磁気モーメン
トを空間的に局在した電子(この場合f電子)が担って
いる場合、有限温度における磁気特性の扱いとして分子
場近似はそれほど悪くない。分子場近似の基では、サイ
ト当たりの平均の磁化は m=gμBσ (2) (g:ランデ因子、μB:ボーア磁子)で与えられる。
σはブリルアン関数:BS(x)=(2S+1)/2S・coth(x(2
S+1)/2S)-1/2S・coth(x/2S) を用いて σ=S・Bs(x) (3) と表される。 Sは各サイトにおけるスピン角運動量である。xは、
x=(λσ+gμBH)S/KBT (4) で
与えられる量である。式(4)でkBはホ゛ルツマン定数、T
は温度、Hは印加磁場、λは分子場パラメータであり、
キュリー温度Tcが既知の場合、 λ=(3kBTc)/S(S+1) (5) から決定される。 磁化m(即ちσ)が求まれば、内部エネルキ゛ー US=−λ
σ2/2−gμBHσを用いて、比熱のスピン部Csは、 Cs=dUs/dT (6) より求めることができる。 式(6)を式(1)に代入することによりエントロピー
のスピン部SSとして Ss=kB(ln(sinh(x(2S+1)/2S)/sinh(x/2S))−xBs(x)) (7) が得られる。
In the case where a spatially localized electron (in this case, an f-electron) is responsible for the magnetic moment in a magnetic material such as Gd metal, the molecular field approximation is not so bad for treating magnetic properties at a finite temperature. Under the molecular field approximation, the average magnetization per site is given by m = gμ B σ (2) (g: Lande factor, μB: Bohr magneton).
σ is a Brillouin function: B S (x) = (2S + 1) / 2S · coth (x (2
Σ = S · B s (x) (3) using S + 1) / 2S) −1 / 2S · coth (x / 2S). S is the spin angular momentum at each site. x is
x = (λσ + gμ B H) S / K B T (4) In equation (4), k B is the Woltzmann constant, T
Is the temperature, H is the applied magnetic field, λ is the molecular field parameter,
If the Curie temperature Tc is known, is determined from λ = (3k B Tc) / S (S + 1) (5). Once the magnetization m (ie, σ) is determined, the internal energy US = −λ
Using [sigma] < 2 > / 2-g [mu] B H [sigma], the spin part Cs of specific heat can be obtained from Cs = dUs / dT (6). Formula Ss (6) as a spin portion S S entropy by substituting the equation (1) = k B (ln (sinh (x (2S + 1) / 2S) / sinh (x / 2S)) - xBs ( x)) (7) is obtained.

【0010】図2は式(7)より求めたGd金属(S=
7/2,Tc=293K)の一イオン当たりのスピンエ
ントロピーの温度依存性である。H=0においてはT=
Tcで折れ曲がり、T≧TcでSS/kB=ln(2S+
1)=2.079の一定値となる。これは、T≧Tcで
系が非磁性(σ=0)となって、スピン状態が2S+1
=8重に縮退することを反映している。Hの増大と共に
スピンの揺らぎは抑えられ、SSは低下していく。ここ
で、系がスピンのみで構成されていると仮定すると、T
≧TcではH=0におけるエントロピーは一定値をとる
ので、図1の過程をあてはめると、この温度領域での断
熱消磁による温度変化はH≠0の如何なる磁場でもT−
Tc以上となることが期待される。即ち、如何なる磁場
でも(有限であれば)最終温度はTc以下になることに
なる。しかし、フォノン(格子振動)を考慮すると温度
変化はこれよりずっと小さくなる。なぜなら、磁場を切
ることで温度が低下しようとすると、スピン系がフォノ
ンから熱を奪ってスピンエントロピーを増大させ、代わ
りにフォノンエントロピーが低下して全エントロピーを
一定に保とうとする。したがって、フォノンがある場
合、図1の(b)の断熱過程では矢印は左上に進むた
め、温度変化は小さく抑えられることになる。
FIG. 2 shows the Gd metal (S =
(7/2, Tc = 293K) is the temperature dependence of the spin entropy per ion. At H = 0, T =
It bends at Tc, and when T ≧ Tc, S S / k B = ln (2S +
1) = 2.079 constant value. This is because when T ≧ Tc, the system becomes non-magnetic (σ = 0) and the spin state becomes 2S + 1.
= 8-fold degeneration. As H increases, the fluctuation of the spin is suppressed, and S S decreases. Here, assuming that the system is composed only of spins, T
When ≧ Tc, the entropy at H = 0 takes a constant value. Therefore, when the process of FIG. 1 is applied, the temperature change due to adiabatic demagnetization in this temperature region becomes T−0 regardless of any magnetic field of H ≠ 0.
It is expected to be Tc or more. That is, for any magnetic field (if finite), the final temperature will be below Tc. However, considering phonons (lattice vibrations), the temperature change is much smaller. Because if the temperature is reduced by turning off the magnetic field, the spin system increases the spin entropy by removing heat from the phonons, and instead reduces the phonon entropy and tries to keep the total entropy constant. Therefore, when there is a phonon, the arrow moves to the upper left in the adiabatic process of FIG. 1B, so that the temperature change can be kept small.

【0011】図3はフォノン比熱Cpに対してデバイモ
デルを採用し、Gd金属のデバイ温度θD=172Kを
用いて求めた全エントロピーの温度依存性であり、実験
結果とよい一致を示している。図2と比較すると、H=
0においてもT≧Tcではエントロピーは有限の傾きを
持ち、また、H≠0の場合はさらに傾きが大きくなるの
がわかる。したがって、断熱消磁による温度変化はスピ
ン系のみの場合より小さくなり、H=70kOeという
高磁場でも温度変化は10℃程度であることがわかる。
これは、温度の低下と共に、主にフォノン数が減少(フ
ォノンエントロピーが低下)し、スピン揺らぎが増大
(マグノン数の増加によるスピンエントロピーの増大)
することに起因している。ここで、フォノン比熱は低温
(T《θD)ではT3に比例して立ち上がり、T〜θD
傍で飽和し、T》θDで Dulong-Petit の古典値(3
B)に漸近する。よって、デバイ温度θDが大きい物質
ほど比熱およびエントロピーへのフォノンの寄与は小さ
くなり、断熱消磁による温度変化は大きくなる。また、
この温度変化は、磁場印加によるスピンエントロピーの
変化が大きいほど大きくなるので、T>Tcの常磁性状
態における帯磁率が大きいことが望まれる。以上の考察
から、室温領域での断熱消磁によって大きな温度変化を
もたらす材料は、Tcが室温付近にある強磁性体であっ
て、常磁性帯磁率が大きく、かつデバイ温度θDが高い
物質であることがわかる。ここで、θDは物質の融点
M,分子量M,モル体積Vとすれば、Lindemann の関
係式から θD=C/V1/3×(TM/M)1/2 (8) で表さる。cは定数であり、非金属の場合約200、金
属の場合は約137である。式(8)から大きなθD
融点が高い非金属において実現されることが期待され
る。一般に、酸化物は融点は高い。したがって、θD
大きい場合が多い。このことから、大きな断熱消磁の効
果は、室温付近にTcを持つ酸化物の強磁性体において
期待される。本発明者は、上記の条件をある種のペロブ
スカイト型酸化物が満たしていることに着目し本発明に
至った。
FIG. 3 shows the temperature dependence of the total entropy obtained by using the Debye model for the phonon specific heat Cp and using the Debye temperature θ D = 172 K of the Gd metal, which is in good agreement with the experimental results. . Compared to FIG. 2, H =
It can be seen that even at 0, the entropy has a finite slope when T ≧ Tc, and the slope further increases when H ≠ 0. Therefore, it can be seen that the temperature change due to adiabatic demagnetization is smaller than in the case of only the spin system, and the temperature change is about 10 ° C. even in a high magnetic field of H = 70 kOe.
This is mainly because the phonon number decreases (the phonon entropy decreases) and the spin fluctuation increases (the spin entropy increases due to the increase in the magnon number) as the temperature decreases.
It is due to. Here, phonon specific heat is low (T "rises in proportion to T 3 in theta D), saturated with T~shita D vicinity, T" theta classical value of Dulong-Petit in D (3
k B ). Therefore, the contribution of phonons to the specific heat and entropy higher Debye temperature theta D is large material becomes smaller, the temperature change due to adiabatic demagnetization increases. Also,
This temperature change increases as the change in spin entropy due to the application of a magnetic field increases. Therefore, it is desired that the magnetic susceptibility in the paramagnetic state of T> Tc be high. From the above considerations, a material that causes a large temperature change by adiabatic demagnetization in the room temperature region is a ferromagnetic material having a Tc near room temperature, a substance having a large paramagnetic susceptibility, and a high Debye temperature θ D. You can see that. Here, assuming that θ D is the melting point T M , molecular weight M, and molar volume V of the substance, θ D = C / V 1/3 × (T M / M) 1/2 (8) from Lindemann's relational expression. Express. c is a constant, about 200 for non-metals and about 137 for metals. From equation (8), a large θ D is expected to be realized in a nonmetal having a high melting point. Generally, oxides have a high melting point. Therefore, θ D is often large. From this, a large adiabatic demagnetizing effect is expected for an oxide ferromagnetic material having Tc near room temperature. The present inventors have paid attention to the fact that a certain kind of perovskite-type oxide satisfies the above conditions, and reached the present invention.

【0012】一般に、遷移金属を含む酸化物磁性体は反
強磁性もしくはフェリ磁性を示す場合が多いが、LaM
nO3に代表されるRMnO3(Rは希土類元素の少なく
とも一種以上)の一群のペロブスカイト型酸化物の場合
は、Rの一部をCaやSrで置換すると強磁性体とな
る。本発明者はこの物質のTcがCaやSr置換によっ
て室温を挟んで約200〜400Kの範囲で正確に制御
できること、Tc以上で帯磁率が極めて大きいことなど
に着目した。図4(a)、(b)に Tokura 等(Y.To
kura, A.Urushibara, Y.Moritomo, T.Arima,A.Asami
tsu,G.Kido,andN.Furukawa:J.Phys.Soc.Jpn.vol.63(199
4),p171)によって測定されたLa1-XSrXMnO3(X
=0.175)の磁化−温度曲線、およびT=304K
における磁化曲線を示す。TcはGdと同じ約293K
として求めた。図中の実線は式(1)−(5)におい
て、S=4/2、Tc=293Kを代入して求めた分子
場近似による計算結果である。いずれも測定結果と一致
せず、特に(b)の磁化曲線は実測値が分子場近似の結
果を大きく上回っている。図5は同じ分子場近似の式
(7)からH=1〜7Tの印加磁場による温度変化(減
少)を初期温度の関数として求めたものである。ここで
は、θDを800Kと仮定してフォノンの寄与を含め
た。いずれの場合も温度変化は僅かに数℃程度であり、
Gd金属の場合と殆ど同じ結果となっている。しかし、
Gd金属の場合は磁化曲線や断熱消磁による温度変化は
分子場近似で良く再現されていたことを考えると、図4
の実測値の計算とのずれはそのまま図5にも反映され、
実際には分子場近似から得られるより大きな温度変化が
得られることが期待される。さらに、この系のTcがS
r置換やCa置換によって制御されることを利用し、連
続的にTcの異なるいくつかの材料を用意しTcの大き
い順番に断熱消磁を実行すれば、効率よく段階的に所望
の温度まで冷却することが可能と考えられる。本発明者
は、上記の計算結果および考察に基づきLa1-XSrX
nO3の単結晶を作成し、断熱消磁の評価を行ったとこ
ろ、0.1≦X≦0.6の組成の試料において印加磁場
1〜2Tで2〜7℃の温度変化が観測された。本発明の
磁気冷却用磁性材料は、X<0.1では強磁性を示さず
反強磁性絶縁体であり、X>0.6の置換量ではペロブ
スカイト構造が崩れて所望の断熱消磁効果が得られな
い。
Generally, an oxide magnetic material containing a transition metal often exhibits antiferromagnetism or ferrimagnetism.
In the case of a group of perovskite oxides of RMnO 3 (R is at least one kind of rare earth element) represented by nO 3 , a part of R is replaced with Ca or Sr to become a ferromagnetic material. The present inventors have noticed that Tc of this substance can be accurately controlled in the range of about 200 to 400 K across room temperature by substitution with Ca or Sr, and that the magnetic susceptibility is extremely large above Tc. Figures 4 (a) and 4 (b) show Tokura et al.
kura, A. Urushibara, Y. Moritomo, T. Arima, A. Asami
tsu, G.Kido, andN.Furukawa: J.Phys.Soc.Jpn.vol.63 (199
4), La1 -x Sr x MnO 3 (X
= 0.175) and T = 304K
3 shows a magnetization curve at. Tc is about 293K which is the same as Gd
Asked. The solid line in the figure is a calculation result by molecular field approximation obtained by substituting S = 4/2 and Tc = 293K in equations (1) to (5). Neither of them coincides with the measurement result, and in particular, the measured value of the magnetization curve of (b) greatly exceeds the result of the molecular field approximation. FIG. 5 shows the temperature change (decrease) due to the applied magnetic field of H = 1 to 7 T obtained from the same molecular field approximation equation (7) as a function of the initial temperature. Here, the contribution of phonons is included assuming that θ D is 800K. In either case, the temperature change is only a few degrees Celsius,
The result is almost the same as in the case of Gd metal. But,
In the case of Gd metal, considering that the magnetization curve and the temperature change due to adiabatic demagnetization were well reproduced by molecular field approximation, FIG.
The deviation from the calculation of the actual measurement value is reflected in FIG. 5 as it is,
In practice, it is expected that a larger temperature change than obtained from the molecular field approximation will be obtained. Furthermore, the Tc of this system is S
If several materials having different Tc are continuously prepared and adiabatic demagnetization is performed in the order of larger Tc, utilizing the control by r-substitution and Ca-substitution, it is possible to efficiently and gradually cool to a desired temperature. It is thought possible. Based on the above calculation results and considerations, the present inventor has determined that La 1-X Sr X M
When a single crystal of nO 3 was prepared and adiabatic demagnetization was evaluated, a temperature change of 2 to 7 ° C. was observed in a sample having a composition of 0.1 ≦ X ≦ 0.6 at an applied magnetic field of 1 to 2T. The magnetic material for magnetic cooling of the present invention does not exhibit ferromagnetism when X <0.1 and is an antiferromagnetic insulator. When the substitution amount is X> 0.6, the perovskite structure is broken and a desired adiabatic demagnetizing effect is obtained. I can't.

【0013】[0013]

【発明の実施の形態】以下、実施例により本発明を説明
する。 (実施例1)La23,SrCO3およびMnCO3の粉
末を上記本発明材料を構成できるように適量比率で混ぜ
合わせた後、棒状の形状に加圧成形し、次にこの成形体
を1300℃×20時間の加熱条件で焼結後室温まで冷
却し焼結体を得た。次に、得られた焼結体を機械加工し
て直径10mm、長さ100mmの棒状にした後、浮遊
帯域溶融法(Floating Zone Method)によりLa1-X
SrXMnO3(X=0.2)の単結晶棒状試料を作成し
た。測定用としてこの棒状試料を長さ15mmに切り出
し、円柱状の試料とした。この試料のTcは270Kで
あった。次に、この円柱状試料の軸に直径1mmの穴を
あけ熱電対の装着孔とした。印加磁場用の磁石としては
ESR(電子スピン共鳴)用の電磁石を用い、前記試料
を保持する断熱材としては発砲スチロールを用いた。断
熱消磁の測定は、前記試料を電磁石のポールピースのギ
ャップ中央にセットした後、磁場を20秒間印加して充
分室温に達した後に、そのままの状態で試料を発泡スチ
ロールで覆い磁場を切り、試料中央の温度変化を熱電対
にて測定した。この時の初期温度(室温)は31℃であ
った。図6および表1に測定結果を示す。印加磁場1T
で約5℃、2Tで約7℃の降温が観測された。図6の実
線は分子場近似から得られた計算結果であるが、図5の
磁化曲線と同様に温度変化も測定値の方が大きくなると
いう結果が得られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to examples. (Example 1) La 2 O 3 , SrCO 3 and MnCO 3 powders were mixed at an appropriate ratio so as to constitute the above-mentioned material of the present invention, and then pressed into a rod-like shape. After sintering under the heating condition of 1300 ° C. × 20 hours, it was cooled to room temperature to obtain a sintered body. Next, the obtained sintered body was machined into a rod shape having a diameter of 10 mm and a length of 100 mm, and then La 1 -X was obtained by a floating zone method.
A single crystal rod-shaped sample of Sr x MnO 3 (X = 0.2) was prepared. This rod-shaped sample was cut out to a length of 15 mm for measurement, and used as a columnar sample. The Tc of this sample was 270K. Next, a hole having a diameter of 1 mm was formed in the axis of the cylindrical sample to provide a mounting hole for a thermocouple. An electromagnet for ESR (electron spin resonance) was used as a magnet for the applied magnetic field, and styrene foam was used as a heat insulating material for holding the sample. The measurement of adiabatic demagnetization was performed by setting the sample in the center of the gap of the pole piece of the electromagnet, applying a magnetic field for 20 seconds to reach room temperature. Was measured with a thermocouple. The initial temperature (room temperature) at this time was 31 ° C. FIG. 6 and Table 1 show the measurement results. Applied magnetic field 1T
, A temperature drop of about 7 ° C at 2T was observed. The solid line in FIG. 6 is a calculation result obtained from the molecular field approximation, but a result is obtained in which the measured value of the temperature change becomes larger as in the case of the magnetization curve of FIG.

【0014】(実施例2〜5)組成を代えた以外は実施
例1と同様の方法で表1に示す組成の試料を作成し、そ
れらの断熱消磁による温度変化ΔT(℃)を測定した。
実施例1と同様に測定の初期温度は31℃である。結果
を表1にまとめた。
(Examples 2 to 5) Samples having the compositions shown in Table 1 were prepared in the same manner as in Example 1 except that the composition was changed, and the temperature change ΔT (° C.) due to adiabatic demagnetization was measured.
As in Example 1, the initial temperature of the measurement is 31 ° C. The results are summarized in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】本発明材料を用いれば100〜400Kの
温度域にわたって断熱消磁を利用した磁気冷却装置を構
成することができる。本発明材料は100K未満では冷
却部において磁気スピンの配列が特定方向にそろったま
まとなり冷却効果が得られない。400Kを越えると強
磁性を示さず不適である。表1および関連した他の検討
結果から、より好ましくは223〜323K、特に好ま
しくは273〜300Kにおいてフレオンを用いない磁
気冷却装置を構成できることが期待される。
By using the material of the present invention, a magnetic cooling device utilizing adiabatic demagnetization over a temperature range of 100 to 400K can be constructed. When the temperature of the material of the present invention is lower than 100 K, the arrangement of magnetic spins in the cooling section remains aligned in a specific direction, and the cooling effect cannot be obtained. If it exceeds 400K, it does not show ferromagnetism and is not suitable. From Table 1 and other related results, it is expected that a magnetic cooling device that does not use freons can be configured at 223 to 323K, particularly preferably at 273 to 300K.

【0017】図7は本発明の一態様を示す磁気冷却装置
100の要部断面図である。図7において、5は実施例
1の単結晶棒状試料(Tc=260K)、6は実施例5
の単結晶棒状試料(Tc=220K)、7は実施例3の
単結晶棒状試料(Tc=205K)である。5〜7の強
磁性体は所定間隔lをおいて実質的に断熱環境に保持さ
れた移動部材50に配置してある。この移動部材50を
上下に移動し、5〜7の強磁性体を順次電磁石1または
2の作る磁場中に交互に入れた後、100〜400Kに
保持された冷却室20に順次入れることで冷却室20を
冷却する方式である。即ち、まず強磁性体5の磁気スピ
ンを放熱部10において電磁石1の磁場印加方向に整列
させる。その後、この状態のまま移動部材50を下方に
移動して強磁性体5を冷却室20に入れると強磁性体5
の磁気スピンが乱れて冷却室20を冷やす。強磁性体5
が冷却室20にあるとき、強磁性体6は放熱部30にお
いて電磁石2の印加磁場によって磁気スピンが配向して
いる。次に、強磁性体5が冷却室20から放熱部10に
移動したとき、強磁性体6が冷却室20に入り冷却室2
0を冷却する。次に、強磁性体6が冷却室20にあると
き、強磁性体7は放熱部30において磁気スピンが配向
している。そして、強磁性体6が冷却室20から放熱部
10に移動したとき強磁性体7が冷却室20に入る。そ
の後、図7に示す状態に復帰させて1サイクルの冷却処
理が完了する。この処理を所定サイクル続ければ、10
0〜400Kにおいて有用な磁気冷却装置を構成するこ
とができる。このように、効率よい冷却を実現するに
は、Tcの大きな磁性体から順次Tcの小さな磁性体に
磁場印加されるように移動部材が移動することが好まし
い。
FIG. 7 is a cross-sectional view of a main part of a magnetic cooling device 100 showing one embodiment of the present invention. In FIG. 7, 5 is the single crystal rod-shaped sample of Example 1 (Tc = 260 K), and 6 is Example 5.
Is a single crystal rod-shaped sample (Tc = 220K), and 7 is a single crystal rod-shaped sample of Example 3 (Tc = 205K). The ferromagnetic materials 5 to 7 are arranged at a predetermined interval 1 on the moving member 50 held substantially in an adiabatic environment. The moving member 50 is moved up and down, and 5 to 7 ferromagnetic substances are alternately put in the magnetic field created by the electromagnets 1 and 2 alternately, and then sequentially put into the cooling chamber 20 held at 100 to 400K for cooling. This is a method of cooling the chamber 20. That is, first, the magnetic spins of the ferromagnetic material 5 are aligned in the direction of application of the magnetic field of the electromagnet 1 in the heat radiating unit 10. Thereafter, the moving member 50 is moved downward in this state, and the ferromagnetic material 5 is put into the cooling chamber 20.
Is disturbed to cool the cooling chamber 20. Ferromagnetic material 5
Is in the cooling chamber 20, the magnetic spin of the ferromagnetic material 6 is oriented by the applied magnetic field of the electromagnet 2 in the heat radiating section 30. Next, when the ferromagnetic material 5 moves from the cooling chamber 20 to the heat radiating section 10, the ferromagnetic substance 6 enters the cooling chamber 20 and the cooling chamber 2.
Cool 0. Next, when the ferromagnetic material 6 is in the cooling chamber 20, the magnetic spin of the ferromagnetic material 7 is oriented in the heat radiation part 30. When the ferromagnetic material 6 moves from the cooling chamber 20 to the heat radiating section 10, the ferromagnetic material 7 enters the cooling chamber 20. Thereafter, the state is returned to the state shown in FIG. 7, and one cycle of the cooling process is completed. If this processing is continued for a predetermined cycle, 10
A useful magnetic cooling device can be constructed at 0 to 400K. As described above, in order to realize efficient cooling, it is preferable that the moving member be moved so that the magnetic field is applied to the magnetic material having a large Tc sequentially from the magnetic material having a small Tc.

【0018】図7では電磁石1、2を使用したが、これ
に代えて永久磁石を用いてもよい。あるいは電磁石と永
久磁石とを併用して磁場印加装置を構成してもよい。あ
るいは図7において、液体窒素を併用して冷却室20、
放熱部10、30を冷却してもよい。さらには、電磁石
1、2に代えて液体窒素温度以上で超電導現象を示す超
電導体を用いて磁場印加装置を構成してもよい。
Although the electromagnets 1 and 2 are used in FIG. 7, permanent magnets may be used instead. Alternatively, a magnetic field applying device may be configured by using an electromagnet and a permanent magnet together. Alternatively, in FIG. 7, the cooling chamber 20,
The heat radiating units 10 and 30 may be cooled. Further, instead of the electromagnets 1 and 2, the magnetic field applying device may be configured using a superconductor that exhibits a superconducting phenomenon at a temperature of liquid nitrogen or higher.

【0019】[0019]

【発明の効果】本発明の磁気冷却用磁性材料を用いるこ
とにより、断熱消磁を利用した磁気冷却装置を構成する
ことができる。よって、フレオンガスによる地球環境へ
の悪影響は排除され、特に室温度域において有用な冷凍
装置、冷却装置を構成できることが期待される。
By using the magnetic material for magnetic cooling of the present invention, a magnetic cooling device utilizing adiabatic demagnetization can be constructed. Therefore, adverse effects on the global environment due to freon gas are eliminated, and it is expected that a refrigeration apparatus and a cooling apparatus that are particularly useful in a room temperature range can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エントロピー−温度曲線上における断熱消磁お
よび断熱磁化過程の模式図である。
FIG. 1 is a schematic diagram of an adiabatic demagnetization and adiabatic magnetization process on an entropy-temperature curve.

【図2】分子場近似によるGd金属一イオンあたりのス
ピンエントロピーの温度依存性の計算結果を示す図であ
る。
FIG. 2 is a diagram showing calculation results of temperature dependence of spin entropy per Gd metal ion by molecular field approximation.

【図3】分子場近似およびデバイ近似によるGd金属一
イオン当たりの全エントロピーの温度依存性の計算結果
であり、波線はBrown(J.Appl.Phys.47(1976),p3673)に
よる測定結果を示す。
FIG. 3 shows the calculation results of the temperature dependence of the total entropy per Gd metal ion by the molecular field approximation and the Debye approximation, and the wavy line indicates the measurement result by Brown (J. Appl. Phys. 47 (1976), p3673). Show.

【図4】(a)は分子場近似によるLa0.815Sr0.175
MnO3の磁気モーメントの温度依存性を示す計算結果
であって波線はTokura等(J.Phys.Soc.Jpn.63(1994),p1
71)による測定結果であり、(b)は分子場近似による
La0.815Sr0.175MnO3の磁気モーメントの磁場依
存性の計算結果であって波線はTokura 等(J.Phys.So
c.Jpn.63(1994),p171)による測定結果である。
FIG. 4 (a) shows La 0.815 Sr 0.175 by molecular field approximation.
Calculation results showing the temperature dependence of the magnetic moment of MnO 3 , and the wavy line is shown by Tokura et al. (J. Phys. Soc. Jpn. 63 (1994), p1
71), and (b) is a calculation result of the magnetic field dependence of the magnetic moment of La 0.815 Sr 0.175 MnO 3 by molecular field approximation, and the wavy line is shown by Tokura et al. (J. Phys. So
c. Jpn. 63 (1994), p171).

【図5】分子場近似によるLa0.815Sr0.175MnO3
の断熱消磁による温度変化の初期温度依存性の計算結果
である。
FIG. 5: La 0.815 Sr 0.175 MnO 3 by molecular field approximation
9 is a calculation result of the initial temperature dependence of a temperature change due to adiabatic demagnetization of a sample.

【図6】La0.8Sr0.2MnO3の断熱消磁による温度
変化の印加磁場依存性を示す図であり、□、○はそれぞ
れ初期温度21℃、31℃における測定結果であり、実
線は21℃、31℃および41℃における分子場近似に
よる計算結果である。
FIG. 6 is a diagram showing the applied magnetic field dependence of a temperature change due to adiabatic demagnetization of La 0.8 Sr 0.2 MnO 3 , □ and ○ are measurement results at initial temperatures of 21 ° C. and 31 ° C., respectively, and solid lines are 21 ° C. It is a calculation result by molecular field approximation at 31 ° C and 41 ° C.

【図7】本発明の断熱消磁を利用した磁気冷却装置の一
態様を示す要部断面図である。
FIG. 7 is a cross-sectional view of a main part showing one embodiment of a magnetic cooling device using adiabatic demagnetization of the present invention.

【符号の説明】[Explanation of symbols]

1,2 電磁石、5,6,7 磁気冷却用磁性材料製部
材、10,30 放熱部(磁場配向域)、20 冷却室
(冷却部)、50 移動部材、100 磁気冷却装置。
1, 2, electromagnets, 5, 6, 7 members made of magnetic material for magnetic cooling, 10, 30 heat radiating section (magnetic field orientation area), 20 cooling chamber (cooling section), 50 moving member, 100 magnetic cooling device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成が原子比でR1-XXMnO3(Rは
La、Pr、Nd、Smのうちの少なくとも一種以上、
AはSrおよび/またはCa)、0.1≦X≦0.6で
表され、ペロブスカイト構造を有したことを特徴とする
磁気冷却用磁性材料。
The composition is represented by an atomic ratio of R 1 -X Ax MnO 3 (R is at least one of La, Pr, Nd and Sm;
A is Sr and / or Ca), represented by 0.1 ≦ X ≦ 0.6, and has a perovskite structure.
【請求項2】請求項1において、キュリー温度(Tc)
が200〜400Kにある強磁性体からなる磁気冷却用
磁性材料。
2. The Curie temperature (Tc) according to claim 1,
Is a magnetic material for magnetic cooling composed of a ferromagnetic material at 200 to 400K.
【請求項3】実質的に断熱状態に保持された冷却部と、
磁場印加装置を備えた放熱部と、前記の冷却部と放熱部
とを通る移動部材とを備え、 かつ前記移動部材に組成が原子比でR1-XXMnO
3(RはLa、Pr、Nd、Smのうちの少なくとも一
種以上、AはSrおよび/またはCa)、0.1≦X≦
0.6で表され、ペロブスカイト構造を有した強磁性体
を配置したことを特徴とする磁気冷却用装置。
3. A cooling unit which is kept substantially insulated;
A heat dissipating part provided with a magnetic field applying device, and a moving member passing through the cooling part and the heat dissipating part, wherein the moving member has a composition in atomic ratio of R 1 -X AX MnO.
3 (R is at least one of La, Pr, Nd and Sm, A is Sr and / or Ca), 0.1 ≦ X ≦
An apparatus for magnetic cooling, wherein a ferromagnetic material represented by 0.6 and having a perovskite structure is arranged.
【請求項4】請求項3において、前記強磁性体がXの値
を変えることによって製作されたキュリー温度(Tc)
の異なる複数の強磁性体であって、これらの強磁性体を
順次前記放熱部で磁場印加後前記冷却部へ移動させる工
程を1サイクルとし所定サイクルを行うことで冷却部を
100〜400Kの範囲内で冷却する磁気冷却装置。
4. The Curie temperature (Tc) according to claim 3, wherein the ferromagnetic material is manufactured by changing the value of X.
A step of sequentially moving these ferromagnetic materials to the cooling unit after applying a magnetic field in the heat radiating unit to the cooling unit, and performing a predetermined cycle to set the cooling unit in a range of 100 to 400K. Magnetic cooling device to cool inside.
JP04159698A 1998-02-24 1998-02-24 Magnetic material for magnetic cooling and magnetic cooling device using the same Expired - Fee Related JP3461114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04159698A JP3461114B2 (en) 1998-02-24 1998-02-24 Magnetic material for magnetic cooling and magnetic cooling device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04159698A JP3461114B2 (en) 1998-02-24 1998-02-24 Magnetic material for magnetic cooling and magnetic cooling device using the same

Publications (2)

Publication Number Publication Date
JPH11238615A true JPH11238615A (en) 1999-08-31
JP3461114B2 JP3461114B2 (en) 2003-10-27

Family

ID=12612793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04159698A Expired - Fee Related JP3461114B2 (en) 1998-02-24 1998-02-24 Magnetic material for magnetic cooling and magnetic cooling device using the same

Country Status (1)

Country Link
JP (1) JP3461114B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger
JP2007179710A (en) * 2005-12-28 2007-07-12 Hokkaido Univ Spin recording method and device
WO2010003926A1 (en) * 2008-07-08 2010-01-14 Technical University Of Denmark Magnetocaloric refrigerators
US7691284B2 (en) * 2006-08-29 2010-04-06 The Boeing Company Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials
CN110690021A (en) * 2019-11-18 2020-01-14 国网湖南省电力有限公司 Perovskite-doped lanthanum-manganese oxide anti-icing material and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger
JP2007179710A (en) * 2005-12-28 2007-07-12 Hokkaido Univ Spin recording method and device
US7691284B2 (en) * 2006-08-29 2010-04-06 The Boeing Company Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials
US8679582B2 (en) 2006-08-29 2014-03-25 The Boeing Company Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials
WO2010003926A1 (en) * 2008-07-08 2010-01-14 Technical University Of Denmark Magnetocaloric refrigerators
CN102089835A (en) * 2008-07-08 2011-06-08 丹麦理工大学 Magnetocaloric refrigerators
CN110690021A (en) * 2019-11-18 2020-01-14 国网湖南省电力有限公司 Perovskite-doped lanthanum-manganese oxide anti-icing material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3461114B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
Benford et al. T‐S diagram for gadolinium near the Curie temperature
Annaorazov et al. Alloys of the Fe Rh system as a new class of working material for magnetic refrigerators
Yu et al. Large magnetic entropy change in the metallic antiperovskite Mn3GaC
JP4622179B2 (en) Magnetic refrigeration work substance, regenerative heat exchanger and magnetic refrigeration equipment
Wikus et al. Magnetocaloric materials and the optimization of cooling power density
Pratt Jr et al. A continuous demagnetization refrigerator operating near 2 K and a study of magnetic refrigerants
Andres et al. Hyperfine enhanced nuclear magnetic cooling in Van Vleck paramagnetic intermetallic compounds
CA1100192A (en) Dielectric refrigerator using orientable defect dipoles
Tomokiyo et al. Specific Heat and Entropy of RNi 2 (R: Rare Earth Heavy Metals) in Magnetic Field
Qiao et al. Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures
Maple et al. Interaction between superconductivity and magnetism in the pseudoternary system (Lu1− xHox) Rh4B4
JP2013189543A (en) Magnetic refrigeration material, cold storage material, and refrigeration system using them
JP3461114B2 (en) Magnetic material for magnetic cooling and magnetic cooling device using the same
Tegusi Novel materials for magnetic refrigeration
Aliev et al. Magnetocaloric properties of La0. 9Pr0. 1Fe11. 2Co0. 7Si1. 1 compound through direct measurements under cyclic magnetic fields up to 30 Hz
US3650117A (en) Paraelectric refrigerator
Symko Nuclear cooling using copper and indium
Pobell The quest for ultralow temperatures: What are the limitations?
Kamiya et al. Hydrogen liquefaction by magnetic refrigeration
Zverev et al. Magnetocaloric effect: from theory to practice
Gschneidner Jr et al. Magnetic refrigeration
EP4006189A1 (en) Magnetic freezing module, magnetic freezing system, and cooling method
Numazawa et al. New regenerator material for sub-4 K cryocoolers
Lyubina Magnetocaloric materials
Bunkov Superconducting aluminium heat switch prepared by diffusion welding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees